

Hands On AGK BASIC
A Beginner’s Guide to Multi-Platform Games Programming

Alistair Stewart

Digital Skills
Milton
Barr
Girvan
Ayrshire
KA26 9TY
United Kingdom

+44(0)1465 861 638tel:
www.digital-skills.co.uk

Copyright © 2012-2013 Alistair Stewart

All rights reserved.

No part of this work may be reproduced or used in any form without the
written permission of the author.

Although every effort has been made to ensure accuracy, the author and
publisher accept neither liability nor responsibility for any loss or damage
arising from the information in this book.

AGK BASIC is produced by The Game Creators Ltd.

Cover Design: Sébastien Leroux

Printed June 2012
Updated February 2013
ebook Updated April 2013

Title: Hands On AGK BASIC

ISBN: 978-1-874107-14-9

Other Titles Available:

Hands On DarkBASIC Pro Vols 1 & 2
Hands On Milkshape

Table of Contents
Foreword i
Preface iii

Acknowledgements iii
How to Get the Most Out of this Book iv

Chapter 1 - Algorithms
Designing Algorithms 2

Following Instructions 2
Control Structures 3
Sequence 3
Selection 4
Complex Conditions 10
Iteration 14
Data 20
Levels of Detail 22
Checking for Errors 26
Summary 29

Solutions 32

Chapter 2 - Starting AGK
Programming a Computer 36

Introduction 36
The Compilation Process 36
Summary 38

Starting AGK 39
Introduction 39
Starting Up AGK 39
The Program Code 42
Transferring Your App to a Tablet or Smartphone 43
Summary 44

First Statements in AGK BASIC 45
Introduction 45
Print() 45
Adding Comments 47
PrintC() 47
Other Statements which Modify Output 48
Summary 52

The Second Source File 54
A Splash Screen 55
Starting a New Project 56
App Window Properties 57

Measurements 57
Summary 59

Solutions 61

Chapter 3 - Data
Program Data 64

Introduction 64
Constants 64
Variables 64
Named Constants 68
Summary 69

Allocating Values to Variables 70
Introduction 70
The Assignment Statement 70
The Print() Statement Again 77
Acquiring Data 79
User Input 87
Summary 90

Testing Sequential Code 91
Solutions 93

Chapter 4 - Selection
Binary Selection 98

Introduction 98
if 98
The Other if Statement 107
Summary 108

Multi-Way Selection 109
Introduction 109
Nested if Statements 109
The select Statement 112
Testing Selective Code 115
Summary 117

Solutions 118

Chapter 5 - Iteration
Iteration 124

Introduction 124
The while .. endwhile Construct 124
The repeat .. until Construct 126
The for..next Construct 128
Finding the Smallest Value in a List of Values 133
The exit Statement 134
The do .. loop Construct 135
Nested Loops 135
Nested for Loops 136
Testing Iterative Code 137
Summary 139

Solutions 140

Chapter 6 - A First Look at Resources
Resources - A First Look 146

Introduction 146
Images 146
Images in AGK 149
Sound 156
Music 159
Detecting User Interaction 163
Text Resources 165
Later 170
Summary 170

Solutions 172

Chapter 7 - Spot the Difference Game
Game - Spot the Difference 176

Introduction 176
Game Design 176
Game Code 182

Solutions 188

Chapter 8 - User-Defined Functions
Functions 192

Introduction 192
Functions 192
Parameters 196
Summary 206

 BASIC Subroutines 207
Introduction 207
Creating a Subroutine 207

A Library of Functions 209
Introduction 209
Creating a Library 209

Creating Modular Software 211
Introduction 211
Top-Down Programming 212
Bottom-Up Programming 219
Structure Diagrams 221
Summary 222

Solutions 224

Chapter 9 - String and Math Functions
String Functions 232

Introduction 232
String-Handling Functions 232
Creating Your Own String Functions 242
Summary 248

Math Functions 250
Introduction 250
Coordinates 250
Trigonometric Functions 251
Other Math Functions 259
Summary 262

Solutions 265

Chapter 10 - Arrays
Arrays 270

Problems with Simple Variables 270
One Dimensional Arrays 271
Using Arrays 276
Dynamic Arrays 293
The undim Statement 294
Multi-dimensional Arrays 294
3-Dimensional Arrays and Higher 295
Arrays and Functions 296
Summary 296

Solutions 297

Chapter 11 - Data Types and Operators
Data Storage 304

Introduction 304
Declaring Variables 304
Type Definitions 305
Summary 310

Data Manipulation 311
Introduction 311
Other Number Systems 311
Shift Operators 312
Bitwise Boolean Operators 314
A Practical Use For Bitwise Operations 317
Summary 318

Solutions 320

Chapter 12 - File Handling
Files 324

Introduction 324
Accessing Files 324
File Management 330
Folder Management 331
Zip Files 335
Summary 336

Solutions 338

Chapter 13 - Particles
Particles 342

Introduction 342
Creating Particles 342
Retrieving Particles Data 355
Summary 359

Solutions 361

Chapter 14 - Text
Text 366

Introduction 366
Review 366
Further Text Statements 367
Text Character Statements 375
Summary 385

Solutions 389

Chapter 15 - User Input
Virtual Buttons 392

Introduction 392
Virtual Button Statements 392
Using Multiple Virtual Buttons 397
Summary 399

Keyboard Input 400
Introduction 400
Text-Input Statements 400
Summary 404

Edit Box Statements 405
Introduction 405
Edit Box Statements 405
Summary 418

Joystick Input 421
Introduction 421
Virtual Joystick Statements 421
Physical Joysticks 427
Summary 430

Device Dependent Input 432
Introduction 432
Accelerometer Statements 432
Mouse Statements 435
Joystick Statements 437
Keyboard Statements 440
Device Identity 442
Summary 442

Solutions 444

Chapter 16 - Images
Images 450

Introduction 450
Review 450
Further Image Statements 450
The ImageJoiner Utility 455
Atlas Texture Files and Proportional Fonts 456
Manipulating Images 457
Image Selection from Storage 460
Using a Device’s Camera 461
Mapping Images to Sprites 463
Summary 466

Solutions 468

Chapter 17 - Sprites
Sprites 470

Introduction 470
Review 470
Other Sprite Statements 471
The Sprite Offset Feature 494
Sprite Bounding Areas 499
Sprite Groups 505
Moving Sprites 511
Controlling Speed 523
Ray Casting 524
Summary 532

A Jigsaw Puzzle Game 535
Introduction 535
The Game 535
The Data Files 535
Game Layout 536
The Game Code 537

Solutions 541

Chapter 18 - Animated Sprites
Introduction 550
Using an Animated Sprite 550
A Card Trick 556
Summary 558

An Asteroid Game 560
Introduction 560
Game Layout 560
Game Logic 561
Game Resources 561
Game Code 561

Solutions 573

Chapter 19 - Screen Handling
Screen Handling 580

Introduction 580
Screen-Related Statements 580
Zooming and Scrolling 583
Touch Statements 595
Summary 602

Secrets of Sync() 604
Summary 608

Solutions 609

Chapter 20 - Physics
Sprite Physics - 1 614

Introduction 614
Basic Physic Statements 614
Physics Collisions 628
Physics Sprite Shapes 630
Summary 634

World Physics 636
Introduction 636
General Statements 636
Forces 638
Summary 641

Sprite Physics - 2 643
Contacts 643
Physics Groups and Categories 648
Physics Ray Casting 653
Summary 656

Joints 658
Introduction 658
Joint Statements 658
Summary 683

Solutions 685

Chapter 21 - Accessing a Network
Multiplayer Games 692

Introduction 692
Hardware Requirements 692
The Host and its Clients 692
Multiplayer Statements 693
Summary 716

Multi-Player Tic Tak Toe 718
Introduction 718
Game Logic 718
Program Code 719

HTTP 727
Introduction 727

HTTP Statements 727
Summary 736

Solutions 738

Chapter 22 - Bits and Pieces
Date and Time 748

Introduction 748
Standard Date Statements 748
Unix Date Statements 749
Time Statements 751
Summary 752

QR Coding 753
Introduction 753
QR Code Statements 753
Summary 755

Advertising 756
Introduction 756
Ad Statements 756
Summary 757

Errors 759
Introduction 759
Error Handling Statements 759
Summary 760

Benchmarking 761
Introduction 761
Benchmarking Statements 761
Summary 765

Paused Apps 766
Solutions 769

Chapter 23 - 3D Graphics
Concepts and Terminology 772

Introduction 772
Modelling Ideas and Terminology 776
Summary 783

Creating a First 3D App 786
Introduction 786
Statements 786
User Control of the Camera 790
Summary 792

Object Creation and Modification 793
Creating Primitives 793
Object Appearance 798
Transforming Objects 803

Cameras 816
Introduction 816
Camera-Related Statements 816
Using Camera Commands to Create First Person Perspective 823
Billboarding 828

Summary 829
Lights 831

Introduction 831
Directional Lights 831
Point Lights 833
Object Reflectivity 835
Summary 836

Collisions
Introduction 837
Ray Cast Statements 837
Summary 855

Other 3D Related Statements 857
Converting Between Screen and 3D Coordinates 857
Sprite and 3D Depth Settings 863
The Depth Buffer 863
Shaders 866
Quaternion Rotation 869
Summary 872

Solutions 873

Chapter 24 - Memory Blocks
Accessing Memory 884

Introduction 884
Memory Block Statements 885
Storing Characters and Strings in a Memory Block 891
Using a Memory Block as an Array 893
Using a Memory Block as a Record Structure 895
Saving Memory Block Data to a File 904
Summary 908

Memory Blocks for Images 910
Introduction 910
Memory Block Image Statements 910
Mapping a Pixel to a Memory Block 912
Modifying an Image’s Data 913
Creating Your Own Images from Scratch 914
Summary 916

Creating a Mandelbrot Image 918
Producing the Program 920
Zooming In 927
Shortcomings 930

Solutions 932

Chapter 25 - Drawing
Drawing Statements 940

Drawing a Line 940
Drawing a Dot 940
Drawing a Rectangle 941
Drawing a Circle 943
Drawing an Ellipse 945

Creating a Data Structure for Basic Shapes 947
Summary 952

Drawing a Simple Bezier Curve 953
Introduction 953
Calculating the Curve 953
Creating a Bezier Curve in Real Time 960

Displaying 3D Models in Wireframe 966
Introduction 966
Developing the Program Logic 968
Implementing the Program 969

Solutions 975

Appendix A - ASCII Codes 939
Index 940

xii Hands On AGK BASIC: Foreword

Foreword

by Lee Bamber

When I was nine I received my first personal computer, a VIC-20, which was blessed
with over 3K of system memory and a maximum palette of 16 colours. From that
moment my universe was slightly larger than the amount of memory it takes to store
this paragraph of text. In that universe I created lost civilisations, space battles, deep
treks into inhospitable lands and dangerous creatures ready leap out from every dark
corner. Granted most of it happened in the imagination of the player, but my audience
consisted of my parents, my brothers and my uncle who all thought my ‘games’ were
amazing.

What was truly amazing was the rate at which the limits of my universe expanded
with more memory, more colours, more speed and a bigger audience to play my
‘games’. We went from back-bedroom build-your-own hobby developers to a global
industry worth Billions, and it happened so quickly we still have the original founders
of this industry working alongside the newest recruits.

Veteran fogies like me can look back and see so much history that when something
new comes along, we can almost instantly compare it to five things it strongly
resembles from our own fading recollections. We can also identify when something
is utterly game-changing, and it usually happens on an epic scale. For me, that
moment was when the term ‘apps’ entered the public consciousness. Before then you
had software you went out and bought, because you needed software. When the idea
of an ‘app’ emerged, it gave ‘software’ a name change and a leviathan marketing
budget to spend to the end of time. We are no longer a community of developers who
write software, we’re a community that creates solutions to make life better, and its
consumers, not developers, who are deciding what those should be.

Here in lies the problem for us poor, overworked developers. We had our plate full
just writing software that worked sufficiently for a period of time on one computer.
Now we have to create solutions for everyone, where-ever they are, when-ever they
want to use it and what-ever they are using as a ‘computer’ at the time. People today
want to use their favourite ‘app’ on their home computer, their phone, their TV, in
their car and on their fancy new touch tablet, and they want it instantly and constantly
up to date. It’s enough to make you cry!

In the best tradition of software developers, whenever we face an emergent system
that requires an impossible amount of resources, we simply change the system. Why
have ten developers working on ten different systems when you can have one
developer working on a single system, and then have a cleverer system translate that
work to the other nine automatically. Sounds great in theory, but the practical
application produces a number of very oddly shaped solutions indeed.

Now what if you could spin the time machine forward a few years and grab one of
the nicer solutions to this problem and then zip back to the present day and start using
it? Well it just so happens that I do have a time machine and did just that. It seems,
The Game Creators Ltd of 2015 ‘will be’ working with a new piece of software called
AGK (App Game Kit) and they ‘will make’ me promise that providing I don’t upset
causality, I can take an early copy back with me to 2011 to help them omega test it.
Call it a moment of weakness, but I might have put this copy of the product on a
website at www.appgamekit.com.

Apparently the break-through with AGK is that you can develop an app on one

Hands On AGK BASIC: Foreword xiii

system, and it will be instantly compatible with every other system on the planet. I’ve
only managed to get it working on Windows, Mac, MeeGo, iOS, Android and Bada
at the moment, but with some more tweaking of their strange alien code I ‘will be’
assured I can get it to produce all the other platforms present on Earth, even the ones
that don’t exist yet.

AGK uses the concept of universal commands. That is, each command will perform
the same functionality no matter which system it happens to be running on. It is also
input agnostic, so if your application requires an input source that does not exist,
AGK will virtualise that input data from another piece of hardware present on the
device or emulate it through virtual controls. The result is that you can write an ‘app’
just once, and the resulting program will run on any device present today and any
device in the future too.

As developers we have a few decades of history under our belt and can swell with
pride on what we have achieved to date. My prediction is that we’ve just created the
world’s largest rod for our backs, and now have to finish what we started. The only
way forward is to evolve ten pairs of hands through a fortuitous genetic mutation, or
find a solution that lets us meet the demands of the next few decades with confidence,
a sense of fun and above all, ten fingers!

Lee Bamber
CEO The Game Creators Ltd
2012

xiv Hands On AGK BASIC: Foreword

Preface
Welcome to the amazing world of the App Game Kit. This is an application that will
allow you to create a program that you can design on one machine and run on just
about any other platform.

Want to write a game that will run on your phone or your tablet? No problem! Write
the application on your regular computer and transfer it to your other devices - it’s
easy!

Graphics, animation, sound, touch screen, mouse, joystick, keyboard - your app will
cope with them all.

Write your apps and sell them online. Some game apps have sold over 5 million
copies.

And although AGK stands for App Game Kit, there’s no reason why your creation
has to be a game. You can easily write educational material, utilities or any number
of applications.

Who is this book for? It’s for you. It doesn’t matter if you’re a programming guru or
have never written a line of code in your life. This book assumes only a basic
knowledge of computers. If you can run an application, copy, paste, delete data,
access the internet, type (even with just one finger), and know just a little basic
arithmetic then that’s all that assumed. Everything else is here. And for the guru there
are plenty of hints and tips that I’m sure you will find helpful.

Some books can be very hard going: pages and pages of detail - most of which you
forget as soon as you turn to the next page, or when you fall asleep. We do things
differently here. No getting bored reading page after page - you’ll have a series of
activities to carry out that are designed to reinforce what you’ve read on the page.
And unlike most other books that seem to forget about any tasks they have set you,
you’ll find a full set of answers to the activities at the end of each chapter.

Enjoy your journey through this book.

Acknowledgements

I’d like to thank Lee Bamber, Paul Johnston and Mike Johnson from The Game
Creators for all their help and guidance, Also, thanks to John McKay for his patience
and forbearance in testing every example included in the book. As usual, Virginia
Marshall did her best to rid the book of any grammar or spelling problems.

As always, any errors remaining are entirely my own.

I am always happy to receive any helpful suggestions on how to improve the book or
- heaven forbid - details of any errors you’ve found.

Contact me at alistair@digital-skills.co.uk.

Alistair Stewart June 2012

Hands On AGK BASIC: Foreword xv

Second Edition

It’s an almost impossible task to write an up-to-date book on a language that changes
as rapidly as AGK. Until now we’ve published updates and extra chapters to extend
the original Hands On AGK BASIC to deal with the many changes and additions of
AGK version 1, but now, with AGK version 2 and another swathe of additional and
updated commands, I’ve taken this opportunity revamp the whole book.

The main change is that the publication has now been split into two volumes, with
the more advanced topics such as 3D and networking commands moved to the second
volume. But I’ve also taken the opportunity to make minor corrections to retained
text and to check that the sample programs run correctly on the latest version of
AGK.

As always, please feel free to email me with any useful suggestions or corrections.

Alistair Stewart April 2014

xvi Hands On AGK BASIC: Foreword

How to Get the Most Out of this Book
Is learning the basics of computer programming difficult? No, but you do have to put
in the effort. Despite other publications promising to have you expert in a day, or a
week, I’m sure you’re smart enough to know that’s not going to happen. So, let’s get
real: you’ll learn how to program using AGK if you put in the work, take your time
to make sure you understand something before moving on, and practice, practice,
practice.

We’ve tried to keep things interesting by giving you plenty of practical work to do as
you journey through this book, but feel free to try out your own projects as well.

The first chapter is the only one in which you won’t need your computer since it
concentrates on the basic concepts behind all computer programming. You can, if
you wish, work on the second chapter at the same time as you read through Chapter
1. That way, you’ll be able to start programming right away.

Take your time with each chapter. Make sure you do each of the activities: they are
there to give you a deeper understanding as well as to keep you actively involved.
Since most activities require you to create a program, the computer will let you know
if you’ve got it right, but you should still take the time to look at the activity’s
solution given at the end of the chapter. The solution given may differ from your own
but it’s always of use to see how others tackle the same problem.

Don’t be afraid to reread a section or a whole chapter - it’s the second or third reading
of something new that finally gets the information across to most people.

If you are already a seasoned programmer you will be able to skip through much of
the early chapters. If you have programmed in DarkBASIC before, many of the core
statements in AGK are identical to that earlier language, but look out for a few subtle
differences such as the lack of READ and DATA statements and the method used to
initialise arrays.

The Files for the Book

Many of the programming activities (particularly in later chapters) make use of other
resources such as images, sounds, and 3D models. You can download the necessary
files from

 www.digital-skills.co.uk/downloads/AGK2Downloads.zip

Hands On AGK BASIC: Algorithms 1

Algorithms

In this Chapter:

T Understanding Algorithms

T Creating Algorithms

T Control Structures

T Boolean Expressions

T Data Types

T Stepwise Refinement

T The Need for Testing

2 Hands On AGK BASIC: Algorithms

Designing Algorithms

Following Instructions

Congratulations! You’ve just become a human computer. You were given a set of
instructions which you have carried out (by the way, did you think of the colour
grey?).

That’s exactly what a computer does. You give it a set of instructions, the machine
carries out those instructions, and that is ALL a computer does. If some computers
seem to be able to do amazing things, that is only because someone has written an
amazingly clever set of instructions. A set of instructions designed to perform some
specific task (like that in Activity 1.1) is known as an algorithm.

A clear and concise algorithm should have the following characteristics:

± One instruction per line

± Each instruction is unambiguous

± Each instruction is as brief as possible

As you can see, there are at least two ways to solve the problem given in Activity 1.2.
Is one better than the other? Well, if we start by filling container A, the solution needs
less instructions, so that might be a good guideline at this point when choosing which
algorithm is best.

However, the algorithms that a computer carries out are not written in English like

Activity 1.1

Carry out the following set of instructions in your head.

 Think of a number between 1 and 10
 Multiply that number by 9
 Add up the individual digits of this new number
 Subtract 5 from this total
 Think of the letter at that position in the alphabet
 Think of a country in Europe that starts with that letter
 Think of a mammal that starts with the second letter of the country’s name
 Think of the colour of that mammal

A B

Activity 1.2

This time let’s see if you can devise your own algorithm.

The task you need to solve is to measure out exactly 4 litres of water. You
have two containers. Container A, if filled, will hold exactly 5 litres of water,
while container B will hold 3 litres of water. You have an unlimited supply of
water and a drain to get rid of any water you no longer need. It is not possible
to know how much water is in a container if you only partly fill it from the
supply.

If you manage to come up with a solution, see if you can find a second way of
measuring out the 4 litres.

Hands On AGK BASIC: Algorithms 3

the instructions shown above, but in a more stylised form using a computer
programming language. AGK BASIC is one such language. The set of program
language instructions which make up each algorithm is then known as a computer
program or software.

Just as we may perform a great diversity of tasks by following different sets of
instructions, so the computer can be made to carry out any task for which a program
exists.

Computer programs are normally copied (or loaded) from a disk into the computer’s
memory and then executed (or run). Execution of a program involves the computer
performing each instruction in the program one after the other. This it does at
impressively high rates, possibly exceeding 160,000 million (or 160 billion)
instructions per second (160,000 mips).

Depending on the program being run, the computer may act as a word processor, a
database, a spreadsheet, a game, a musical instrument or one of many other
possibilities. Of course, as a programmer, you are required to design and write
computer programs rather than use them. And, more specifically, our programs in this
text will be mainly multimedia and game oriented, an area of programming for which
AGK has been specifically designed.

Control Structures
Although writing algorithms and programming computers can be complicated tasks,
there are only a few basic concepts and statements which you need to master before
you are ready to start producing software. Luckily, many of these concepts are
already familiar to you in everyday situations. If you examine any algorithm, no
matter how complex, you will find it consists of only three basic structures:

± Sequence where one instruction follows on from another.

± Selection where a choice is made between two or more alternative
 actions.

± Iteration where one or more instructions are carried out over and
 over again.

These structures are explained in detail over the next few pages. All that is needed is
to formalise how they are used within an algorithm. This formalisation better matches
the structure of a computer program.

Sequence

A set of instructions designed to be carried out one after another, beginning at the first
and continuing, without omitting any, until the final instruction is completed, is
known as a sequence. For example, instructions on how to perform an everyday task
such as plant a bush in the garden would be:

Activity 1.3

a) A set of instructions that performs a specific task is known as what?

b) What term is used to describe a set of instructions used by a computer?

c) The speed of a computer is measured in what units?

A traditional disk
makes use of a
magnetic surface to
record information.
More recent designs
use solid state
memory.

4 Hands On AGK BASIC: Algorithms

 Choose spot for planting
 Dig hole
 Add fertiliser
 Place shrub in hole
	 Refill	hole

The set of instructions given earlier in Activity 1.1 is also an example of a sequence.

Selection
Binary Selection

Often a group of instructions in an algorithm should be carried out only when certain
circumstances arise. For example, if we were playing a simple game with a young
child in which we hide a sweet in one hand and allow the child to have the sweet only
if she can guess which hand the sweet is in, then we might explain the core idea with
an instruction such as

 Give the sweet to the child if the child guesses which hand the sweet is in

Notice that when we write a sentence containing the word IF, it consists of two main
components:

 a condition : the child guesses which hand the sweet is in
and
 a command : give the sweet to the child

A condition (also known as a Boolean expression) is a statement that is either true
or false in a given situation. The command given in the statement is only carried out
if the condition is true at that particular moment and hence this type of instruction is
known as an IF statement and the command as a conditional instruction. Although
English would allow us to rewrite the above instruction in many different ways, when
we produce a set of formal instructions, as we are required to do when writing
algorithms, then we use a specific layout as shown in FIG-1.1, always beginning with
the word IF.

Activity 1.4

Re-arrange the following instructions to describe how to play a single shot
during a golf game:

 Swing club forwards, attempting to hit ball
 Take up correct stance beside ball
 Grip club correctly
 Swing club backwards
 Choose club

 condition

command

IF THEN

ENDIF

If condition
is true...

then command
is carried out

If condition is not true,
then command is ignored

FIG-1.1

The IF Statement

Note that there are
two alternative actions
in this structure:
to carry out the
command or to ignore
it.

Hands On AGK BASIC: Algorithms 5

Notice that the layout of this instruction makes use of three terms that are always
included. These are the words IF, which marks the beginning of the instruction;
THEN, which separates the condition from the command; and finally, ENDIF which
marks the end of the instruction.

The indentation of the command is important since it helps our eye grasp the structure
of our instructions. Appropriate indentation is particularly valuable in aiding
readability once an algorithm becomes long and complex. Using this layout, the
instruction for our game with the child would be written as:

 IF the child guesses which hand the sweet is in THEN
 Give the sweet to the child
 ENDIF

Sometimes, there will be several commands to be carried out when the condition
specified is met. For example, in the game of Scrabble we might describe a turn as:

 IF you can make a word THEN
 Add the word to the board
 Work out the points gained
 Add the points to your total
 Select more letter tiles
 ENDIF

Of course, the IF statement will almost certainly appear within a longer set of
instructions. For example, the instructions for playing our guessing game with the
young child may be given as:

 Hide a sweet in one hand
 Ask the child to guess which hand contains the sweet
 Wait for the child to reply
 IF the child guesses which hand the sweet is in THEN
 Give the sweet to the child
 ENDIF
 Ask the child if they would like to play again

This longer list of instructions highlights the usefulness of the term ENDIF in
separating the conditional command, Give the sweet to the child, from subsequent
unconditional instructions, in this case, Ask the child if they would like to play again.

The IF structure is also used in an extended form to offer a choice between two
alternative actions. This expanded form of the IF statement includes another formal
term, ELSE, and a second command. If the condition specified in the IF statement is
true, then the command following the term THEN is executed, otherwise the

Activity 1.5

A simple game involves two players. Player 1 thinks of a number between 1
and 100, then Player 2 makes a single attempt at guessing the number. Player 1
responds to a correct guess by saying Correct. If the guess is incorrect, Player 1
makes no response. The game is then complete and Player 1 states the value of
the number.

Write the set of instructions necessary to play the game. In your solution,
include the statements:

 Player 1 says “Correct”
 Player 1 thinks of a number
 IF guess matches number THEN

Note that this algorithm
does not explicitly say
what happens when the
child makes an incorrect
guess. This is because no
specific action needs to
be carried out when an
incorrect guess is made.

6 Hands On AGK BASIC: Algorithms

command following ELSE is carried out.

For instance, in our earlier example of playing a guessing game with a child, nothing
happened if the child guessed wrongly. If the person holding the sweet were to eat it
when the child’s guess was incorrect, we could describe this setup with the following
statement:

 IF the child guesses which hand the sweet is in THEN
 Give the sweet to the child
 ELSE
 Eat sweet yourself
 ENDIF

The general form of this extended IF statement is shown in FIG-1.2.

When we have several independent selections to make, then we may use several IF
statements. For example, when playing Monopoly, we may buy any unpurchased
property we land on. In addition, we get another turn if we throw a double. This part
of the game might be described using the following statements:

 Throw the dice
 Move your piece forward by the number indicated
 IF you land on an unsold property THEN
 Buy the property
 ENDIF
 IF you threw doubles THEN
 Throw the dice again
 ELSE
 Hand the dice to the next player
 ENDIF

Because this form of the IF statement (with or without the ELSE option) always

 condition

command 1

IF

ENDIF

THEN

ELSE

command 2

If condition
is true...

...then command1
is carried out

If condition
is false...

...then command2
is carried out

Activity 1.6

In the game of Hangman, one player has to guess the letters in a word known to
the second player. At the start of the game, player 2 draws one hyphen for each
letter in the word. When player 1 guesses a letter which is in the word, player
two writes the letter above the appropriate hyphen. When an incorrect letter is
guessed, player 2 draws a body part of a hanging man (there are 6 parts in the
simple drawing).

Write an IF statement containing an ELSE section which describes the
alternative actions to be taken by player 2 when player 1 guesses a letter.

In the solution include the statements:
 Add letter at appropriate position(s)
 Add part to hanged man

FIG-1.2

The IF..THEN..ELSE
Structure

Hands On AGK BASIC: Algorithms 7

offers two alternative actions, the structure is known as binary selection.

Multi-way Selection

Although a simple IF statement can be used to select one of two alternative actions,
sometimes we need to choose between more than two alternatives (known as multi-
way selection). For example, imagine that the rules of the simple guessing game
mentioned in Activity 1.5 are changed so that there are three possible responses to
Player 2’s guess; these being:

± Correct

± Too low

± Too high

One way to create an algorithm that describes this situation is just to employ three
separate IF statements:

 IF the guess is equal to the number you thought of THEN
 Say “Correct”
 ENDIF
 IF the guess is lower than the number you thought of THEN
 Say “Too low”
 ENDIF
 IF the guess is higher than the number you thought of THEN
 Say “Too high”
 ENDIF

This will work, but would not be considered a good design for an algorithm since,
when the first IF statement is true, we still go on and check if the conditions in the
second and third IF statements are true. Checking those last two statements would be
a waste of time since, if the first condition is true, the others cannot be and therefore
testing them serves no purpose. Where only one of the conditions being considered
can be true at a given moment in time, these conditions are known as mutually
exclusive conditions. The most effective way to deal with mutually exclusive
conditions is to check for one condition, and only if this is not true, do we bother to
examine the other conditions being tested. So, for example, in our algorithm for
guessing the number, we might begin by writing:

 IF guess matches number THEN
 Say “Correct”
 ELSE
 Check the other conditions
 ENDIF

Of course a statement like Check the other conditions is too vague to be much use in an
algorithm (hence the asterisks to emphasise the problem). But what are these other
conditions? They are the guess is lower than the number Player 1 thought of and the guess
is higher than the number Player 1 thought of.

We already know how to handle a situation where there are only two alternatives: use
an IF statement. So selecting between Too low and Too high requires the statement

 IF guess is less than number THEN
 Say “Too low”
 ELSE
 Say “Too high”
 ENDIF

8 Hands On AGK BASIC: Algorithms

Now, by replacing the phrase ***Check the other conditions*** in our original algorithm
with our new IF statement we get:

 IF guess matches number THEN
 Say “Correct”
 ELSE
 IF guess is less than number THEN
 Say ”Too low”
 ELSE
 Say “Too high”
 ENDIF
 ENDIF

Notice that the second IF statement is now totally contained within the ELSE section
of the first IF statement. This situation is known as nested IF statements. Where
there are even more mutually exclusive alternatives, several IF statements may be
nested in this way. However, in most cases, we’re not likely to need more than two
nested IF statements.

As you can see from the solution to Activity 1.7, although nested IF statements get
the job done, the general structure can be rather difficult to follow. A better method
would be to change the format of the IF statement so that several, mutually exclusive,
conditions can be declared in a single IF statement along with the action required for
each of these conditions. This would allow us to rewrite the solution to Activity 1.7
as:

 IF
 crossbow is too high: Say “Down a bit”
 crossbow is too low: Say “Up a bit”
 crossbow is too far right: Say “Left a bit”
 crossbow is too far left: Say “ Right a bit”
 crossbow is on target: Say “Fire”
 ENDIF

Each option is explicitly named (ending with a colon) and only the one which is true
will be carried out, the others will be ignored.

Of course, we are not limited to merely five options; there can be as many as the
situation requires.

When producing a program for a computer, all possibilities have to be taken into
account. Early adventure games, which were text based, allowed the player to type a
command such as Go East, Go West, Go North, Go South and this moved the player’s
character to new positions in the imaginary world of the computer program. If the

Activity 1.7

In an old TV programme called The Golden Shot, contestants had to direct a
crossbow in order to shoot an apple. The player sat at home and directed the
crossbow controller via the phone. Directions were limited to the following
phrases: up a bit, down a bit, left a bit, right a bit, and fire.

Write a set of nested IF statements that determine which of the above
statements should be issued.

Use statements such as:
 IF the crossbow is pointing too high THEN
 and
 Say “Left a bit”

Hands On AGK BASIC: Algorithms 9

player typed in an unrecognised command such as Go North-East or Move faster,
then the game would issue an error message. This setup can be described by adding
an ELSE section to the structure as shown below:

 IF
 command is Go East:
 Move player’s character eastward
 command is Go West:
 Move player’s character westward
 command is Go North:
 Move player’s character northward
 command is Go South:
 Move player’s character southward
 ELSE
 Display an error message
 ENDIF

The additional ELSE option will be chosen only if none of the other options are
applicable. In other words, it acts like a catch-all, handling all the possibilities not
explicitly mentioned in the earlier conditions.

This gives us the final form of this style of the IF statement as shown in FIG-1.3.
FIG-1.3

The Multi-Way IF
Structure

IF

ENDIF

ELSE

...then command1
is carried out

If condition1
is true... condition1 :

command1

 condition2 :
command2

 condition3 :
command3

If condition2
is true...

...then command2
is carried out

as many conditions
and correponding

commands as necessary
can be inserted

...then command3
is carried out

If condition3
is true...

command
If none of the

previous conditions are
true, then this command

is carried out

Activity 1.8

In the TV game Wheel of Fortune (where you have to guess a well-known
phrase), you can, on your turn, either guess a consonant, buy a vowel, or make
a guess at the whole phrase.

If you know the phrase, you should make a guess at what it is; if there are still
many unseen letters, you should guess a consonant; as a last resort you can buy
a vowel.

Write an IF statement in the style given above describing how to choose from
the three options.

10 Hands On AGK BASIC: Algorithms

Complex Conditions

Often the condition given in an IF statement may be a complex one. For example, in
the TV game Family Fortunes, you only win the star prize if you get 200 points and
guess the most popular answers to a series of questions. This can be described in our
more formal style as:

IF at least 200 points gained AND all most popular answers have been guessed
THEN
 winning team get the star prize
ENDIF

The AND Operator

Note the use of the word AND in the above example. AND (called a Boolean
operator) is one of the terms used to link simple conditions in order to produce a
more complex one (known as a complex condition).

The conditions on either side of the AND are called the operands. Both operands
must be true for the overall result to be true. We can generalise this to describe the
AND operator as being used in the form:

 condition 1 AND condition 2

The result of the AND operator is determined using the following rules:

1. Determine the truth of condition 1
2. Determine the truth of condition 2
3. IF both conditions are true THEN
 the overall result is true
 ELSE
 the overall result is false
 ENDIF

For example, if a proximity light comes on when it’s dark and it detects motion then
we can describe the logic of the equipment as:

 IF it’s dark AND motion has been detected THEN
 Switch on light
 ENDIF

Now, if we assume that at a particular moment in time it’s dark but no motion has
been detected then the above statement would be dealt with in the manner shown in
FIG-1.4.

FIG-1.4

The AND Operator

The first condition is tested to
determine if it is true or false. In this
case, that condition is true

The second condition is false (since no
motion has been detected).

it’s dark
The condition

is true motion has been detected

This condition
is false

Hands On AGK BASIC: Algorithms 11

With two conditions there are four possible combinations. The first possibility is that
both conditions are false; another possibility is that condition 1 is false but condition
2 is true, etc.

All possibilities of the AND operator are summarised in FIG-1.5.

The OR Operator
Simple conditions may also be linked by the Boolean OR operator. Using OR, only
one of the two conditions specified needs to be true in order to carry out the action
that follows. For example, in the game of Monopoly you go to jail if you land on the
Go To Jail square or if you throw three doubles in a row. This can be written as:

 IF player landed on Go To Jail OR player has thrown 3 pairs in a row THEN
 Move player to jail
 ENDIF

Like AND, the OR operator works on two operands:

Activity 1.9

What are the other possible combinations for the two conditions?

Activity 1.10

In Microsoft Windows applications, the program will request the name of the
file to be opened if the Ctrl and O keys are pressed together.

Write an IF statement, which includes the term AND, summarising this
situation.

 condition 1 condition 2 condition 1 AND condition 2

 false false false
false true false
true false false
true true true

FIG-1.5

The AND Truthtable

Note that the result is
true only when both
conditions are true.

Substituting these results in the
original statement we have...

Since both conditions are not true, we
get an overall result of false, the
command Switch on light is not
executed.

IF true AND false THEN
 Switch on light
ENDIF IF false THEN

 Switch on light
ENDIF ...command not

executed

The compound
condition’s final value

is false so...

FIG-1.4
(continued)

The AND Operator

12 Hands On AGK BASIC: Algorithms

 condition 1 OR condition 2

When OR is used, only one of the conditions involved needs to be true for the overall
result to be true. Hence the results are determined by the following rules:

1. Determine the truth of condition 1
2. Determine the truth of condition 2
3. IF any of the conditions are true THEN
 the overall result is true
 ELSE
 the overall result is false
 ENDIF

For example, if a player in the game of Monopoly has not landed on the Go To Jail
square, but has thrown three consecutive pairs, then the result of the IF statement
given above would be determined as shown in FIG-1.6.

The results of the OR operator are summarised in FIG-1.7.

The NOT Operator
The final Boolean operator which can be used as part of a condition is NOT. This
operator is used to reverse the meaning of a condition. Hence, if it’s dark is true, then
NOT it’s dark is false. In fact, you can usually get away with just testing for the
opposite condition rather than using NOT. For example, rather than write NOT it’s
dark (which isn’t exactly regular English), you can write it’s light - assuming light
and dark are the only two options. Where there are many options to choose from, then

FIG-1.6

The OR Operator

The first condition is false, but the
second is true.

So the the original condition becomes
false OR true which reduces further to
true and hence the player goes to jail.

player landed on Go to Jail

player thrown 3 pairs in a row

false

true

IF false OR true THEN
 Move player to jail
ENDIF

IF true THEN
 Move player to jail
ENDIF

Command
executed

FIG-1.7

The OR Truthtable

Activity 1.11

In Monopoly, a player can get out of jail if he throws a double or pays a £50
fine.

Express this information in an IF statement which makes use of the OR
operator.

 condition 1 condition 2 condition 1 OR condition 2

 false false false
false true true
true false true
true true true

Hands On AGK BASIC: Algorithms 13

using NOT can make things a lot easier. It’s a whole lot simpler to write something
like

 NOT day is Monday

than have to write

 day is Tuesday OR day is Wednesday OR day is Thursday, etc.

Notice that the word NOT is always placed at the start of the condition and not where
it would appear in everyday English (day is NOT Monday).

The NOT operator works on a single operand:

 NOT condition

When NOT is used, the result given by the original condition (the bit without the
NOT) is reversed. Hence the results are determined by the following rules:

1. Determine the truth of the original condition
2. Complement the result obtained in step 1

For example, if a player lands on a property that is not mortgaged, then the result of
the IF statement given above would be determined as shown in FIG-1.8.

The results of the NOT operator are summarised in FIG-1.9.

 day is Monday IF THENNOT

 false IF THENNOT

 true IF THEN

Assuming it’s
Friday, then ...

this condition ...

is false ...

and NOT false
gives true

FIG-1.8

The NOT Operator

 condition NOT condition

 false true
true false

FIG-1.9

The NOT Truthtable

Activity 1.12

a) Name the three types of control structures.
b) Another term for condition is what?
c) Name the two types of selection.
d) What does the term mutually exclusive conditions mean?
e) Give an example of a Boolean operator.
f) What is a conditional statement?
g) If two conditions are linked using the term AND, how many of the
 conditions must be true before the conditional statement is executed?

14 Hands On AGK BASIC: Algorithms

Iteration
There are certain circumstances in which it is necessary to perform the same sequence
of instructions several times. For example, let’s assume that a game involves throwing
a dice three times and adding up the total of the values thrown. We could write
instructions for such a game as follows:

 Set the total to zero
 Throw dice
 Add dice value to total
 Throw dice
 Add dice value to total
 Throw dice
 Add dice value to total
 Call out the value of total

You can see from the above that two instructions,

 Throw dice
 Add dice value to total

are carried out three times, once for each turn taken by the player. Not only does it
seem rather time-consuming to have to write the same pair of instructions three
times, but it would be even worse if the player had to throw the dice 10 times!

What is required is a way of showing that a section of the instructions is to be repeated
a fixed number of times. Carrying out one or more statements over and over again is
known as looping or iteration. The statement or statements we want to perform over
and over again are known as the loop body.

FOR..ENDFOR

When writing a formal algorithm in which we wish to repeat a set of statements a
specific number of times, we use a FOR..ENDFOR structure. There are three separate
parts to this structure. The first of these is placed just before the loop body and in it
we state how often we want the statements in the loop body to be carried out. For the
dice problem our statement would be:

 FOR 3 times DO

Generalising, we can say this statement takes the form

 FOR value times DO

where value would be some positive number.

Next come the statements that make up the loop body. These are indented:

 FOR 3 times DO
 Throw dice
 Add dice value to total

Finally, to mark the fact that we have reached the end of the loop body statements we

Activity 1.13

What statements make up the loop body in our dice problem given above?

Hands On AGK BASIC: Algorithms 15

add the word ENDFOR:

 FOR 3 times DO
 Throw dice
 Add dice value to total
 ENDFOR

Now we can rewrite our original algorithm as:

 Set the total to zero
 FOR 3 times DO
 Throw dice
 Add dice value to total
 ENDFOR
 Call out the value of total

The instructions between the terms FOR and ENDFOR are now carried out three
times.

We are free to place any statements we wish within the loop body. For example, the
last version of our number guessing game produced the following algorithm:

 Player 1 thinks of a number between 1 and 100
 Player 2 makes an attempt at guessing the number
 IF guess matches number THEN
 Player 1 says “Correct”
 ELSE
 IF guess is less than number THEN
 Player 1 says “Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
 ENDIF

player 2 would have more chance of winning if he were allowed several chances at
guessing player 1’s number. To allow several attempts at guessing the number, some
of the statements given above would have to be repeated.

To allow for 7 attempts our new algorithm becomes:

 Player 1 thinks of a number between 1 and 100
 FOR 7 times DO
 Player 2 makes an attempt at guessing the number
 IF guess matches number THEN
 Player 1 says “Correct”
 ELSE
 IF guess is less than number THEN
 Player 1 says “Too low”
 ELSE
 Player 1 says “Too high”

Note that ENDFOR
is left-aligned with
the opening FOR
statement.

Activity 1.14

If the player was required to throw the dice 10 times rather than 3, what
changes would we need to make to the algorithm?

If the player was required to call out the average of these 10 numbers, rather
than the total, show what other changes are required to the set of instructions.

You can find the
average of the 10
numbers by dividing
the final total by 10.

Activity 1.15

What statements in the algorithm above need to be repeated?

16 Hands On AGK BASIC: Algorithms

 ENDIF
 ENDIF
 ENDFOR

Occasionally, we may have to use a slightly different version of the FOR loop.
Imagine we are trying to write an algorithm explaining how to decide who goes first
in a game. In this game every player throws a dice and the player who throws the
highest value goes first. To describe this activity we know that each player does the
following task:

 Player throws dice

But since we can’t know in advance how many players there will be, we write the
algorithm using the statement

 FOR every player DO

to give the following algorithm

 FOR every player DO
 Throw dice
 ENDFOR
	 Player	with	highest	throw	goes	first

If we had to save the details of a game of chess with the intention of going back to
the game later, we might write:

FOR each piece on the board DO
 Write down the name and position of the piece
ENDFOR

Activity 1.17

During a lottery draw, two actions are performed exactly 6 times. These are:
 Pick out ball
 Call out number on the ball

Add a FOR loop to the above statements to create an algorithm for the lottery
draw process.

Activity 1.16

Can you see a flaw in the algorithm?

If not, try playing the game a few times, playing exactly according to the
instructions in the algorithm.

Activity 1.18

A game uses cards with images of warriors. At one point in the game the player
has to remove from his hand every card with an image of a knight. To do this
the player must look through every card and, if it is a knight, remove the card.

Write down a set of instructions which performs the task described above. Your
solution should include the statements

 FOR every card in player’s hand DO and IF card is a knight THEN

Hands On AGK BASIC: Algorithms 17

The general form of the FOR statement is shown in FIG-1.10.

Although the FOR loop allows us to perform a set of statements a specific number of
times, this statement is not always suitable for the problem we are trying to solve.

For example, in the guessing game of Activity 1.15 we stated that the loop body was
to be performed 7 times, but what if player 2 guesses the number after only three
attempts? If we were to follow the algorithm exactly (as a computer would), then we
must make four more guesses at the number even after we know the correct answer!

To solve this problem, we need another way of expressing looping which does not
commit us to a specific number of iterations.

REPEAT.. UNTIL

The REPEAT .. UNTIL statement allows us to specify that a set of statements should
be repeated until some condition becomes true, at which point iteration should cease.

The word REPEAT is placed at the start of the loop body and, at its end, we add the
UNTIL statement. The UNTIL statement also contains a condition, which, when true,
causes iteration to stop. This is known as the terminating (or exit) condition. For
example, we could use the REPEAT.. UNTIL structure rather than the FOR loop in
our guessing game algorithm. The new version would then be:

 Player 1 thinks of a number between 1 and 100
 REPEAT
 Player 2 makes an attempt at guessing the number
 IF guess matches number THEN
 Player 1 says “Correct”
 ELSE
 IF guess is less than number THEN
 Player 1 says “Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
 ENDIF
 UNTIL player 2 guesses correctly

We could also use the REPEAT..UNTIL loop to describe how a slot machine (one-
armed bandit) is played:

 REPEAT
 Put coin in machine
 Pull handle
 IF you win THEN
 Collect winnings
 ENDIF
 UNTIL you want to stop

FOR expression DO

 loop body

ENDFOR

Speci�es the
number of times
loop body is to

be executedThe
commands to
be carried out

The end
of the FOR

loop

Typical
expressions:

5 times
every item

FIG-1.10

The FOR..ENDFOR
Loop

18 Hands On AGK BASIC: Algorithms

The general form of this structure is shown in FIG-1.11.

The terminating condition may use the Boolean operators AND, OR and NOT as well
as parentheses, where necessary.

Returning to the number guessing game on the previous page, there is still a problem.
By using a REPEAT .. UNTIL loop we are allowing player 2 to have as many guesses
as needed to determine the correct number. That doesn’t lead to a very interesting
game. Later we’ll discover how we might solve this problem.

WHILE.. ENDWHILE

A final method of iteration, differing only subtly from the REPEAT.. UNTIL loop, is
the WHILE .. ENDWHILE structure which has an entry condition at the start of the
loop. The following example illustrates the usefulness of this new structure.

The aim of the card game of Pontoon is to attempt to make the value of your cards
add up to 21 without going over that value. Each player is dealt two cards initially
but can repeatedly ask for more cards by saying “twist”. One player is designated the
dealer. The dealer must twist while his cards have a total value of less than 16. So we
might write the rules for the dealer as:

 Calculate the sum of the initial two cards
 REPEAT
 Take another card
 Add new card’s value to sum
 UNTIL sum is greater than or equal to 16

But there’s a problem with the solution: if the sum of the first two cards is already 16
or above, we still need to take a third card (just work through the logic, if you can’t
see why). By using the WHILE..ENDWHILE structure we could describe the logic
as

 Calculate sum of the initial two cards
 WHILE sum is less than 16 DO
 Take another card
 Add new card’s value to sum
 ENDWHILE

FIG-1.11

The REPEAT..UNTIL
Loop

REPEAT

 loop body

UNTIL condition

Start of
loop

Looping
continues until

condition is
true

The
commands to
be carried out

Activity 1.19

Confronted with a pile of unordered books when looking for a specific
publication, the only way to find the desired title is to examine each book in
turn until the required one is found. Of course, there’s a possibility that the
book is not in the pile.

Using REPEAT..UNTIL, write the logic required to search for the book.

Hands On AGK BASIC: Algorithms 19

Now determining if the sum is less than 16 is performed before the Take another card
instruction. If the dealer’s two cards already add up to 16 or more, then the Take
another card instruction will be ignored.

The general form of the WHILE.. ENDWHILE statement is shown in FIG-1.12.

In what way does this differ from the REPEAT statement? There are two differences:

± The condition is given at the beginning of the loop.

± Looping stops when the condition is false.

The main consequence of this is that it is possible to bypass the loop body of a
WHILE structure entirely without ever carrying out any of the instructions it contains.

On the other hand, the loop body of a REPEAT structure will always be executed at
least once.

Infinite Loops

If a loop can never exit, it is known as an infinite loop. As a general rule, infinite
loops are caused by some error in the logic. For example, the algorithm

WHILE condition

 loop body

ENDWHILE

Start of
loop

Looping
continues while

condition is
true

The
commands to
be carried out

FIG-1.12

The WHILE..
ENDWHILE Loop

Activity 1.20

A game involves throwing two dice. If the two values thrown are not the same,
then the dice showing the lower value must be rolled again. This process is
continued until both dice show the same value.

Write a set of instructions to perform this game.

Your solution should contain the statements

 Roll both dice
and Choose dice with lower value

Activity 1.21

a) What is the meaning of the term iteration?
b) Name the three types of looping structures.
c) What type of loop structure should be used when looping needs to
 occur an exact number of times?
d) What type of loop structure can bypass its loop body without ever
 executing it?
e) What type of loop contains an exit condition?

20 Hands On AGK BASIC: Algorithms

 Think of a number
 REPEAT
 Subtract 1 from the number
 UNTIL the number is zero

will never be completed if the number you start with is already zero or less.

Data
We know we need to retain information. Look at your phone; packed with names,
email addresses, phone numbers, and much more. Even when playing an old-
fashioned board game we need to remember things such as the number you threw on
the dice, where your piece is on the board and so on. These examples introduce the
need to process facts and figures (known as data).

Every item of data has two basic characteristics :

 a name
 and a value

The name of a data item is a description of the type of information it represents.
Hence on a form we might see boxes labelled as Forename, Surname, Address,
Phone No, etc. These are the data names. And, when we’ve completed the form, the
boxes will contain the values we have entered. These entries are the data values. In
programming, a data item is often referred to as a variable. This term arises from the
fact that, although the name assigned to a data item cannot change, its value may
vary. For example, the value assigned to a variable called salary may rise (or fall)
over weeks, months or years.

Types of Data

Most computer programming languages need to be told what type of value is to be
held in a variable - for example, it needs to know if a variable will hold a number or
a message. Once the variable is set up for one type of value, it can’t be used to hold
any other type. Three of the basic data types recognised by a language such as AGK
BASIC are:

 integer holds whole numbers only (eg -12, 0, 92).

 real (also known as floating point numbers) holds numbers
 containing fractions (-14.6, 0.005, 176.0)
 - notice that the fraction part may be .0.

 string holds zero or more characters. A character may be
 alphabetic, numeric, or punctuation marks (A, 7, *).

Other data types are possible, but we’ll look at these in a later chapter.

Operations on Data

There are four basic operations that a computer can do with data. These are:

Input

This involves being given a value for a data item. For example, in our number-
guessing game, the player who has thought of the original number is given the value

Hands On AGK BASIC: Algorithms 21

of the guess from the second player. When playing Noughts and Crosses adding an
X (or O) changes the set up on the board. When using a computer, any value entered
at the keyboard, or any movement or action dictated by a mouse or joystick would be
considered as data entry. This type of action is known as an input operation.

Calculation

Most games involve some basic arithmetic. In Monopoly, the banker has to work out
how much change to give a player buying a property. If a character in an adventure
game is hit, points must be deducted from his strength value. This type of instruction
is referred to as a calculation operation.

Comparison

Often values have to be compared. For example, we need to compare the two numbers
in our guessing game to find out if they are the same. This is known as a comparison
operation.

Output

The final requirement is to communicate with others to give the result of some
calculation or comparison. For example, in the guessing game, player 1 communicates
with player 2 by saying either that the guess is Correct, Too high or Too low.

In a computer environment, the equivalent operation would normally involve
displaying information on a screen or printing it on paper. For instance, in a racing
game your speed and time will be displayed on the screen. This is called an output
operation.

When describing a calculation, it is common to use arithmetic operator symbols
rather than English. Hence, instead of writing the word subtract we use the minus
sign (-). However, programming languages use a slightly different set of symbols
than standard mathematics (see FIG-1.13).

Similarly, when we need to compare values, rather than use terms such as is less than,
we use the less than symbol (<). A summary of these relational operators is given in
FIG-1.14.

As well as replacing the words used for arithmetic calculations and comparisons with

 English Symbol

Multiply *
Divide /
Add +
Subtract -

FIG-1.13

The Arithmetic
Operators

FIG-1.14

The Relational
Operators

 English Symbol

is less than <
is less than or equal to <=
is greater than >
is greater than or equal to >=
is equal to =
is not equal to <>

22 Hands On AGK BASIC: Algorithms

symbols, the term calculate or set is often replaced by the shorter but more cryptic
symbol -> between the variable being assigned a value and the value itself. Using
this abbreviated form, the instruction:

 Calculate time to complete course as distance divided by speed

becomes

 time -> distance / speed

Although the long-winded English form is more readable, this more cryptic style is
briefer and is much closer to the code used when programming a computer.

Below we compare the two methods of describing our guessing game; first in English:

 Player 1 thinks of a number between 1 and 100
 REPEAT
 Player 2 makes an attempt at guessing the number
 IF guess matches number THEN
 Player 1 says “Correct”
 ELSE
 IF guess is less than number THEN
 Player 1 says ”Too low”

 ELSE
 Player 1 says “Too high”
 ENDIF
 ENDIF
 UNTIL player 2 guesses correctly

 Using some of the symbols described earlier, we can rewrite this as:

 Player 1 thinks of a number between 1 and 100
 REPEAT
 Player 2 makes an attempt at guessing the number
 IF guess = number THEN
 Player 1 says “Correct”
 ELSE
 IF guess < number THEN
 Player 1 says ”Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
 ENDIF
 UNTIL guess = number

Levels of Detail
When we start to write an algorithm in English, one of the things we need to consider
is exactly how much detail should be included. For example, we might describe how
to record a video on a digital camcorder as:

 Insert memory stick
 Choose appropriate recording settings

Activity 1.22

a) What are the two main characteristics of any data item?
b) When data is input, from where is its value obtained?
c) Give an example of a relational operator.

Hands On AGK BASIC: Algorithms 23

However, this lacks enough detail for anyone unfamiliar with the operation of the
machine. Therefore, we could replace the first statement with:

	 Open	the	flap	covering	the	memory	chip	slot
 IF there is a chip already in the slot THEN
 Remove it
 ENDIF
 Place the new memory stick in slot
	 Close	flap

and the second statement could be substituted by:

 Set recording quality
 Set exposure to automatic
 Set focus to automatic

This approach of starting with a less detailed sequence of instructions and then,
where necessary, replacing each of these with more detailed instructions can be used
to good effect when tackling long and complex problems. By using this technique,
we are defining the original problem as an equivalent sequence of simpler problems
before going on to create a set of instructions to handle each of these simpler
problems. This divide-and-conquer strategy is known as stepwise refinement. The
following is a fully worked example of this technique:

Problem:
 Describe how to make a cup of tea.

Outline Solution:

 1. Fill kettle
 2. Boil water
 3. Put tea bag in teapot
 4. Add boiling water to teapot
 5. Wait 1 minute
 6. Pour tea into cup
 7. Add milk and sugar to taste

This is termed a LEVEL 1 solution.

As a guideline we should aim for a LEVEL 1 solution with between 5 and 12
instructions. Notice that each instruction has been numbered. This is merely to help
with identification during the stepwise refinement process.

Before going any further, we must assure ourselves that this is a correct and full
(though not detailed) description of all the steps required to tackle the original
problem. If we are not happy with the solution, then changes must be made before
going any further.

Next, we examine each statement in turn and determine if it should be described in
more detail. Where this is necessary, rewrite the statement to be dealt with, and below
it, give the more detailed version. For example. Fill kettle would be expanded thus:

 1. Fill kettle
 1.1 Remove kettle lid
 1.2 Put kettle under tap
 1.3 Turn on tap
 1.4 When kettle is full, turn off tap
 1.5 Replace lid on kettle

The numbering of the new statement reflects that they are the detailed instructions

24 Hands On AGK BASIC: Algorithms

pertaining to statement 1. Also note that the number system is not a decimal fraction,
so if there were to be many more statements they would be numbered 1.6, 1.7, 1.8,
1.9, 1.10, 1.11, etc.

It is important that these sets of more detailed instructions describe how to perform
only the original task being examined - they must achieve no more and no less.
Sometimes the detailed instructions will contain control structures such as IFs,
WHILEs or FORs. Where this is the case, the whole structure must be included in the
detailed instructions for that task. Having satisfied ourselves that the breakdown is
correct, we proceed to the next statement from the original solution.

 2. Boil water
 2.1 Plug in kettle
 2.2 Switch on power at socket
 2.3 Switch on power at kettle
 2.4 When water boils switch off kettle

The next two statements expand as follows:

 3. Put tea bag in teapot
 3.1 Remove lid from teapot
 3.2 Add tea bag to teapot
 4. Add boiling water to teapot
 4.1 Take kettle over to teapot
 4.2 Add required quantity of water from kettle to teapot

But not every statement from a level 1 solution needs to be expanded. In our case
there is no more detail to add to the statement

 5. Wait 1 minute

and therefore, we leave it unchanged.

The last two statements expand as follows:

 6. Pour tea into cup
 6.1 Take teapot over to cup
 6.2 Pour required quantity of tea from teapot into cup

 7. Add milk and sugar as required
 7.1 IF milk is required THEN
 7.2 Add milk
 7.3 ENDIF
 7.4 IF sugar is required THEN
 7.5 Add sugar
 7.6 Stir tea
 7.7 ENDIF

Notice that this last expansion (step 7) has introduced IF statements. Control
structures (i.e. IF, WHILE, FOR, etc.) can be introduced at any point in an algorithm.

Finally, we can describe the solution to the original problem in more detail by
substituting the statements in our LEVEL 1 solution by their more detailed equivalent:

 1.1 Remove kettle lid
 1.2 Put kettle under tap
 1.3 Turn on tap
 1.4 When kettle is full, turn off tap
 1.5 Place lid back on kettle
 2.1 Plug in kettle
 2.2 Switch on power at socket
 2.3 Switch on power at kettle

Hands On AGK BASIC: Algorithms 25

 2.4 When water boils switch off kettle
 3.1 Remove lid from teapot
 3.2 Add tea bag to teapot
 4.1 Take kettle over to teapot
 4.2 Add required quantity of water from kettle to teapot
 5. Wait 1 minute
 6.1 Take teapot over to cup
 6.2 Pour required quantity of tea from teapot into cup
 7.1 IF milk is required THEN
 7.2 Add milk
 7.3 ENDIF
 7.4 IF sugar is required THEN
 7.5 Add sugar
 7.6 Stir tea
 7.7 ENDIF

This is a LEVEL 2 solution. Note that a level 2 solution includes any LEVEL 1
statements which were not given more detail (in this case, Wait 1 minute).

For some more complex problems it may be necessary to repeat this process to more
levels before sufficient detail is achieved. That is, statements in LEVEL 2 may be
given more detail in a LEVEL 3 breakdown.

Activity 1.23

The game of battleships involves two players. Each player draws two 10 by 10
grids. Each of these have columns lettered A to J and rows numbered 1 to 10.
In the first grid each player marks the position of warships. Ships are added as
follows:

 1 aircraft carrier 4 squares
 2 destroyers 3 squares each
 3 cruisers 2 squares each
 4 submarines 1 square each

The squares of each ship must be adjacent and must be vertical or horizontal.
The first player now calls out a grid reference.

The second player responds to the call by saying HIT or MISS. HIT is called if
the grid reference corresponds to a position of a ship. The first player then
marks this result on his second grid using an o to signify a miss and x for a hit
(see diagram below).

 continued on next page

A B C D E F G H I J A B C D E F G H I J

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

A A A A

C C

C C

S

D

D

D

C

C

S

S

S

O

O

X X X

O

D D D

Vessels are positioned
in the left-hand grid

Results of guesses are
placed in the right-hand grid

26 Hands On AGK BASIC: Algorithms

Checking for Errors
Once we’ve created our algorithm we would like to make sure it is correct.
Unfortunately, there is no foolproof way to do this! But we can at least try to find any
errors or omissions in the set of instructions we have created.

We do this by going back to the original description of the task our algorithm is
attempting to solve. For example, let’s assume we want to check our number guessing

Activity 1.23 (continued)

If the first player achieves a HIT then he continues to call grid references until
MISS is called. In response to a HIT or MISS call the first player marks the
second grid at the reference called: 0 for a MISS, X for a HIT.

When the second player responds with MISS the first player’s turn is over, and
the second player has his turn.

The first player to eliminate all segments of the opponent’s ships is the winner.
However, each player must have an equal number of turns, and if both sets of
ships are eliminated in the same round the game is a draw.

The algorithm describing the task of one player is given in the instructions
below. Create a LEVEL 1 algorithm by assembling the lines in the correct order,
adding line numbers to the finished description.
 Add ships to left grid
 UNTIL there is a winner
 Call grid position(s)
 REPEAT
 Respond to other player’s call(s)
 Draw grids

To create a LEVEL 2 algorithm, some of the above lines will have to be
expanded to give more detail. More detailed instructions are given below for the
statements Call grid position(s) and Respond to other player’s call(s).

By reordering and numbering the lines below create LEVEL 2 details for these
two statements.

 UNTIL other player misses
 Mark position in second grid with X
 Get other player’s call
 Get reply
 Get reply
 ENDIF
 Call HIT
 Call MISS
 Mark position in second grid with 0
 WHILE reply is HIT DO
 Call grid reference
 Call grid reference
 IF other player’s call matches position of ship THEN
 ENDWHILE
 REPEAT
 ELSE

Hands On AGK BASIC: Algorithms 27

game algorithm. In the last version of the game we allowed the second player to make
as many guesses as required until he came up with the correct answer. The first player
responded to each guess by saying either “Too low”, “Too high” or “Correct”.

To check our algorithm for errors we must come up with typical values that might be
used when carrying out the set of instructions and those values should be chosen so
that each possible result is achieved at least once.

So, as well as making up values, we need to predict what response our algorithm
should give to each value used. Hence, if the first player thinks of the value 42 and
the second player guesses 75, then the first player will respond to the guess by saying
“Too high”.

Our set of test values must evoke each of the possible results from our algorithm. One
possible set of values and the responses are shown in FIG-1.15.

Once we’ve created test data, we need to work our way through the algorithm using
that test data and checking that we get the expected results. The algorithm for the
number game is shown below, this time with instruction numbers added.

1. Player 1 thinks of a number between 1 and 100
2. REPEAT
3. Player 2 makes an attempt at guessing the number
4. IF guess = number THEN
5. Player 1 says “Correct”
6. ELSE
7. IF guess < number THEN
8. Player 1 says “Too low”
9. ELSE
10. Player 1 says “Too high”
11. ENDIF
12. ENDIF
13. UNTIL guess = number

Next we create a new table (called a trace table) with the headings as shown in FIG-
1.16.

Now we work our way through the statements in the algorithm filling in a line of the
trace table for each instruction.

 Test Data Expected Results

number = 42
guess = 75 Says “Too high”
guess = 15 Says “Too low”
guess = 42 Says “Correct”

FIG-1.15

Test Data for the
Number Guessing Game
Algorithm

 Instruction Condition T/F Variables Output
number guess

Contains the number
of the instruction which

has been executed

Any condition contained in
the statement is written here

The result of the
condition is written

here as T or F

The value currently
stored in each variable

is given here
Any value displayed

(or spoken) is shown here

FIG-1.16

A Trace Table

28 Hands On AGK BASIC: Algorithms

Instruction 1 is for player 1 to think of a number. Using our test data, that number will
be 42, so our trace table starts with the line shown in FIG-1.17.

The REPEAT word comes next. Although this does not cause any changes,
nevertheless a 2 should be entered in the next line of our trace table. Instruction 3
involves player 2 making a guess at the number (this guess will be 75 according to
our test data). After 3 instructions our trace table is as shown in FIG-1.18.

Instruction 4 is an IF statement containing a condition. This condition and its result
are written into columns 2 and 3 as shown in FIG-1.19.

Because the condition is false, we now jump to instruction 6 (the ELSE line) and on
to 7. This is another IF statement and our table now becomes that shown in FIG-1.20.

Since this second IF statement is also false, we move on to statements 9 and 10.
Instruction 10 causes output (speech) and hence we enter this in the final column as
shown in FIG-1.21.

Now we move on to statements 11,12 and 13 as shown in FIG-1.22.

FIG-1.17

Working through a
Trace 1

 Instruction Condition T/F Variables Output

1 42

number guess

 Instruction Condition T/F Variables Output

1 42
2
3 75

number guessFIG-1.18

Working through a
Trace 2

 Instruction Condition T/F Variables Output

1 42
2
3 75
4

number guess

guess = number F

FIG-1.19

Working through a
Trace 3

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F

number guess

guess = number

 guess < number

FIG-1.20

Working through a
Trace 4

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high

number guess

guess = number

 guess < number

FIG-1.21

Working through a
Trace 5

Hands On AGK BASIC: Algorithms 29

Since statement 13 contains a condition which is false, we return to statement 2,
executing it and then moving on to 3 where we enter 15 as our second guess (see
FIG-1.23).

This method of checking is known as desk checking or dry running.

Summary
± Computers can perform many tasks by executing different programs.

± An algorithm is a sequence of instructions which solves a specific problem.

± A program is a sequence of computer instructions which usually manipulates
data and produces results.

± Three control structures are used in programs :

 Sequence

 Selection

 Iteration

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F
2
3 15

number guess

guess = number

 guess < number

guess = number

FIG-1.23

Working through a
Trace 7

Activity 1.24

Create your own trace table for the number-guessing game and, using the same
test data as given in FIG-1.15 complete the testing of the algorithm.

Were the expected results obtained?

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F

number guess

guess = number

 guess < number

guess = number

FIG-1.22

Working through a
Trace 6

30 Hands On AGK BASIC: Algorithms

± A sequence is a list of instructions which are performed one after the other.

± Selection involves choosing between two or more alternative actions.

± Selection is performed using the IF statement.

± There are three forms of IF statement:

 IF condition THEN
 instructions
 ENDIF

 IF condition THEN
 instructions
 ELSE
 instructions
 ENDIF

 IF
 condition 1:
 instructions
 condition 2:
 instructions
 condition x :
 instructions
 ELSE
 instructions
 ENDIF

± Iteration is the repeated execution of one or more statements.

± Iteration is performed using one of three instructions:

 FOR number of iterations required DO
 instructions
 ENDFOR
 REPEAT
 instructions
 UNTIL condition

 WHILE condition DO
 instructions
 ENDWHILE

± A condition is an expression which is either true or false.

± Simple conditions can be linked using AND or OR to produce a complex
condition.

± The meaning of a condition can be reversed by adding the word NOT.

± Data items (or variables) hold the information used by the algorithm.
Data item values may be:

 Input
 Calculated
 Compared
 or Output

± Calculations can be performed using the following arithmetic operators:

 Multiplication *
 Addition +
 Division /
 Subtraction -

Hands On AGK BASIC: Algorithms 31

± The order of priority of an operator may be overridden using parentheses.

± Comparisons can be performed using the relational operators:

 Less than <
 Less than or equal to <=
 Greater than >
 Greater than or equal to >=
 Equal to =
 Not equal to <>

± The symbol -> is used to assign a value to a data item. Read this symbol as is
assigned the value.

± In programming, a data item is referred to as a variable.

± The divide-and-conquer strategy of stepwise refinement can be used when
creating an algorithm.

± LEVEL 1 solution gives an overview of the sub-tasks involved in carrying out
the required operation.

± LEVEL 2 gives a more detailed solution by taking each sub-task from LEVEL
1 and, where necessary, giving a more detailed list of instructions required to
perform that sub-task.

± Not every statement needs to be broken down into more detail.

± Further levels of detail may be necessary when using stepwise refinement for
complex problems.

± Further refinement may not be required for every statement.

± An algorithm can be checked for errors or omissions using a trace table.

32 Hands On AGK BASIC: Algorithms

Solutions
Activity 1.1

No solution required.

Activity 1.2
One possible solution is:

Fill A
Fill B from A
Empty B
Empty A into B
Fill A
Fill B from A

Activity 1.3
a) An algorithm
b) A computer program
c) mips (millions of instructions per second)

Activity 1.4
Choose club
Take up correct stance beside ball
Grip club correctly
Swing club backwards
Swing club forwards, attempting to hit ball

The second and third statements could be interchanged.

Activity 1.5
Player 1 thinks of a number
Player 2 makes a guess at the number
IF guess matches number THEN
 Player 1 says “Correct”
ENDIF
Player 1 states the value of the number

Activity 1.6
IF letter appears in word THEN
 Add letter at appropriate position(s)
ELSE
 Add part to hanged man
ENDIF

Activity 1.7
IF the crossbow is on target THEN
 Say “Fire”
ELSE
 IF the crossbow is pointing too high THEN
 Say “Down a bit”
 ELSE
 IF the crossbow is pointing too low THEN
 Say “Up a bit”
 ELSE
 IF the crossbow is too far left THEN
 Say “Right a bit”
 ELSE
 Say “Left a bit”
 ENDIF
 ENDIF
 ENDIF
ENDIF

Activity 1.8
IF
 you know the phrase:
 Make guess at phrase
 there are many unseen letters:
 Guess a consonant
ELSE
 Buy a vowel
ENDIF

Activity 1.9
Other possibilities are:

Both conditions are true
condition 1 is true and condition 2 is false

Activity 1.10
IF Ctrl key pressed AND O key pressed THEN
	 Request	filename
ENDIF

Activity 1.11
IF	double	thrown	OR	fine	paid	THEN	
 Player gets out of jail
ENDIF

 Activity 1.12
 a) Sequence
 Selection
 Iteration
b) Boolean expression
c) Binary selection Multi-way selection
d) No more than one of the conditions can be true at any
 given time.
e) Boolean operators are: AND, OR, and NOT.
f) A conditional statement is a statement which is
 executed only if a given set of conditions are met.
g) Both conditions must be true.

Activity 1.13
Throw dice
Add dice value to total

 Activity 1.14
Only one line, the FOR statement, would need to be changed,
the new version being:

 FOR 10 times DO

To call out the average, the algorithm would change to

Set the total to zero
FOR 10 times DO
 Throw dice
 Add dice value to total
ENDFOR
Calculate average as total divided by 10
Call out the value of average

Activity 1.15
In fact, only the first line of our algorithm is not repeated, so
the lines that need to be repeated are:

Player 2 makes an attempt at guessing the number
IF guess matches number THEN
 Player 1 says “Correct”
 ELSE
 IF guess is less than number THEN
 Player 1 says “Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
ENDIF

Activity 1.16
The FOR loop forces the loop body to be executed exactly 7
times. If the player guesses the number in less attempts, the
algorithm will nevertheless continue to ask for the remainder
of the 7 guesses.

Hands On AGK BASIC: Algorithms 33

Later, we’ll see how to solve this problem.

Activity 1.17
FOR 6 times DO
 Pick out ball
 Call out number on the ball
ENDFOR

Activity 1.18
FOR every card in player’s hand DO
 IF card is a knight THEN
 Remove card from hand
 ENDIF
ENDFOR

Activity 1.19
REPEAT
 Read next book title
UNTIL required title found OR no books remaining

Activity 1.20
Roll both dice
WHILE dice values don’t match DO
 Choose dice with lower value
 Throw chosen dice
ENDWHILE

Note that the WHILE line could have been written as
WHILE NOT dice values match DO

Activity 1.21
a) Iteration means executing a set of statements repeatedly.
b) FOR..ENDFOR, REPEAT..UNTIL and WHILE..
 ENDWHILE
c) The FOR..ENDFOR structure.
d) The WHILE..ENDWHILE structure.
e) The REPEAT..UNTIL structure.

Activity 1.22
a) Its name and value.
b) From outside the system. In a computerised setup, this is
 often entered from a keyboard.
c) The relational operators are:
 < (less than)
 <= (less than or equal to)
 > (greater than)
 >= (greater than or equal to)
 = (equal to)
 <> (not equal to)

Activity 1.23
The LEVEL 1 is coded as:

1. Draw grids
2. Add ships to left grid
3. REPEAT
4. Call grid position(s)
5. Respond to other player’s call(s)
6. UNTIL there is a winner

The expansion of statement 4 would become:

4.1 Call grid reference
4.2 Get reply
4.3 WHILE reply is HIT DO
4.4 Mark position in second grid with X
4.5 Call grid reference
4.6 Get reply

4.7 ENDWHILE
4.8 Mark position in second grid with 0

The expansion of statement 5 would become:

5.1 REPEAT
5.2 Get other player’s call
5.3 IF other player’s call matches position of ship THEN
5.4 Call HIT
5.5 ELSE
5.6 Call MISS
5.7 ENDIF
5.8 UNTIL other player misses

Activity 1.24

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F
2
3 15
4 F
6
7 T
8 Too low
11
12
13 F
2
3 42
4 T
5 Correct
12
13

number guess

guess = number

 guess < number

guess = number

guess = number

guess < number

guess = number

guess = number

guess = number T

34 Hands On AGK BASIC: Algorithms

Hands On AGK BASIC: Starting AGK 35

In this Chapter:

T Understanding Compilation

T Getting Started with AGK

T Creating a First Project

T Installing an App on a Device

T Creating Output

T Adding Comments

T Changing Output Colour, Size and Spacing

T Adjust an App Window’s Properties

T Adding a Splash Screen

Starting AGK

36 Hands On AGK BASIC: Starting AGK

Programming a Computer

Introduction
In the last chapter we created algorithms written in a style known as structured
English. But if we want to create an algorithm that can be followed by a computer,
then we need to convert our structured English instructions into a programming
language.

There are many programming languages; C, C++, Java, C#, and Visual Basic being
amongst the most widely used. So how do we choose which programming language
to use? Each language has its own strengths. For example, Java allows multi-platform
programs to be created easily, while C is ideal for creating housekeeping applications.
So, when we choose a programming language, we want one that is best suited to the
task we have in mind.

We are going to use a programming language known as AGK BASIC. This language
was designed specifically for writing computer games which can then be used on a
wide range of devices - anything from your regular computer to a tablet or even a
smartphone. Because of this, AGK BASIC has many unique commands for displaying
graphics on various screen resolutions and for handling a wide range of input methods
- anything from a standard mouse to a touch screen or an accelerometer.

The Compilation Process
When you begin the process of creating a game using AGK, several files are
automatically created. One of these files is designed to hold your program code; the
others hold additional details required by the project. These extra files have their
contents created automatically by AGK so we need not worry about them at this
stage.

Because each game that we create consists of several files, we refer to this collection
of files as a project. One of these files (always named main.agc in every project)
contains the actual program code.

Each new project is automatically assigned its own folder.

As we will soon see, the programming language AGK BASIC uses statements that
retain some English terms and phrases. This means we can look at the set of
instructions and make some sense of what is happening after only a relatively small
amount of training.

Unfortunately, the processor inside a digital device (computer, tablet, or smartphone)
understands only instructions given in the form of a sequence of 1’s and 0’s in a
format known as machine code. The device has no capability of directly following
a set of instructions written in AGK BASIC. But this need not be a problem; we
simply need to translate the AGK BASIC statements into machine code (just as we
might have a piece of text translated from Russian to English).

We begin the process of creating a new piece of software by mentally converting our
structured English algorithm (which we will have already created) into a sequence of
AGK BASIC statements. These statements are entered using a text editor which is
nothing more than a simple word-processor-like program allowing such basic
operations as inserting and deleting text. Once the complete program has been
entered, we get the machine itself to translate those instructions from AGK BASIC

A housekeeping program
is one which performs
mundane chores such
as file copying, data
communications, etc.
and has little user input.

Hands On AGK BASIC: Starting AGK 37

into machine code. The original program code is known as the source code; the
machine code is known as the object code and the saved version of this as the
executable file.

The translator (known as a compiler) is simply another program installed in the
computer. After typing in our program instructions, we feed these to the compiler
which produces the equivalent instructions in machine code. These instructions are
then executed by the computer and we should see the results of our calculations
appear on the screen (assuming there are output statements in the program).

The compiler is a very exacting task master. The structure, or syntax, of every
statement must be exactly right. If you make the slightest mistake, even something
as simple as missing out a comma or misspelling a word, the translation process will
fail. When this happens in AGK, a window appears giving details of the error. A
failure of this type is known as a syntax error - a mistake in the grammar of your
commands. Any syntax errors have to be corrected before you can try compiling the
program again.

When you are working on a project, it is best to save your work at regular intervals.
That way, if there is a power cut, you won’t have lost all your code!

When the program code is complete, we compile our program (translating it from
source code to object code). When the translation process is finished, yet another file
is produced. This new file (which has an .exe extension), contains the object code. To
run our program, the source code in the executable file is loaded into the computer’s
memory (RAM) and the instructions it contains are carried out. The whole process is
summarised in FIG-2.1.

If we want to make changes to the program, we load the source code into the editor,
make the necessary modifications, then save and recompile our program, thereby
replacing the old version of source and executable files.

FIG-2.1

The Compilation
Process

Start
new project

AGK creates
all �les

Enter code
in main.agc

Compile
source code

Object
code

Error
messages

Run
program

38 Hands On AGK BASIC: Starting AGK

Activity 2.1

a) What type of instructions are understood by a computer?

b) What piece of software is used to translate a program from source code to
object code?

c) Misspelling a word in your program is an example of what type of error?

Hands On AGK BASIC: Starting AGK 39

Starting AGK

Introduction
AGK is an Integrated Development Environment (IDE) software package designed
to create 2D games that can then be run on various hardware devices. IDE simply
means that the editing, compiling and testing are all achieved while working from
within a single package.

AGK allows programs to be written in either BASIC or C++. This book covers only
the BASIC language aspect of AGK.

AGK was created by Lee Bamber, CEO of The Game Creators Ltd and was derived
from his earlier creation, DarkBASIC which is a programming language designed to
develop games for the PC platform only.

Starting Up AGK
Once you’ve installed AGK, running the package will present you with the screen
shown in FIG-2.2.

At the centre of the application window is the Tip of the Day window. If you don’t
want this to appear every time you start up AGK, just deselect the Show tips at
startup check box. Once you close the Tip of the Day window, you are left with the
three main areas of the AGK IDE (see FIG-2.3):

 The Main Edit Window - This where your program code is
 displayed once you start working on a
 project.
 The Project Panel - This displays a tree structure of the files
 within the project(s) currently open. It
 only shows the names of those files
 containing code; the other files created by
 a project are not listed.
 Compiler Output Panel - This panel (labelled as Logs and others)
 is used primarily to display information
 output by the compiler.

FIG-2.2

The AGK Startup
Screen

40 Hands On AGK BASIC: Starting AGK

 The steps required to create your first project are shown in FIG-2.4.

FIG-2.4

Creating a New
Project

Since this is our first project, we
click on the Create a new Project
option in the Main Edit Window
(File|New|Project would work too).

This displays the Create from
Template window which offers three
different layout styles for your new
project’s display.

For this project, AGK Generic project
is selected by double clicking that
option.

This starts up the AGK project wizard.
The first screen simply states that the
wizard has started.

Skip this page next time

Select to skip
this page on any other

new projects

Double-click
this option

FIG-2.3

AGK Layout

Main
Edit Window

Projects
Panel

Compiler
Output

Hands On AGK BASIC: Starting AGK 41

The new window created by running the sample program can be closed in the standard
way by clicking on the X button at the top right.

Activity 2.2

Before you start up AGK, create a main folder called HandsOnAGK on your
disk drive. We’ll use this as the main folder for all the AGK projects we are
going to create throughout this book.

Load AGK then create, compile, and run your first project (named
FirstProject) exactly as described in FIG-2.4, closing the app window once it
has been run.

This project
will be used for
the remaining
programming
activities in this
chapter.

The second page of the wizard is
where the project name and folder
are selected. Other details are filled in
automatically.

The Projects Panel now shows the
new project and a folder called
Sources.

Enter
project name

Select
folder

Project name

Clicking on the Sources folder reveals
the two source code files used by the
project. main.agc will contain your
code.

Double clicking on main.agc in the
Project Panel opens its contents in a
tabbed panel within the main edit
window.

Your code
is stored in

this file and its
code will be
displayed

In fact, the AGK wizard has created a
simple program within main.agc.
This code can be run by pressing the
Run button.

The sample program opens a small
window to display its output.

Double-click
main.agc

Project title:
FirstProject

Folder to create project in:
C:\AGKProject\AGKProgra

 Ë From now on
we’ll refer to this as
the CRB button.

 Ë The project will
create a new subfolder
off the folder you select
here. That subfolder will
have the same name as
your project.

FIG-2.4
(continued)

Creating a New
Project

42 Hands On AGK BASIC: Starting AGK

You may have noticed that the AGK software displayed messages in the compiler
output area at the bottom of the screen (titled as Logs & others) to tell you that the
app had been compiled and broadcast.

The Program Code
FIG-2.5 shows the code in main.agc that was automatically generated for us.

The line numbers that also appear in the edit window are not part of the code and are
only there to help you identify the position of any line within the code.

Let’s take a look at the code that was already generated for us and see what each of
the lines means. The first lines are:

rem
rem AGK Application
rem

rem A Wizard Did It!

Blank lines and any lines starting with the term rem (short for REMARK) are treated
as a comment by the compiler. Comments are there only for the benefit of us humans
who happen to read the program code and are entirely ignored by the compiler when
translating the instructions into machine code. Good comments will tell us the overall
aim of the program as well as the purpose of individual sections of code. Comments
can appear anywhere within a program.

do

loop

These two terms mark the start and end of an infinite loop - notice that no condition
is given. Most AGK programs contain this loop which is designed to make sure all
the code between these lines is continually executed until the user closes the app
window. Without a loop of some type your program would start and finish so quickly
that you would never have time to see what was displayed in the app window.

Print (“Hello world”)

The Print() statement is used to state that some piece of information is to be
displayed in the app window. The information itself is specified within a set of round
brackets (more properly called parentheses). When that information contains letters
(as opposed to numbers), then those letters must be enclosed in double quotes. Hence,
the statement given above is an instruction to display the words Hello world on the
screen. Note that the quotes themselves are not displayed.

Sync()

FIG-2.5

The Generated
Code

rem
rem AGK Application
rem
rem A Wizard Did It!
do
 Print(“hello world”)
 Sync()
loop

Hands On AGK BASIC: Starting AGK 43

The Sync() statement is a command to update the contents of the app window. If you
make any changes to what is displayed on the screen (for example, by executing a
Print() statement), then you need to follow this with the statement Sync(). Without
Sync() the screen display will not be updated.

Notice that the Sync() statement makes use of parentheses although no values are
placed within them. However, omitting these parentheses would create a syntax
error.

Using the Compile button and then Run button separates the compilation and
execution stages of the process into two distinct steps.

Running Your App to a Tablet or Smartphone
Although producing a true app for your smartphone or tablet is quite complex, you
can, nevertheless, watch your app run on such a device. To do this, you need to first
load the app AGK Player from the app store used by your device. For example, on an
Android device, you will find AGK Player in Google Play.

With AGK Player running on your target device and the app code you want to run on
it loaded into AGK on your PC, press AGK’s Compile and Broadcast button.

This will transfer the AGK program from the PC to your device through your WiFi
setup. That means you either need to have a WiFi router attached to your PC or be
using a laptop with built-in WiFi. The AGK Player app will detect your program
being broadcast, download it, and run it on your device.

However, things are a bit more complicated if you have an Apple device. Apple won’t
support the AGK Player in their app store. As an alternative you can download the
AGK Viewer from their store. The viewer isn’t ideal but it will let you see a low-
grade version of your app running on an Apple device. To run the AGK Player on
your Apple device you will need to register as a developer. Details of how to do this
are on the Game Creators’ web site.

Your program is not yet a true app - you can’t save it on your device - it can only be
executed using AGK Player. To create a true app for your device visit The Game
Creators’ web site for details.

Activity 2.3

Change the Print() statement within main.agc so that the text enclosed in
the double quotes reads My first app. This time click the Compile then Run
buttons to compile and run the modified program. Was the new text displayed
in the app window?

Select File|Save to save your modified program.

Compile and
Broadcast Button

Activity 2.4

Make sure you have the AGK app player running on your device.

With the latest version of the project you created in Activity 2.3 showing on the
AGK IDE, press the Compile and Broadcast button. Check that the program is
now showing on your device.

Compile Button

Run Button

44 Hands On AGK BASIC: Starting AGK

First Statements in AGK BASIC

Introduction
Learning to program in AGK BASIC is very simple compared to other languages
such as C++ or Java. Unlike most other programming languages, it has no rigid
structure that the program itself must adhere to.

Now we need to start looking at the formal statements allowed in AGK BASIC and
see how they can be used in a program.

Print()
We’ve already come across the Print() statement in our first program, so we already
know that it is used to display information on the screen, but we need to know it’s
exact format so that we don’t create a syntax error by making a mistake in constructing
the statement. The format of the Print() statement is shown in FIG-2.6.

This type of diagram is known as a syntax diagram for the obvious reason that it
shows the syntax of the statement.

Each enclosed value in the diagram is known as a token (there are four tokens in the
Print() statement). When you use a Print() statement in your program, its tokens
must conform to those shown in the diagram. Some of the tokens must be an exact
match for those in the diagram: Print, (, and) while others (only value in this case)
have their actual value determined by the programmer.

Fixed values are shown in rounded-corners boxes, user-defined values are shown in
regular boxes. In the case of the Print() statement, the term value is used to mean
an integer value, a real value or a string value.

So, using the syntax diagram as a guide, we can see that the following are valid
Print() statements:

Print(“Hello world”)
Print(12)
Print(0)
Print(-34.6)

while the following are not:

 Print 36 (parentheses are missing)
 Print(Goodbye) (no quotes)
 Print(‘Help!’) (single quotes used)

FIG-2.6

Print()

Print ()value

Activity 2.5

Which of the following are NOT valid Print() statements:

a) Print(“-9.7”)
b) Print(0.0)
c) Print(23, 51)

Hands On AGK BASIC: Starting AGK 45

Spaces

We can add spaces to a statement as long as those spaces do not split a single token
into separate parts. So, for example, it is quite valid to write the line

 Print (123)

since each token can easily be identified, but

 Pr int (12 3)

is not acceptable because the Print and 123 tokens have both been split into two
parts.

Spaces can be omitted as long as doing so does not make it impossible to tell where
one token ends and another begins. This is really only a problem when two or more
adjacent tokens are constructed entirely from letters or numbers. So if we have a
statement which begins with the code

 if x = 3

then writing

 ifx=3

would be invalid because the compiler would not be able to recognise the if and x
as two separate tokens. On the other hand,

 Print(123)

is correct because no adjacent tokens are constructed from alphanumeric characters.

Multiple Output

When we use two or more Print() statements, each value printed will be displayed
on a separate line. For example, when the lines

 Print(“Hello”)
 Print(“Goodbye”)

are included in a program, they will create the output

 Hello
 Goodbye

 Ë Alphabetic and
numeric characters are
collectively known
as alphanumeric
characters.

Activity 2.6

Modify your program so that the main code now reads
 do
 Print(“First line”)
 Print(“Second line”)
 Sync()
 loop

Compile and run the program.

You may want to
save your project
after each Activity by
selecting

File|Save

46 Hands On AGK BASIC: Starting AGK

Each message is on a separate line because the Print() statement always displays a
new line character after the value specified and this causes the screen cursor to move
to a new line.

Adding Comments
It is important that you add comments to any programs you write. These comments
should explain the purpose of the program as a whole as well as what each section of
code is doing. It’s also good practice, when writing longer programs, to add comments
giving details such as your name, date, programming language being used, hardware
requirements of the program, and version number.

In AGK BASIC there are four ways to add comments:

 Add the keyword rem. The remainder of the line becomes a comment (see
 FIG-2.7).

 Add an apostrophe character (you’ll find this on the top left key, just next to
 the 1). Again the remainder of the line is treated as a comment (see FIG-2.8).

 Add two forward slashes followed by the descriptive text (see FIG-2.9).

 Add several lines of comments by starting with the term remstart and
 ending with remend. Everything between these two words is treated as a
 comment (see FIG-2.10).

This last diagram introduces another symbol - a looping arrowed line. This is used to
indicate a section of the structure that may be repeated if required. In the diagram
above it is used to signify that any number of comment lines can be placed between
the remstart and remend keywords. For example, we can use this statement to create
the following comment which contains three lines of text:

 REMSTART
 This program is designed to play the game of
 battleships.
 Two peer-to-peer computers are required.
 REMEND

PrintC()
The PrintC() statement is similar to Print() but does not add a new line character
to the output. This means that each PrintC() statement’s output is positioned on the
screen immediately after the previous value. Hence,

 PrintC(“A”)

FIG-2.7

rem rem text

FIG-2.8

Apostrophe
Comments

text`

FIG-2.9

// Comments

text//

FIG-2.10

remstart..remend

remstart

text

remend

Hands On AGK BASIC: Starting AGK 47

 PrintC(“B”)

would display AB

Other Statements which Modify Output
Other statements allow us to make various changes to how the information appearing
on our screen is presented. We can change its colour, size, transparency and even the
space between the characters.

Before we get started on instructions involving colour, perhaps it might be useful to
go over a few basic facts about colour.

All colours you see on a monitor or TV are derived from the three primary colours
red, green and blue. By varying the brightness of each of these three colours we can
achieve almost any colour or shade the eye is capable of seeing. For example, mixing
just red and green gives us yellow; blue and green gives us a colour called cyan, and
blue and red gives magenta (see FIG-2.11).

Notice that all three colours together give white. The absence of all three colours
gives black.

By varying the intensity (brightness) of each primary colour, we can create any
shades or hues we require. AGK allows the intensity to vary between 0 (no colour)
to 255 (full intensity). So pure white is achieved by setting all three colours to an
intensity value of 255. For shades of grey, all three colours must have identical
brightness values, but the lower that value, the darker the shade of grey.

SetPrintColor()

The SetPrintColor() sets the colour of all output created using the Print() and
PrintC() statements. It can also be used to set the transparency of the text.

The statement’s format is shown in FIG-2.12.

Activity 2.7

Change the two Print() statements in your program to PrintC() statements
and observe the difference in output when the program is run.

FIG-2.11

Colours

Green

CyanYellow

White

Red BlueMagenta

FIG-2.12

SetPrintColor() SetPrintColor ()ired , igreen , iblue itrans,[]

48 Hands On AGK BASIC: Starting AGK

This syntax diagram introduces the use of square brackets. Tokens within square
brackets are optional and can be omitted when using the statement.

In the above diagram:

 ired is an integer value giving the strength of the red component
 within the colour. This value should be in the range 0 to 255.
 0 - no red; 255 - full red.

 igreen is an integer value (0 to 255) giving the strength of the green
 component.

 iblue is an integer value (0 to 255) giving the strength of the blue
 component.

 itrans is an integer value (0 to 255) giving the amount of transparency.
 0 - invisible, 255 - opaque.

Since the transparency value is optional and therefore can be omitted (in which case
transparency stays at its current setting), we can use the statement simply to set the
colour of any text being displayed by the Print() or PrintC() statements.

For example,

 SetPrintColor(0,0,0) rem *** sets text to black
 SetPrintColor(255,255,255) rem *** sets text to white
 SetPrintColor(255,0,0) rem *** sets text to red

The SetPrintColor() statement must appear before the Print() or PrintC()
statements whose output you wish to affect.

The statement only takes effect after a Sync() statement is executed.

Once the colour has been set, all subsequent output will be in the specified colour.
This means that there is no real need to place the SetPrintColor() statement inside
the do .. loop structure where it will be executed every time the loop is repeated.
Instead, that line of code can be moved to immediately before the do statement.
Placed here, the statement will be performed only once, at the start of the program.

If there was no change to the output, what was the point of moving the statement?

 Ë The value names
start with i to indicate
that integer values are
required. Where a real
number is needed, the
value name will start
with an f (for float).
String values will start
with an s.

Activity 2.8

Add a SetPrintColor() statement to your program, placing it immediately
before your two PrintC() statements. Choose any colour values you wish.

Compile and run the program to check that the output is correct.

Activity 2.9

Reposition your SetPrintColor() statement, placing it on the line above do.

Compile and run the program again.

There should be no change to the output.

Hands On AGK BASIC: Starting AGK 49

The more lines of code that need to be executed, the slower a program runs. Let’s say
the statements within the loop are executed 200 times before you terminate the
program. With the SetPrintColor() inside the loop, it would have been executed
200 times; with it outside the loop it is executed only once - so the program becomes
more efficient.

If we include a value for itrans when we use SetPrintColor(), we can set the
transparency of all text on the screen. The default transparency is 255, meaning the
output is fully opaque. With a value of zero, the text would be invisible.

SetPrintSize()

The SetPrintSize() statement (see FIG-2.13) sets the size of the text displayed by
a Print() or PrintC() statement.

where:

 size is a real number setting the size of characters. The default value
 for characters is about 3.5.

The reason that the text seems blurred when it is enlarged is that the text itself is
stored as an image. Enlarging that image causes blurring.

SetPrintSpacing()

This statement (see FIG-2.14) adjusts the spacing between the characters shown on
the screen.

where:

 gap is a real number giving the gap between characters. The default

Activity 2.10

Modify the SetPrintColor() statement in your program, adding 126 as the
transparency value.

Run the program and see what effect the changes have made to the output.

Try other transparency values to see their effect.

FIG-2.13

SetPrintSize() SetPrintSize ()size

Activity 2.11

Add the line

 SetPrintSize(8.6)

immediately after your SetPrintColor() statement (reset the transparency
value to 255).

Compile and run the program. What do you notice about the quality of the text
produced?

FIG-2.14

SetPrintSpacing() ()gapSetPrintSpacing

50 Hands On AGK BASIC: Starting AGK

 is zero. Larger values widen the gap; negative values cause the
 gap to decrease and even to make letters overlap.

Message()

Another way of displaying text on the screen is to use the Message() statement. This
creates a more prominent output, placing the text in a separate window. The format
of the Message() statement is shown in FIG-2.15.

where

 stext is a string containing the message to be displayed.

For example, the line

 Message(“hello world”)

produces the output shown in FIG-2.16 when run on a PC.

The exact style of the window produced depends on the device on which your app is
being run.

SetClearColor()

You will have noticed that the window created by your AGK app always has a black
background. This default color can be changed using the SetClearColor() statement
which has the format shown in FIG-2.17.

where:

 ired is an integer value (0 to 255) giving the strength of the red
 component.

 igreen is an integer value (0 to 255) giving the strength of the green
 component.

Activity 2.12

Add a SetPrintSpacing() statement to your program, placing it before the do
.. loop structure. Set the gap size to 5.5.

Compile and run the program to check how the output is changed.

Change the value used to -2.5 and observe the effect on the output.

FIG-2.15

Message() Message ()stext

FIG-2.16

A Typical
Message Window

FIG-2.17

SetClearColor() SetClearColor ()ired igreen iblue

Hands On AGK BASIC: Starting AGK 51

 iblue is an integer value (0 to 255) giving the strength of the blue
 component.

ClearScreen()

The SetClearColor() statement only works when followed by a Sync() or a
ClearScreen() statement which has the same effect. The format for the
ClearScreen() statement is given in FIG-2.18.

So to create a yellow background on the screen, we would start our program with the
lines:

 SetClearColor()
 ClearScreen()

Often this statement will appear at the start of a program, but you may wish to change
the colour at a later stage perhaps to indicate that a game has entered a new phase.

Positioning the Print() Statements

We have placed the various statements affecting the colour, size and spacing of our
text before the do..loop structure on the basis that these commands need only be
performed once. So you may be tempted to think that surely we can do the same thing
with the Print() and Sync() statements since the displayed text remains unchanged
throughout the running of the program. Let’s see what happens when we try this.

As you can see from the output produced, for a simple program such as this, moving
the statements has had no effect on the output produced. We are left with an empty
do..loop which makes sure that the program does not terminate before we click the
app window’s close button.

Although we now know that it is possible to place the Print() and Sync() statements
outside the do loop it is usually not a good idea to do so in any but the simplest
programs since it can create other problems which we will discuss in a later chapter.

Summary
■ Programs are written using a programming language.

■ Programming language code must be translated into machine code before the
program can be executed by the computer.

■ The stored program code is known as the source file; the stored machine code

FIG-2.18

ClearScreen()

ClearScreen ()

Activity 2.13

Change the background of the app window to red and test your program.

Activity 2.14

Move the PrintC() and Sync() statements in your program so that they are
positioned immediately before the do statement.

What effect does this have when you run your program?

52 Hands On AGK BASIC: Starting AGK

as the object file.

■ Each line of a program must conform to the rules of syntax.

■ An error in how a line is written is known as a syntax error.

■ AGK programs can be written in BASIC or C++.

■ The collection of files created when writing an AGK app is known as a project.

■ The main file in an AGK project is main.agc which contains the program code.

■ The AGK development package is an Integrated Development Environment.
This allows edit, compiling and testing to be performed from within the same
program.

■ To download an app to your digital device, the player must be installed and
running on that device and the app broadcast from the AGK IDE.

■ When an app is being tested it creates an app window.

■ Comments can be added to your code using rem, `, or remstart..remend.

■ Comments help us understand the purpose of a piece of code but are ignored
by the compiler.

■ Use Print() to display information on the screen.

■ Use PrintC() to display information without moving to a new line afterwards.

■ Use SetPrintColor() to set the colour used when displaying text.

■ Use SetPrintSize() to set the size of future text output.

■ Use SetPrintSpacing() to set the spacing between characters in future text
output.

■ Use Message() to display a message in a separate window.

■ Use SetClearColor() to set a background colour for the app screen.

Hands On AGK BASIC: Starting AGK 53

The Second Source File
Every project you create actually contains a second .agc file. You can see it listed in
the Projects Panel immediately below main.agc.

Although you are not free to add lines of code to this file as you can with main.agc,
you are allowed to change the values given. Those values determine the title and
dimensions of the window in which your app appears when run under Microsoft
Windows. For example, the window of a typical program (see FIG-2.16) reflects the
details given in setup.agc.

By changing the values specified in the first three lines of setup.agc (ignoring the rem
lines), we can change the characteristics of the window.

These characteristics given in setup.agc only affect the layout of the window on your
PC. Other statements (covered later) need to be included in your program to set the
app screen size on a tablet or phone.

FIG-2.16

The App Window The window’s

title

Height

Width

Activity 2.15

Double click setup.agc in the Projects Panel to display its code. Change the
appropriate existing lines to read:

 title=My First App
 width=320
 height=480

Make sure the only spaces with these lines are those in the title.

Compile and run your program to see what changes this has made.

54 Hands On AGK BASIC: Starting AGK

A Splash Screen
A common feature of many games is a splash screen. A splash screen is simply a
graphic that displays for a few moments at the start of the game. Typically a splash
screen will contain an image giving the flavour of the game play that is about to
follow as well as the name of the game and the publishing company.

AGK allows you to add a splash screen to your game without any coding whatsoever.

If you load Windows Explorer and have a look in the folder created by AGK to hold
the files belonging to your project (HandsOnAGK/FirstProject), you should see
contents similar to that shown in FIG-2.17.

The splash screen graphic file must be placed in the project’s main folder. The file
must be in PNG format and be called AGKSplash.png. No other name is acceptable.
The image is best set to the same size as the window dimensions (in our case, 480 x
320). An example of a splash screen is shown in FIG-2.18.

FIG-2.17

AGK Project’s
Files

Rather than create
your own image,
you can use the
one supplied in
the downloads that
accompany this
book.

FIG-2.18

A Splash Screen

Activity 2.16

Open a paint program you have available and create a 480 pixels high by 320
pixels wide image. Save the file in PNG format in the folder HandsOnAGK/
FirstProject naming the file AGKSplash.png.

In AGK, recompile your program and run it. You should see your splash screen
appear when the app window first opens.

Hands On AGK BASIC: Starting AGK 55

Starting a New Project
When you first start up AGK for a work session, we’ve already seen that it will give
you the option to create a new project. Should you want to create more new projects
during that session, you can do so from the main menu (File|New|Project).

However, the Projects Panel will display all of the projects you have been using (see
FIG-2.19).

Having several projects open at the same time can be a bit confusing when you first
start using AGK, so the best option is to close projects that you are not currently
working on. FIG-2.20 shows how to close a project from the Projects Panel.

From now on, make sure you always close any old project before starting a new one.

FIG-2.19

Multiple Projects

Three
projects

FIG-2.20

Multiple Projects

Right-click
cursor over project

name...
...and select
Close project

56 Hands On AGK BASIC: Starting AGK

App Window Properties

Measurements
By default, AGK apps use a percentage measurement system. This means that no
matter the actual dimensions of the app window, AGK always treats the width as
100% and the height as 100% (see FIG-2.21).

When you want to position an item on the screen it is done using percentage
measurements. For example, the position (50,50) represents the middle of the app
window irrespective of the window’s actual dimensions.

Percentage values are also used when setting the size of various visual elements. For
example, earlier in this chapter we made use of the SetPrintSize() statement to
resize the text created by any subsequent Print() statement. The value supplied to
this statement represents the high of the text as a percentage of the screen height. Of
course, this means that text set to a height of 4 will appear taller in a long window
and smaller in a short window. In fact, you can see that in the “Hello world” text
visible in FIG-2.21 above.

All programs in this book use the default percentage system.

SetDisplayAspect()

When using the percentage measuring system, the setup.agc file is used to set the
actual size of the app window on your PC, but if you intend to transfer that app to
another device such as a smartphone or tablet, you should explicitly set the aspect
ratio (width to height) using the SetDisplayAspect() statement (see FIG-2.22).

where:

 ratio is a real number giving the width to height ratio. For example,
 iPhone and iPad have an aspect ratio of 4.0/3.0 (1.3333).

Use zero as the fratio value if you want the width and height values in the setup.agc
file to be used to determine the aspect ratio. Use -1 if you want the app to fill the
whole screen irrespective of aspect ratio. Using this last option may distort visual

FIG-2.21

The Screen’s Percentage
Measurement System

100%

100%

100%

100%

FIG-2.22

SetDisplayAspect() SetDisplayAspect ()ratio

Hands On AGK BASIC: Starting AGK 57

elements of the app if the device’s aspect ratio is different to that used when developing
the app (like watching an old 4/3 TV program on your widescreen TV).

SetVirtualResolution()

If you would rather work with a resolution based on pixels, have your program
execute the SetVirtualResolution() statement when it starts up. The statement’s
format is shown in FIG-2.23.

where:

 iwidth is an integer value giving the nominal width of the app window
 in pixels.

 iheight is an integer value giving the nominal height of the app window
 in pixels.

If you were writing an app for the original iPhone, you would set the resolution to
320×480 using the line:

SetVirtualResolution(320,480)

When you are developing your app on your PC, the app window will take on the
actual size specified in the SetVirtualResolution() statement. However, when you
transfer the app to another device, the app will expand (or contract) to fit that device’s
screen. For example, if you run your 320x480 app on a newer iPhone with its 640x960
resolution, your AGK will automatically expand to fill the full screen.

This is why the term virtual resolution is used; this development resolution may in
fact be different from the actual resolution used when the app is running on a device
other than your PC.

The only problem arises when the device on which your app is running has a different
aspect ration (width / height) than that specified in the SetVirtualResolution()
statement. Expanding the app’s resolution from 320x480 to 640x960 isn’t a problem
because both have an aspect ratio of 3/4. But if we were to try and run the same app
on an original Asus EEE Transformer which has a resolution of 1280x800 (an aspect
ratio of 8/5) then we have a problem. Expanding the app to fill a 8/5 screen would
cause distortion of any images being displayed (circles would become ovals!). AGK
handles this by creating as large a 3/4 ratio images as possible and adding a border to
the remainder of the screen.

When you use SetVirtualResolution() in your app, all screen positions and sizes
are given in virtual pixels.

SetBorderColor()

You can specify the border colour to be used when you app runs on a device with a
different aspect ratio to that specified in the app’s code using the SetBorderColor()
statement (see FIG-2.24).

FIG-2.23

SetVirtualResolution() SetVirtualResolution ()iwidth iheight

FIG-2.24

SetBorderColor() SetBorderColor ()ired igreen iblue

58 Hands On AGK BASIC: Starting AGK

where:

 ired is an integer variable (0 to 255) giving the intensity of the red
 component of the border colour to be used. 0: no red; 255: full
 red.

 igreen is an integer variable (0 to 255) giving the intensity of the green
 component of the border colour. 0: no green; 255: full green.

 iblue is an integer variable (0 to 255) giving the intensity of the blue
 component of the border colour. 0: no blue; 255: full blue.

To create a grey border we could use a statement such as:

 SetBorderColor(120,120,120)

SetWindowTitle()

For apps that are running in a windows based environment (on PCs or Macs), you
can set the title that appears at the top of the window using the SetWindowTitle()
statement (see FIG-2.25).

where

 stext is a sting containing the text to appear in the window title bar.

A typical statement would be:

 SetWindowTitle(“Jigsaw Game”)

Further screen-handling statements are covered in Chapter 19.

Summary
■ By default, AGK uses a percentage coordinate system within the app window.

■ Use SetVirtualResolution() to use a virtual pixel coordinate system.

■ Use SetDisplayAspect() to set the width to height ratio of the screen/window.

■ Use SetBorderColor() to specify a colour for any part of the physical screen
ot included in the app’s output area.

■ Use SetWindowTitle() to specify a title for any windows-based app.

FIG-2.25

SetWindowTitle() SetWindowTitle ()stext

Hands On AGK BASIC: Starting AGK 59

Solutions
Activity 2.1

a) Machine code instruction. These are a stored as a
 sequence of binary digits.
b) A compiler.
c) A syntax error.

Activity 2.2
No solution required.

Activity 2.3
Your code should now read (rem statements have been
omitted):

 do
	 	 Print(“My	first	app”)
 Sync()
 loop

Compile and run your code.

The new text should be displayed in the app window when
the program is run.

Select File|Save

Activity 2.4

Activity 2.5
a) Valid. Any characters can be enclosed in quotes -
 including numeric ones.

b) Valid. A real number.

c) Invalid. Only a single value can be displayed.

Activity 2.6
Your program code should be:

 do
 Print(“First line”)
 Print(“Second line”)
 Sync()
 loop

The output should be:
 First line
 Second line

Activity 2.7
Program code:

 do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
 loop

The output should be:
 First lineSecond line

If you want a space between the two outputs, you would need
to include a space inside the quotes at the end of the first
piece of text or at the start of the second.

Activity 2.8
Program code (your colour values will be different):

 do
 SetPrintColor(255,255,0) rem *** yellow ***
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
 loop

Activity 2.9
Program code (your colour values will be different):

 SetPrintColor(255,255,0) rem *** yellow ***
 do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()

 loop

Activity 2.10
Program code (your colour values will be different):

 SetPrintColor(255,255,0,126) rem *** yellow ***
 do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
 loop

The text output will appear darker as the black background
shows through.

Activity 2.11
Program code (your colour values will be different):

 SetPrintColor(255,255,0,126) rem *** yellow ***
 SetPrintSize(8.6)
 do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
 loop

The text will appear larger but somewhat blurred.

Activity 2.12
Program code (your colour values will be different):

 SetPrintColor(255,255,0,126) rem *** yellow ***
 SetPrintSize(8.6)
 SetPrintSpacing(5.5)
 do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
 loop

The characters in the output text will be widely spaced.

The SetPrintSpacing() line should then be changed to
SetPrintSpacing(-2.5)

The characters will now bunch together.

Activity 2.13
Program code:

 SetClearColor(255,0,0)
 ClearScreen()
 SetPrintColor(255,255,0,126) rem *** yellow ***
 SetPrintSize(8.6)
 SetPrintSpacing(-2.5)
 do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
 loop

60 Hands On AGK BASIC: Starting AGK

Activity 2.14
Program code:

 SetClearColor(255,0,0)
 ClearScreen()
 SetPrintColor(255,255,0,126) rem *** yellow ***
 SetPrintSize(8.6)
 SetPrintSpacing(-2.5)
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
 do

 loop

The output remains unchanged.

Activity 2.15
The app window title and dimensions should be changed.

Activity 2.16
No solution required.

Hands On AGK BASIC : Data 63

In this Chapter:

T Constants

T Variables

T Naming Variables

T Assigning Values to Variables

T Arithmetic Operators

T Operator Precedence

T Random Numbers

T Determining the Elapsed Time

Data

64 Hands On AGK BASIC: Data

Program Data

Introduction
Every computer game has to store and manipulate facts and figures (more commonly
known as data). For example, a program may store the name of a player, the number
of lives remaining or the time left in which to complete a task.

We’ve already seen that all basic data can be grouped into three basic types:

 integer - any whole number, positive, negative or zero
 real - any number containing a decimal point
 string - any collection of characters (may include numeric
 characters)

For example, if player Ian Knot had 3 lives and 10.6 minutes to complete a game,
then:

 3 is an example of an integer value
 10.6 is a real value
 Ian Knot is an example of a string

Constants
When a specific value appears in a computer program’s code it is usually referred to
as a constant. Hence, in the statement

 Print(7)

the value 7 is a constant. When identifying a value as a constant, the constant’s type
is often included in the description, so, for example, 7 is an integer constant.

Variables
Most programs not only need to display information, but also need to store data and
calculate results. To store data in AGK BASIC we need to use a variable. A variable
is, in effect, reserved space within the computer’s memory where a single value can
be stored. Every variable in a program is assigned a unique name and can store only
a single value. When a variable is first created, the type of value it can store (integer,
real or string) is specified. No other type of value can be stored in that variable. For

Real values are
also known as
floating-point
or simply float
values.

Activity 3.1

Identify the type of value for each of the following :

a) -9 b) abc c) 18 d) 12.8
e) ? f) 0 g) -3.0 h) Mary had
i) 4 minutes j) 0.023

Activity 3.2

What type of constants are the following:

a) -12 b) Elizabeth c) 3.14 d) 27.0

Hands On AGK BASIC: Data 65

example, a variable designed to store an integer value cannot store a string.

Integer Variables

In AGK BASIC variables are created automatically as soon as we mention them in
our code. For example, let’s assume we want to store the number of lives allocated
to a game player in a variable called lives. To do this in AGK BASIC we simply write
the line:

 lives = 3

This sets up a variable called lives in the computer’s memory and stores the value 3
in that variable (see FIG-3.1)

This instruction is known as an assignment statement since we are assigning a value
(3) to a variable (lives).

You are free to change the contents of a variable at any time by assigning it a different
value. For example, we can change the contents of lives with a line such as:

 lives = 2

When we do this, any previous value will be removed and the new value stored in its
place (see FIG-3.2).

The variable lives is designed to store an integer value. In the lines below, a, b, c, d,
and e are also integer variables. So the following assignments are correct

 a = 200
 b = 0
 c = -8

but the lines below will cause problems

 d = 3.14
 e = 1.9

since they attempt to store real constants in variables designed to hold integers. AGK
BASIC won’t actually report an error if you try out these last two examples, it simply
rounds the fractional part of the numbers and ends up storing 3 in d and 2 in e (see
FIG-3.3). Fractions of 0.5 and above are rounded up, other values are rounded down.

FIG-3.1

Storing Data in a
Variable

Variable
name

3

Value
storedlives

2

Contents
changedlives

FIG-3.2

Changing the Value
in a Variable

3

d

d = 3.14 e = 1.9 2

e

Rounded
down

Rounded
up

FIG-3.3

Integer Variables Round
Real Values

66 Hands On AGK BASIC: Data

Real Variables

If you want to create a variable capable of storing a real number, then you must end
the variable name with the hash (#) symbol. For example, if we write

 d# = 3.14
 e# = -1.9

we have created variables named d# and e#, both capable of storing real values (see
FIG-3.4).

Any number (real or integer) can be assigned to a real variable, so we could write a
statement such as:

 d# = 12

Although we may assign an integer to a real variable, the value will be stored as a
real. Therefore, when the statement above has been executed, d# will contain 12.0.

If any numeric value can be stored in a real variable, why bother with integer
variables? Actually, you should always use integer values wherever possible because
some hardware can be much faster at handling integer values than real ones. Also,
real numbers can be slightly inaccurate because of rounding errors within the
machine. For example, the value 2.3 might be stored as 2.2999987. Another
consideration is that a real variable requires more space in the computer’s memory
than an integer one.

String Variables

Finally, if you want to store a string value, you need to use a string variable. String
variable names must end with a dollar ($) sign. The value to be stored must be
enclosed in double quotes. We could create a string variable named player$ and store
the name Liz Heron in it using the statement:

 player$ = “Liz Heron”

The double quotes are not stored in the variable (see FIG-3.5).

Absolutely any value can be stored in a string variable as long as that value is enclosed
in double quotes. Below are a few examples:

 a$ = “?>%”
 b$ = “Your spaceship has been destroyed”
 c$ = “That costs $12.50”
 d$ = ““ rem *** A string containing no characters ***

3.14

d#

d# = 3.14 e# = 1.9

e#

1.9

Complete
value stored

FIG-3.4

Real Variables

Liz Heronplayer$ = “Liz Heron”

Everything
between the

quotes...

...is
stored in the

variable

player$FIG-3.5

String Variables

Hands On AGK BASIC: Data 67

Using Meaningful Names

It is important that you use meaningful names for your variables when you write a
program. This helps you remember what a variable is being used for when you go
back and look at your program a month or two after you wrote it. So, rather than write
statements such as

 a = 3
 b = 120
 c = 2000

a better set of statements would be

 lives = 3
 points = 120
 timeremaining = 2000

which give a much clearer indication of the purpose of the variables.

Naming Rules

AGK BASIC, like all other programming languages, demands that you follow a few
rules when you make up a variable name. These rules are:

■ The name should start with a letter.

■ Subsequent characters in the name can be a letter, number, or underscore.

■ The final character can be a # (needed when creating real variables) or $
(needed when creating string variables).

■ Upper or lower case letters can be used, but such differences are ignored.
Hence, the terms total and TOTAL refer to the same variable.

■ The name cannot be an AGK BASIC keyword.

This means that variable names such as

 a, bc, de_2, fgh$, iJKlmnp#

are valid, while names such as

 2a, time-remaining

are invalid.

The most common mistake people make is to have a space in their variable names
(e.g. fuel level). This is not allowed. As a valid alternative, you can replace the space
with an underscore (fuel_level) or join the words together (fuellevel). Using capital

 Ë A keyword is any
term that is used as
part of the language.
For example,
if, then, for, repeat,
etc.

2a - cannot start with a
numeric digit.

time-remaining -
hyphen not allowed.

Activity 3.3

Which of the following are valid AGK BASIC statements that will store the
specified value in the named variable?

a) a = 6 b) b = 12.89 c) c = “Hello”
d) d$ = 5 e) e$ = ‘Goodbye’ f) f# = -12.5

68 Hands On AGK BASIC: Data

letters for the joined words is also popular (FuelLevel).

Note that the names no, no# and no$ represent three different variables; one designed
to hold an integer value (no), one a real value (no#) and the last a string (no$).

Named Constants
We have already seen that assigning meaningful names to the variables used in a
program aids readability. When a program uses a fixed value which has an important
role within the program (for example, perhaps the value 1000 is the score a player
must achieve to win a game), then we have the option of assigning a name to that
value using the #constant statement. The format of the #constant statement is
shown in FIG-3.6.

where:

 name is the name to be assigned to the constant value. A common
 convention is to assign an uppercase name making it easy to
 distinguish between variable names and constant names.

 value is the constant value being named.

For example, we can name the value 1000 WINNINGSCORE using the line:

 #constant WINNINGSCORE = 1000

Since the equal sign (=) is optional, it is also valid to write:

 #constant WINNINGSCORE 1000

Real and string constants can also be named, but the names assigned must NOT end
with # or $ symbols. Therefore the following lines are valid:

 #constant PASSWORD = "neno"
 #constant PI 3.14159

The value assigned to a name cannot be changed, so having written

 #constant WINNINGSCORE = 1000

it is not valid to try to assign a new value later in the program with a line such as:

 WINNINGSCORE = 1900

The two main reasons for using named constants in a program are:

Activity 3.4

Which of the following are invalid variable names:

a) x b) 5 c) “total”
d) al2$ e) total score f) ts#o
g) then h) G2_F3

FIG-3.6

#constant

#constant value[]=name

Hands On AGK BASIC: Data 69

 1) Aiding the readability of the program. For example, it is easier to
 understand the meaning of the line

 if playerscore >= WINNINGSCORE

 than

 if playerscore >= 1000

 2) If the same constant value is used in several places throughout a
 program, it is easier to change its value if it is defined as a named
 constant. For example, if, when writing a second version of a game we
 decide that the winning score has to be changed from 1000 to 2000,
 then we need only change the line

 #constant WINNINGSCORE = 1000

 to

 #constant WINNINGSCORE = 2000

 On the other hand, if we’ve used lines such as

 if playerscore >= 1000

 throughout our program, every one of those lines will have to be
 changed so that the value within them is changed from 1000 to 2000.

Summary
■ Fixed values are known as constants.

■ There are three types of constants: integer, real and string.

■ String constants are always enclosed in double quotes.

■ The double quotes are not part of the string constant.

■ A variable is a space within the computer’s memory where a value can be
stored.

■ Every variable must have a name.

■ A variable’s name determines which type of value it may hold.

■ Variables that end with the # symbol can hold real values.

■ Variables that end with the $ symbol can hold string values.

■ Other variables hold integer values.

■ The name given to a variable should reflect the value held in that variable.

■ When naming a variable the following rules apply:

 The name must start with a letter.
 Subsequent characters in the name can be numeric, alphabetic or the
 underscore character.
 The name may end with a # or $ symbol.
 The name must not be an AGK BASIC keyword.

■ Constants can also be assigned a name.

70 Hands On AGK BASIC: Data

Allocating Values to Variables

Introduction
There are several ways to place a value in a variable. Some of the AGK BASIC
statements available to achieve this are described below.

The Assignment Statement
In the last few pages we’ve used AGK BASIC’s assignment statement to store a value
in a variable. This statement allows the programmer to place a specific value in a
variable, or to store the result of some calculation.

The assignment statement has the form shown in FIG-3.7.

The value copied into the variable may be one of the following:

■ a constant

■ the contents of another variable

■ the result of an arithmetic expression

Examples of each are shown below.

Assigning a Constant

This is the type of assignment we’ve seen earlier, with examples such as

 name$ = “Liz Heron”

where a fixed value (a constant) is copied into the variable. As a general rule, make
sure that the value being assigned is of the same data type as the variable. However,
an integer value may be copied into a real variable, as in the line:

 result# = 33

The program deals with this by storing the value assigned to result# as 33.0.

If you try copying a real value to an integer variable, the real value will be rounded
to the nearest integer and that value stored in the variable. Hence, the line

 number = 33.5

will result in the value 34 being stored in number (value rounded up), while the
assignment

 result = 12.2

=variable valueFIG-3.7

The Assignment
Statement

Activity 3.5

What are the minimum changes required to make the following statements
operate correctly?

a) desc = “tail” b) result = 12.34

Hands On AGK BASIC: Data 71

will store 12 in result (value rounded down).

Copying Another Variable’s Value

Once we’ve assigned a value to a variable in a statement such as

 no1 = 12

we can copy the contents of that variable into another variable with the command:

 no2 = no1

The effect of these two statements is shown in FIG-3.8.

When the assignment is complete, both variables will contain the value 12. As
before, you must make sure the two variables are of the same type, although the
contents of an integer variable may be copied to a real variable as in the line:

 ans# = no1

Copying the contents of a real variable to an integer variable will cause rounding to
the nearest integer. For example,

 ans# = -12.94
 no1 = ans#

will store -13 in no1.

The first statement sets up a variable
called no1 and assigns it the value 12.

The second statement sets up a
variable called no2 and assigns it a
copy of the value held in no1.

no1 = 12

12

no1 no1 no2

12 12

no2 = no1

FIG-3.8

Copying from
Another Variable

Activity 3.6

Assuming a program starts with the lines:

 no1 = 23
 weight# = 125.8
 description$ = “sword”

which of the following instructions would be invalid?

a) no2 = no1 b) no3 = weight# c) result = description$
d) ans# = no1 e) abc$ = weight# f) m# = description$

72 Hands On AGK BASIC: Data

Assigning the Result of an Arithmetic Expression
Another variation for the assignment statement is to have it perform a calculation and
then store the result of that calculation in the named variable. Hence, we might write

 no1 = 7 + 3

which would store the value 10 in the variable no1.

The example shows the use of the addition operator, but there are 6 possible operators
that may be used when performing a calculation. These are shown in FIG-3.9.

The result of most statements should be obvious. For example, if a program begins
with the statements

 no1 = 12
 no2 = 3

and then contains the line

 total = no1 - no2

then the variable total will contain the value 9, while the line

 product = no1 * no2

stores the value 36 in the variable product.

The remainder operator (mod) is used to find the integer remainder after dividing one
integer into another. For example,

 ans = 9 mod 5

assigns the value 4 to the variable ans since 5 divides into 9 once with a remainder
of 4. Other examples are given below:

 6 mod 3 gives 0
 7 mod 9 gives 7
 123 mod 10 gives 3

If the first value is negative, then any remainder is also negative:

 -11 mod 3 gives -2

Operator Example
+

mod
^

addition
subtraction
multiplication

remainder

*
-

Function

power

no1 = no2 + 5
no1 = no2 - 9
ans = no1 * no2
r1# = n01/ 2.0
ans = no2 mod 3

/ division

ans = 2^3

FIG-3.9

Arithmetic
Operators

Activity 3.7

What is the result of the following calculations:

a) 12 mod 5 b) -7 mod 2 c) 5 mod 11 d) -12 mod -8

Hands On AGK BASIC: Data 73

The power operator (^) allows us to perform a calculation of the form xy. For
example, a 24-bit address bus on the microprocessor of your computer allows 224

memory addresses. We could calculate this number with the statement:

 addresses = 2^24

Most of the results produced by these operators are easy to calculate manually as long
as you are capable of basic arithmetic. However, the results of some statements are
not quite so obvious. For example, you might expect the line

 ans# = 19/4

to store the value 4.75 in ans#. In fact, the value stored will be 4.0. This is because
the division operator always returns an integer result if the two values involved are
both integer. On the other hand, if we write

 ans# = 19/4.0

and thereby use a real value in the calculation, then the result stored in ans# will be
the expected 4.75.

When using the division operator, a situation that you must guard against is division
by zero. In mathematics, dividing any number by zero gives an undefined result, so
most programming languages get quite upset if you try to get them to perform such
a calculation. AGK BASIC, on the other hand, will, when presented with a line such
as

 ans = 10/0

store the value 0 in ans.

You might be tempted to think that you would never write such a statement, but a
more likely scenario is that your program contains a line such as

 ans = no1 / no2

and if no2 contains the value zero, attempting to execute the line will still cause a
value of zero to be stored in ans.

Some statements may not appear to make sense if you are used to traditional algebra.
For example, what is the meaning of a line such as

 no1 = no1 + 3

In fact, it means add 3 to no1. We can take the literal meaning of the statement to be:

 Take the value currently stored in no1, add 3, and store the result back in no1.

Another unusual assignment statement is of the form:

 no1 = -no1

The effect of this statement is to change the sign of the value held in no1. For example,
if no1 contained the value 12, the above statement would change that value to -12.
Alternatively, if no1 started off containing the value -12, the above statement would
change no1’s contents to 12.

74 Hands On AGK BASIC: Data

The inc and dec Statements

Because adding to or subtract from the existing value in a variable is so common,
AGK BASIC has added statements specifically to perform those tasks.

The inc statement (short for increment) allows you to add 1 or any other value to the
current contents of a variable. So rather than write

 no1 = no1 + 1

we can write

 inc no1

and in place of

 num = num + 7

we can write

 inc num, 7

Note that no value needs to be given when 1 is being added but for any other value
the amount must be included in the statement

When subtracting, we can use dec statement (short for decrement) in the same way:

 dec x rem *** subtract 1 from x ***
 dec y, 3 rem *** subtract 3 from y ***

So why offer two ways to achieve the same thing? Using inc and dec allows the
compiler to create more efficient code than is possible when using the started
assignment approach.

The format for the inc statement is shown in FIG-3.10.

where:

 variable is the variable whose value is to be incremented.

 value is a numeric value giving the amount to be added to the variable.
 If value is omitted then 1 is added to the variable.

FIG-3.10

The inc Statement
inc variable , value[]

Activity 3.8

Assuming a program starts with the lines:
 no1 = 2
 v# = 41.09
what will be the result of the following instructions?

a) no2 = no1^4 b) x# = v#*2 c) no3 = no1/5
d) no4 = no1 + 7 e) m# = no1/5 f) v2# = v# - 0.1
g) no1 = no1 + 1 h) no5 = -no1

Treat each statement
separately - don’t
assume the results are
cumulative.

Hands On AGK BASIC: Data 75

The format for the dec statement is given in FIG-3.11.

where:

 variable is the variable whose value is to be decremented.

 value is a numeric value giving the amount to be subtracted from the
 variable.

Operator Precedence

Of course, an arithmetic expression may have several parts to it as in the line

 answer = no1 - 3 / v# * 2

and how the final result of such lines is calculated is determined by operator
precedence.

If we have a complex arithmetic expression such as

 answer = 12 + 18 / 3^2 - 6

then there’s a potential problem about what should be done first when calculating the
value of the expression. Will we start by adding 12 and 18 or subtracting 6 from 2,
raising 3 to the power 2, or even dividing 18 by 3?

In fact, calculations are done in a very specific order according to a fixed set of rules.
The rules are that the power operation (^) is always done first. After that comes
remainder, multiplication and division with addition and subtraction done last. The
power operator (^) is said to have a higher priority than remainder, multiplication
and division; they in turn having a higher priority than addition and subtraction. So,
to calculate the result of the statement above the computer begins by performing the
calculation 3^2 which leaves us with:

 answer = 12 + 18 / 9 - 6

Next the division operation is performed (18/9) giving:

 answer = 12 + 2 - 6

The remaining operators, + and -, because they have the same priority, are performed
on a left-to-right basis, meaning that we next calculate 12+2 giving:

 answer = 14 - 6

Finally, the last calculation (14 - 6) is performed leaving

 answer = 8

and the value 8 is stored in the variable answer.

FIG-3.11

The dec Statement
dec variable , value[]

Activity 3.9

What is the result of the calculation 12 - 5 * 12 / 10 - 5 ?

76 Hands On AGK BASIC: Data

Using Parentheses

If we need to change the order in which calculations within an expression are
performed, we can use parentheses. Expressions in parentheses are always done first.
Therefore, if we write

 answer = (12 + 18) / 9 - 6

then 12+18 will be calculated first, leaving:

 answer = 30 / 9 - 6

The next calculation is 30 / 9 :

 answer = 3 - 6
 answer = -3

An arithmetic expression can contain many sets of parentheses. Normally, the
computer calculates the value in the parentheses by starting with the left-most set.

If sets of parentheses are placed inside one another (this is known as nested
parentheses), then the contents of the inner-most set is calculated first. Hence, in the
expression

 12 / (3 * (10 - 6) + 4)

the calculations are performed as follows:

 (10 - 6) giving 12 / (3*4+4)
 3 * 4 giving 12 / (12 + 4)
 12 + 4 giving 12 / 16
 12 / 16 giving 0

The order of precedence for all arithmetic operators is shown in FIG-3.12.

 Ë Remember we
are dividing two
integers so we get
an integer result: 3.

Activity 3.10

Show the steps involved in calculating the result of the expression

 8 * (6-2) / (3-1)

FIG-3.12

Operator Priority

 Ë Operators of
equal priority are
performed on a left-
to-right basis.

Operator Priority
()

+
-

parentheses

multiplication
division

addition

/
*

Description

subtraction

1
2

3
3
4

mod remainder

4

^ power
3

Activity 3.11

Assuming a program begins with the lines no1 = 12, no2 = 3, and no3 = 5
what would be the value stored in answer as a result of the line

 answer = no1/(4 + no2 - 1)*5 - no3^2

Hands On AGK BASIC: Data 77

Variable Range

When first learning to program, a favourite pastime of the beginner is to see how
large a number the computer can handle, so people write lines such as:

 no1 = 123456789000

They are often disappointed when the program crashes at this point.

There is a limit to the value that can be stored in a variable. That limit is determined
by how much memory is allocated to a variable, and that differs from language to
language.

Integer values in AGK BASIC can be in the range -2,147,483,648 to +2,147,483,647
while real values can be stored to about 7 decimal places.

String Operations

The + operator can also be used on string values to join them together. For example,
if we write

 a$ = “to” + “get”

then the value toget is stored in variable a$. If we then continue with the line

 b$ = a$ + “her”

b$ will contain the value together, a result obtained by joining the contents of a$ to
the string constant “her”.

The Print() Statement Again
We’ve already seen that the Print() command can be used to display values on the
screen using lines such as:

 Print(1)
 Print(“Hello”)

We can also get the Print() statement to display the answer to a calculation. Hence,

 Print(7+3)

will display the value 10 on the screen, while the statement

 Print(“Hello ” + “again”) rem ***Note the space after the o***

displays

 Hello again

Activity 3.12

What value will be stored as a result of the statement

 term$ = “abc”+”123”+”xyz”

78 Hands On AGK BASIC: Data

The Print() statement can also be used to display the value held within a variable.
This means that if we follow the statement

 number = 23

by the lines

 Print(number)
 Sync()

our program will display the value 23 on the screen, this being the value held in
number. Real and string variables can be displayed in the same way. Hence the lines

 name$ = “Charlotte”
 weight# = 95.3
 Print(name$)
 Print(weight#)
 Sync()
 do
 loop

will produce the output

 Charlotte
 95.3

Making Use of PrintC()

Although the Print() statement cannot display more than one value at a time, by
using PrintC(), we can display two or more values on the same line of the screen.

For example, the code

 capital$ = “Washington”
 PrintC(“The capital of the USA is ”)
 Print(capital$)
 Sync()
 do
 loop

produces the following output on the screen:

 The capital of the USA is Washington

Activity 3.13

A program contains the following lines of code:

 number = 23
 Print(“number”)
 Print(number)
 Sync()

What output will be produced by the two Print() statements?

 Ë The second
output statement
uses Print() in
order to move the
cursor to a new line
after all output is
complete.

Hands On AGK BASIC: Data 79

Another way to output a sequence of strings, this time using only a single Print()
statement, is to join those strings together so only one data value is being output:

 Print(“Hello, “ + name$ + ”, how are you today?”)

Acquiring Data
Data input can come in many forms: mouse, joystick, screen press, and keyboard are
perhaps the obvious ones. AGK allows all of these and we’ll be looking at each of
those methods later in the book.

Another way to retrieve information is to access the hardware’s timer. AGK offers
only two timer options. One gives you access to the time your program has been
running to the nearest second, the other gives the same information but this time to
the nearest one thousandth of a second.

Timer()

Many of the statements we have looked at so far require you to supply them with
information. For example, you have to supply Print() with the information you
want displayed, while SetClearColor() requires the strength of the red, green and
blue components that make up the background colour you want to use. Values
supplied to commands of this type are known as in parameters.

The Timer() statement, on the other hand, supplies you with information - the time
your program has been running. When a command supplies you with a value, that
value is known as a return value.

Syntax diagrams for commands that return a value have the format shown in FIG-
3.13.

Notice that return type is not enclosed. That is because the return type is information
about the type of value returned by the command, but not part of how the command
is written.

The syntax diagram for the Timer() statement is shown in FIG-3.14.

Activity 3.15

Modify Name so that it uses a single Print() statement to perform all its
output. Test and save the modified code.

FIG-3.13

Statements that
Return a Value

Command Name ()in parametersreturn type

FIG-3.14

Timer() Timer ()float

Activity 3.14

Start a new project (called Name) that sets the contents of the variable name$
to Jaqueline McKinnon and then uses output statements that display the
contents of name$ in such a way that the final message on the screen becomes:

 Hello, Jaqueline McKinnon, how are you today?

80 Hands On AGK BASIC: Data

The diagram tells use that the Timer() statement returns a real value (also known as
a float value) and that no in parameters are required by the statement. Notice that the
parentheses must be included in the statement even though no information is placed
within them. The actual value returned by Timer() is the time your program has been
running to the nearest millisecond.

When a statement returns a value (as is the case with Timer()), generally we will
want to do something with that returned value. Perhaps the most obvious thing to do
is to store the result in a variable. Hence, we could add the line:

 time_elapsed# = Timer()

We could then use that value in a calculation, for example

 minutes = time_elapsed#/60

or simply display the value on the screen:

 Print(time_elapsed#)

The value returned by a statement doesn’t have to be assigned to a variable. In the
last exercise we assigned the value returned by Timer() to a variable then displayed
the contents of that variable on the screen, but we can bypass the need for the variable
by just printing the returned value directly with the line

 Print(Timer())

which executes the Timer() statement then displays the value returned.

Activity 3.16

Start a new project called Time. Change the code in main.agc to read:
 rem *** Get time passed ***
 time_elapsed# = Timer()
 do
 rem *** Display time ***
 PrintC(“Time elapsed : “)
 Print(time_elapsed#)
 Sync()
 loop

Compile and run the program.

You should see the time taken since the program started until the Timer()
command was executed. This should be much less than 1 second.

Modify your program by moving the first two lines between the do and loop
statements. Remember to change the indentation of the moved lines.

Compile and run the program. How does the output differ from the first version
of the program?

Activity 3.17

Modify Time so that the variable time_elapsed# is not required.

Test your modified program.

Hands On AGK BASIC: Data 81

About Sync()

Let’s take a moment out to get a deeper understanding of how Sync() works.

The contents of your screen are updated several times a second. Each update redraws
the entire contents of the screen. Each redrawing is known as a frame.

To create a screen display, AGK reserves two areas of memory within your device.
These areas of memory are known as screen buffers. The contents of one buffer are
used to create the frame currently being displayed on the device’s screen. This is
known as the screen buffer or front buffer. At the same time, the contents of the
second buffer (known as the back buffer) are being updated to contain the layout of
the next frame.

FIG-3.15 shows how these buffers are used in the construction of a frame.

When a Print() or PrintC() statement is executed, the text to be displayed is copied
into the current back buffer.

When a Sync() statement is executed, the two areas of memory swap function: what
was the back buffer, becomes the front buffer and its contents appears on the screen;
and what was the front buffer becomes the back buffer and its contents are cleared.
It should be noted that handling the video buffers is not the Sync() statements only
purpose, it also updates various other aspects of an application. We will examine
these other aspects of Sync() in later chapters.

Understanding this will give you some insight as to where Print() and PrintC()
statements need to be positioned within your program. Let’s see how moving one of
those statements affects the display of the Time project.

FIG-3.15 How the Screen Display is Produced

Memory

Back bu�erFront bu�er
Screen Screen

The contents
of the front buffer
creates the image

The image for
the next frame is built
up in the backbuffer

Memory

Front bu�erBack bu�er

The buffers swap
roles. What was the back buffer
now becomes the front buffer,

its contents are displayed...

...and the
contents of the new back

buffer are cleared

Frame1 Frame 2

82 Hands On AGK BASIC: Data

So, why does the message no longer appear when we move it before the do statement?
In fact, the message does appear, but it is gone so quickly that you won’t have time
to see it. After that, only the time appears.

FIG-3.15 explains the process involved when the first PrintC() statement appears
before the do.

The overall effect is that only values printed between one execution of Sync() and
the next execution of Sync() will appear on the screen. If you want text to stay on
the screen you need to reprint it between each execution of Sync().

Activity 3.18

Since the message Time elapsed : never changes, try moving it before the do
statement, then re-run your program.

What difference does this make to what is displayed?

After performing this, test, return the PrintC() statement to its original position
after the do statement.

There is no need to resave your program.

FIG-3.15

How Sync() Operates

The program starts by executing the
PrintC and Print statements. This
builds up details of what is to be
displayed in the back buffer.

Executing Sync() clears the screen.
What was the back buffer becomes the
front buffer and its contents are
transferred to the screen.

Time elapsed : 0.124513

Data
waiting to be

output

Time elapsed : 0.124513

Time elapsed : 0.124513

Data
transferred to

screen...Back bu�er Front bu�er

When the program returns to the start
of the loop, the Print() statement
causes new details to be sent to the
new back buffer.

The next execution of Sync(), clears
the current contents of the screen and
outputs the new details, and clears the
backbuffer.

0.126945

Data
waiting to be

output

The screen
is cleared...

0.126945

0.126945

...then the
back buffer
becomes the
front buffer and
its data is
copied to the
screen.

Hands On AGK BASIC: Data 83

Timing Again

Most people are happier seeing a short period of time displayed in minutes and
seconds rather than just seconds. To achieve this we can start by rounding the time
elapsed to the nearest second using the line

 total_seconds = Timer()

The number of minutes elapsed can now be calculated as total_seconds divided by
60:

 minutes = total_seconds / 60

The remaining seconds (those not converted to minutes) give us the seconds part of
our time. This is calculated as

 seconds = total_seconds mod 60

The final version of our program is shown in FIG-3.16.

ResetTimer()

Although the timer automatically starts tracking time from the moment your program
begins executing, you can reset that timer to zero using the ResetTimer() statement
(see FIG-3.17).

Notice that this statement has neither in parameters nor a return value, instead it
modifies the contents of a variable maintained by AGK itself.

GetMilliSeconds()

While Timer() returns the time elapsed since the start of the program (or since the
last execution of ResetTimer()) in seconds, you can have that same value in

 Ë Remember,
moving a real value
to an integer variable
causes that value to
be rounded to the
nearest integer.

 Ë Remember, mod
gives you the integer
remainder after
division has taken
place.

FIG-3.16

Displaying Time
Elapsed in Minutes
and Seconds

rem *** Display time elapsed in minutes and seconds ***

do
 rem *** Get time elapsed to nearest second ***
 total_seconds = Timer()
 rem *** Convert to minutes and seconds ***
 minutes = total_seconds / 60
 seconds = total_seconds mod 60
 rem *** Display the result ***
 PrintC(“Time elapsed : “)
 PrintC(minutes)
 PrintC(“:”)
 Print(seconds)
 Sync()
loop

Activity 3.19

Modify your Time program to match the code given in FIG-3.16.

Compile and test your code.

FIG-3.17

GetSeconds()

ResetTimer ()

84 Hands On AGK BASIC: Data

milliseconds by using the GetMilliSeconds() statement (see FIG-3.18).

GetSeconds()

If you are only interested in the time elapsed to the nearest second, you can use the
GetSeconds() statement rather than Timer(). GetSeconds() has the format shown
in FIG-3.19.

Sleep()
It is possible to get a program to do nothing for a set period of time. As a general rule
this is undesirable in a highly animated, interactive game, but for simple games such
as those we will create in the early chapters of this book, getting a program to stop or
slow down can be of use to us. For example, it may be used to give us the time to read
a message on the screen.

Halting a program for a specific time is achieved using the Sleep() statement (see
FIG-3.20).

where:

 imillisecs is an integer value giving the time in milliseconds for which the
 program execution is to halt.

Generating Random Numbers

Often in a game we need to throw a dice, choose a card or think of a number. All of
these are random events. That is to say, we cannot predict what value will be thrown
on the dice, what card will be chosen, or what number some other person will think
of.

To help emulate these type of situations AGK BASIC offers several statements for
the generation and manipulation of random values.

FIG-3.18

GetSeconds()

GetMilliSeconds ()integer

Activity 3.20

Modify Time to use GetSeconds() instead of Timer(). Test your new code.

FIG-3.19

GetSeconds()

()integer GetSeconds

FIG-3.20

Sleep() Sleep ()imillisecs

Activity 3.21

Modify your Time program adding the line

 Sleep(2000) rem *** halt for 2 seconds ***

immediately after the line containing do.

Run the program. How has the new line affected the program?

Hands On AGK BASIC: Data 85

Random()

The Random() statement is used to generate a random number between lower and
upper limits (see FIG-3.21).

where

 ifrom is an integer giving the lowest value allowed.

 ito is an integer giving the highest value allowed.

The statement returns a random integer value in the range ifrom to ito. For example,
if we wanted to simulate the throw of a dice, we could write

 dice_throw = Random(1,6)

which would store a random value between 1 and 6 in dice_throw.

Notice that the syntax diagram tells us the parameters may be omitted allowing us to
write a line such as

 value = Random()

When no range of values is supplied, as in this example, the statement creates a
random number in the range 0 to 65,535.

The program in FIG-3.22 shows another use of the Random() statement to create a
random background colour for the app window.

FIG-3.21

Random()

()integer Random ifrom , ito[]

Activity 3.22

Start a new project (Dice) and create code to perform the following logic:

 Throw a six-sided dice
 Display the value thrown

Test the program by running it several times.

Save and close the project. We will return to this project frequently through the
next few chapters.

FIG-3.22

Random Background
Colour

rem *** Cycle through random background colours ***
do
 rem *** Generate a random value for each colour ***
 red = Random(0,255)
 green = Random(0,255)
 blue = Random(0,255)

 rem *** Clear the screen using the new colour ***
 SetClearColor(red,green,blue)
 Sync()
loop

86 Hands On AGK BASIC: Data

We have already seen that the value returned by a statement can be assigned to a
variable or displayed using a Print() statement, but we can also use the value
returned by one statement as the parameter to another directly, without using a
variable. Hence, we can replace the lines

 red = Random(0,255)
 green = Random(0,255)
 blue = Random(0,255)
 SetClearColor(red,green,blue)

with the line

 SetClearColor(Random(0,255),Random(0,255),Random(0,255))

SetRandomSeed()

Computers can’t really think of a random number all by themselves. Actually, they
cheat and use a mathematical algorithm to calculate an apparently random number.
As long as you don’t know that algorithm, you won’t be able to predict what number
the computer is going to come up with, but because the numbers generated are not
truly random, they are often referred to as pseudo random numbers.

The mathematical formula used needs to be supplied with an initial number to get
started. This is known as the seed value. This seed value determines exactly what set
of pseudo random numbers will be generated - use the same seed value on a second
occasion and exactly the same set of numbers will be generated. To prevent this
happening, the random number generator in AGK defaults to using the time from the
system clock as a seed value. This ensures that a different value is used each time a
program is run.

If you want to use your own seed value, you can do so using the SetRandomSeed()
statement. The most likely reason for doing this is to ensure you use the same seed
value on each run and hence the same set of random values. Normally, of course, you
wouldn’t want the same set of values, but it can be extremely useful when trying to
find mistakes in a program. The SetRandomSeed() has the syntax shown in FIG-3.23.

Activity 3.23

Start a new project (Background) and enter the code given in FIG-3.22.

What happens when you run the program?

Immediately after the Sync() statement, add the lines

 rem *** wait for 0.5 seconds ***
 Sleep(500)

which will get the program to pause for half a second after each screen update.
What difference does this make to the program?

Activity 3.24

Modify your Background project eliminating the need for the red, green and
blue variables. Test your program to ensure it still works correctly.

Hands On AGK BASIC: Data 87

where:

 iseed is an integer value which is used as the start-up for the formula
 used in the generation of pseudo random values.

RandomSign()

A final statement that makes use of a random value is RandomSign() (see FIG-3.24).

where:

 ivalue is an integer value which will be returned as either its original
 value or as a negated form of the original. In other words, if
 ivalue was 12 then the returned value will be either 12 or -12.
 Each return option has a 50% chance of occurring.

One possible use for such a statement is to emulate any situation with two possible
outcomes each with an equal possibility of occurring - for example, the flip of a coin.

User Input
For many games, the most important method of obtaining data is from the user. The
game player, will be moving a mouse, a joystick, tapping on the screen, or typing at
the keyboard. AGK has statements available for handling all of these (and more) but
at this stage using these statements are a bit beyond what we have learned. On the
other hand, being able to enter simple values is very useful when trying to demonstrate
some of the fundamental concepts in programming.

To allow us a simple way to enter integer values, two functions are included in the
download for this book. These functions are:

 SetUpButtons() This function sets up 12 round buttons on the right of the
 app window. The buttons are labelled 0 to 9, (backspace)
 and (Enter).

 GetButtonEntry() This function allows you to type in an integer value using
 the 12 buttons. Pressing the backspace button will remove
 the last character entered. Pressing Enter completes the
 data entry and returns the value entered.

The screen displayed when the buttons are used is shown in FIG-3.25.

FIG-3.23

SetRandomSeed()

()SetRandomSeed iseed

Activity 3.25

Modify your Dice project so that the program starts by setting the seed value to
12.

Run the program three times and check that the same number is generated each
time. Remove the SetRandomSeed() line after testing is complete.

FIG-3.24

RandomSign()

()integer RandomSign ivalue

The term function may,
for the moment, be
taken to have the same
meaning as program
statement.

88 Hands On AGK BASIC: Data

The buttons are placed along the right edge to make them easy to press when the app
is being used on a handheld device. If you want to use these new functions in any of
your projects, you have to follow a few simple steps. These are shown in FIG-3.26.

FIG-3.25

Buttons Layout

backspace

Enter

FIG-3.26

Using the Buttons

The PNG and TXT files are copied to
the project’s media folder. The AGC
file is copied to the project’s main
folder.

In the Projects Panel, right-click on
ButtonTest and select Add files from
the pop-up menu.

Right-click

Select
Add files

We start by creating a new project
(ButtonTest) in which to test the
button routines. Compiling the default
code creates a media subfolder.

The ZIP file download for Hands On
AGK contains a folder called Chapter3.
This folder contains 3 files.

Compile
to create media

folder Files in Chapter 3 folder

Hands On AGK BASIC: Data 89

The complete code (with comments) for main.agc is shown in FIG-3.27.

The buttons are best suited to an app window optimised for the iPad’s resolution of
1024 pixels high by 768 pixels wide, so we need to change the appropriate lines
within the project’s setup.agc to:

 width=768
 height=1024

Double-click on the Buttons.agc file... ...to add the selected file to the
Sources list in the Projects Panel.

Select
Buttons.agc

Buttons.agc
is now in the
Sources list

In main.agc, we need to add the line
 #include “Buttons.agc”
to allow the two functions held there to
be used.

Now we can use SetUpButtons() to
display the 12 buttons and
GetButtonEntry() to accept input.
The value is then displayed.

#include "Buttons.agc"

#include "Buttons.agc"

SetUpButtons()
value_entered = GetButtonEntry()
do
 PrintC("You entered ")
 Print(value_entered)
 Sync()
loop

FIG-3.26

Using the Buttons

FIG-3.27

Button Input

rem *** Command to include other source files used ***

#include “Buttons.agc”

rem *** Display the buttons ***
SetUpButtons()
rem *** Get an integer value from the buttons ***
value_entered = GetButtonEntry()
do
 rem *** Display the value entered ***
 PrintC(“You entered “)
 Print(value_entered)
 Sync()
loop

90 Hands On AGK BASIC: Data

We will be making use of the button input code in a few programs. The process for
using the code is always the same:

	 Copy	the	three	files	to	the	project’s	folders
 Add a #include statement to the start of main.agc
 Call the functions as required by the program logic
	 Modify	the	dimensions	specified	in	setup.agc

Activity 3.26

Start a new project called TestButtons.

Compile the project in order to create the media subfolder.

From the Chapter 3 folder of the files you downloaded for Hands On AGK,
copy Buttons.png and Buttons subtext.txt into the TestButtons project’s media
folder.

From the Chapter 3 folder copy Buttons.agc into the project’s main folder.

Modify the contents of the project’s main.agc so that the code matches that
given in FIG-3.25.

Modify setup.agc so that the width is set to 768 and the height to 1024.

Compile and run the program, checking that you can enter and delete characters
using the buttons.

Check that the number displayed when you press the Enter key matches the
value you typed in.

Save and close your project.

Activity 3.27

Reload your Dice program.

Make the necessary adjusts to allow you to use button input in the program.

Modify the logic of main.agc to match the following structured English
description:

 Display the set of input buttons
 Generate a random number between 0 and 9
 Display “Guess what my number is”
 Get a value entered on the buttons
	 Display	“My	number	was	“	and	the	game’s	number
 Display “Your guess was “ and the value entered

The last two displays should appear on screen at the same time.

Compile and check your program by running it three times.

Resave your project.

Hands On AGK BASIC: Data 91

Summary
■ The assignment statement takes the form

 variable = value

 value can be a constant, other variable, or an expression.

■ The value assigned should be of the same type as the receiving variable.

■ Arithmetic expressions can use the following operators:

 ^ mod * / + -

■ Calculations are performed on the basis of highest priority operator first and a
left-to-right basis.

■ The power operator has the highest priority; multiplication and division and the
remainder operator the next highest, followed by addition and subtraction.

■ Terms enclosed in parentheses are always performed first.

■ The + operator can be used to join strings.

■ AGK uses a pseudo random number algorithm to create apparently random
numbers within a specified range.

■ The values generated are determined by an initial seed value.

■ The default seed value for the algorithm is taken from the system’s time.

■ The seed value can also be set in the program code.

■ Random integer values within a specified range can be created.

92 Hands On AGK BASIC: Data

Testing Sequential Code
The programs in this chapter are very simple ones, with the statements being executed
one after the other, starting with the first and ending with the last. In other words, the
programs are sequential in structure.

Every program we write needs to be tested. For a simple sequential program which
accepts user input, the minimum testing involves thinking of a value to be entered,
predicting what result this value should produce, and then running the program to
check that we do indeed obtain the expected result from that test data.

The program below (see FIG-3.28) reads in a value from the buttons and displays the
square root of that number.

To test this program we might decide to enter the value 16 with the expectation of the
displayed result being 4.

FIG-3.28

Calculating the
Square Root

#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Display prompt ***
Print(“Enter a number : “)
Sync()
Sleep(2000)
rem *** Get value ***
no = GetButtonEntry()
rem *** Calculate square root ***
sqroot# = no^0.5
do
 rem *** Display result ***
 PrintC(“Square root of “)
 PrintC(no)
 PrintC(“ is “)
 Print(sqroot#)
 Sync()
loop

Activity 3.28

Start a new project called SquareRoot.

Perform the operations necessary so you can make use of button input in the
program. Set the app windows dimensions to 1024 x 768.

Recode main.agc to match the lines given in FIG-3.28.

Compile the program but do not run it.

Activity 3.29

Test SquareRoot using the value 16.

Did you achieve the expected result?

Hands On AGK BASIC: Data 93

Perhaps that one test would seem sufficient to say that the program is functioning
correctly. However, a more cautious person might try a few more values just to make
sure. But what values should be chosen? Should we try 25 or 9, 3 or 7?

As a general rule it is best to think carefully about what values you choose as test
data. A few carefully chosen values may show up problems when many more
randomly chosen values show nothing.

When the test data involves numeric values only, perhaps the most obvious categories
are positive numbers, negative numbers and zero (which is neither negative or
positive).

We have already tried a positive number (16), so perhaps we should try -9, say, and,
of course, zero.

But in each case it is important that you work out the expected result before entering
your test data into the program - otherwise you have no way of knowing if the results
you are seeing on the screen are correct.

When the value being entered by the user is a string, perhaps the test data could be:

 a string with zero characters (just press the Enter when asked for data)
 a string with only a single character
 a string containing multiple characters

Of course, these suggestions for creating test data will almost certainly need to be
modified depending on the nature of the program you are testing.

Activity 3.30

What results would you expect from SquareRoot if your test data was
 0 and -9

Run the program with these test values and check that the expected results are
produced.

94 Hands On AGK BASIC: Data

Solutions
Activity 3.1

a) Integer b) String c) Integer d) Real
e) String f) Integer g) Real h) String
i) String j) Real

Activity 3.2
a) -12 integer constant
b) Elizabeth string constant
c) 3.14 real constant
d) 27.0 real constant

Activity 3.3
a) Valid
b) Invalid. Stores 13
c) Invalid - not a string variable
d) Invalid - remove $ from variable name or put double
quotes round the 5.
e)Invalid. Must be double quotes, not single quotes.
f) Valid.

Activity 3.4
a) Valid
b) Invalid. Must start with a letter
c) Invalid. Names cannot be within quotes.
d) Valid
e) Invalid. Spaces are not allowed in a name
f) Invalid. # must appear at the end of the name
g) Invalid, then is a BASIC keyword
h) Valid

Activity 3.5
a) desc$=”tall”
b) result#= 12.34

Activity 3.6
a) Valid
b) Invalid. Fraction part rounded
c) Invalid. A string cannot be copied to an integer
 variable
d) Valid
e) Invalid. A real cannot be copied to a string variable
f) Invalid. A string cannot be copied to a real variable

Activity 3.7
a) 2
b) -1
c) 5
d) -4

Activity 3.8
a) no2 is 16
b) x# is 82.18
c) no3 is zero
d) no4 is 9
e) m# is 0.0
f) v2# is 40.99
g) no1 is 3
h) no5 is -2

Activity 3.9
The result is 1
The expression is calculated as follows:
 12-5* 12/10-5
 12-60/10-5
 12-6-5
 6-5
 1

In fact, AGK BASIC doesn't currently abide by the rules of
priority completely with it performing the division before the
multiplication in this example which results in an answer of
2 rather than 1!

Activity 3.10
Steps:
 8*(6-2)/(3-1)
 8*4/(3-1)
 8*4/2
 32/2
 16

Activity 3.11
answer = no1 / (4 + no2 - 1) * 5 - no3 ^ 2
answer = 12 / (4 + 3 - 1) * 5 - 5 ^ 2
answer = 12 / (7 - 1) * 5 - 5 ^ 2
answer = 12 / 6 * 5 - 5 ^ 2
answer = 12 / 6 * 5 - 25
answer = 2 * 5 - 25
answer = 10 - 25
answer = -15

Activity 3.12
term$ will hold the string abcl23xyz

Activity 3.13
Output:
 number
 23

Activity 3.14
The program code:

name$ = “Jaqueline McKinnon”
do
 PrintC(“Hello, “)
 PrintC(name$)
 Print(“, how are you today?”)
 Sync()
loop

Note the spaces inside the quotes to make sure there are gaps
either side of the name.

Activity 3.15
The program code:

name$ = “Jaqueline McKinnon”
do
 Print(“Hello, “+name$+”, how are you today?”)
 Sync()
loop

Activity 3.16
Modified code:

do
 rem *** Get time passed ***

Hands On AGK BASIC: Data 95

 time_elapsed# = Timer()
 rem *** Display time ***
 PrintC(“Time elapsed : “)
 Print(time_elapsed#)
 Sync()
loop

The time displayed on the screen now updates continuously.

Activity 3.17
Modified code:

do
 rem *** Display time passed ***
 PrintC(“Time elapsed : “)
 Print(Timer())
 Sync()
loop

Activity 3.18
Modified code:

PrintC(“Time elapsed : “)
do
 rem *** Display time passed ***
 Print(Timer())
 Sync()
loop

Each time the Sync() statement is executed, only the
contents of Print() or PrintC() statements executed since
the previous execution of Sync() are displayed. Since the
PrintC() statement above is executed only once, its message
disappears the second time the Sync() statement is executed.

Activity 3.19
No solution required.

Activity 3.20
Modified code:

rem *** Display time elapsed in ***
rem *** minutes and seconds ***
do
 rem *** Get time elapsed to nearest second ***
 total_seconds = GetSeconds()
 rem *** Convert to minutes and seconds ***
 minutes = total_seconds / 60
 seconds = total_seconds mod 60
 rem *** Display the result ***
 PrintC(“Time elapsed : “)
 PrintC(minutes)
 PrintC(“:”)
 Print(seconds)
 Sync()
loop

Activity 3.21
Modified code:

rem *** Display time elapsed in ***
rem *** minutes and seconds ***
do
 Sleep(2000) rem *** halt for 2 seconds ***
 rem *** Get time elapsed to nearest second ***
 total_seconds = GetSeconds()
 rem *** Convert to minutes and seconds ***
 minutes = total_seconds / 60
 seconds = total_seconds mod 60
 rem *** Display the result ***
 PrintC(“Time elapsed : “)
 PrintC(minutes)
 PrintC(“:”)
 Print(seconds)
 Sync()
loop

The change means that the screen is only updated every 2
seconds so we see the time pass in 2 second steps.

Activity 3.22
Program code:

rem *** Dice program ***
rem *** Simulates the roll of a 6-sided dice ***
rem *** Throw dice ***
dice = Random(1,6)
do
 rem *** Display value thrown ***
 PrintC(“Value thrown was : “)
 Print(dice)
 Sync()

loop

Activity 3.23
The colours change so quickly that there is not time to update
the whole background before the colour changes again so
bands of colour appear.

Modified code:
rem *** Cycle through random background colours ***
do
 rem *** Generate value for each colour ***
 red = Random(0,255)
 green = Random(0,255)
 blue = Random(0,255)

 rem Clear the screen using the new colour ***
 SetClearColor(red,green,blue)
 Sync()
 rem *** wait for 0.5 seconds ***
 Sleep(500)

loop

Now there is enough time to show the selected colour over
the whole background before another colour is generated.

Activity 3.24
Modified Code:

rem *** Cycle through random background colours ***
do
 rem Clear the screen using random colour ***
 SetClearColor(Random(0,255),Random(0,255),
 Random(0,255))
 Sync()
 rem *** wait for 0.5 seconds ***
 Sleep(500)
loop

Note The symbol is used to indicate the continuation of a
single line of code.

Activity 3.25
Modified code:

rem *** Dice program ***
rem *** Simulates the roll of a 6-sided dice ***

rem *** Seed random number generator ***
SetRandomSeed(12)
rem *** Throw dice ***
dice = Random(1,6)
do
 rem *** Display value thrown ***
 PrintC(“Value thrown was : “)
 Print(dice)
 Sync()
loop

The program always generates a 6.

Activity 3.26
No solution required.

96 Hands On AGK BASIC: Data

Activity 3.27
Reload your Dice project.
Modify the startup.agc file setting the width to 768 and the
height to 1024.
From the Chapter 3 folder of the files you downloaded for
Hands On AGK, copy Buttons.png and Buttons subtext.txt
into the project’s media folder.
From the Chapter 3 folder copy Buttons.agc into the project’s
main folder.

Right click on Dice in the Projects Panel.
Select Add files from the popup menu.
Select Buttons.agc from the files listed.

Program code:
rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include "Buttons.agc"

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print("Guess what my number is ")
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
do
 rem *** Display values ***
 PrintC("My number was : ")
 Print(dice)
 PrintC("Your guess was : ")
 Print(guess)
 Sync()
loop

Activity 3.28
Start a new project called SquareRoot.
Compile the project to create the media folder.
Modify the startup.agc file setting the width to 768 and the
height to 1024.
From the Chapter 3 folder of the files you downloaded for
Hands On AGK, copy Buttons.png and Buttons subtext.txt
into the project’s media folder.
From the Chapter 3 folder copy Buttons.agc into the project’s
main folder.

Right click on SquareRoot in the Projects Panel.
Select Add files from the popup menu.
Select Buttons.agc from the files listed.

Change the contents of main.agc to match that given in FIG-
3.24.
Compile the program.

Activity 3.29
Running the program using the value of 16 gives the result
4.0.

Activity 3.30
The expected result using the value zero would be zero.
Using -9 should result in an error since negative values do
not have a square root.

Hands On AGK BASIC : Selection 97

In this Chapter:

T if..endif Statement

T Conditions

T Relational Operators

T Boolean Operators

T if..then Statement

T Nested if Statements

T Testing Selection Structures

Selection

98 Hands On AGK BASIC: Screen Handling

Binary Selection

Introduction
As we saw in structured English, many algorithms need to perform an action only
when a specified condition is met. The general form for this statement was:

 IF condition THEN
 action
 ENDIF

Hence, in our guessing game, we described the response to a correct guess as:

 IF guess = dice THEN
 Say “Correct”
 ENDIF

As we’ll see, AGK BASIC also makes use of an if statement to handle such situations.

if
In its simplest form, the if statement in AGK BASIC takes the format shown in FIG-
4.1.

where:

 condition is any term which can be reduced to a true or false value.

 statement is any executable AGK BASIC statement.

The diagram also tells us that we can have as many statements between condition and
endif as we require.

If condition evaluates to true, then the set of statements between the if and endif
terms are executed; if condition evaluates to false, then the set of statements are
ignored and execution moves on to any statements following the endif term.

Condition

Generally, the condition will be an expression in which the relationship between two
quantities is compared. For example, the condition

 no < 0

will be true if the content of the variable no is less than zero (i.e. negative).

A condition is sometimes referred to as a Boolean expression and has the general
format given in FIG-4.2.

FIG-4.1

if (format 1)

 Ë Unlike the IF in
structured English,
AGK BASIC does not
use the word then.

if condition

statement

endif

Hands On AGK BASIC: Screen Handling 99

where:

 value1 and value2 may be constants, variables, or expressions.

 relational operator is one of the symbols given in FIG-4.3.

From our syntax diagram, we can see that each of the following are valid conditions:

 no1 < 7
 answer# <> no1# * 2
 gender$ = “female”

The values being compared should normally be of the same type, but it is acceptable
to mix integer and real numeric values as in the conditions:

 v > x#
 t# < 12

However, it is not possible to compare a numeric against a string value. Therefore,
conditions such as

 name$ = 34
 no1 <> “16”

are invalid.

When two strings are checked for equality as in the condition

 if name$ = “Fred”

the condition will only be considered true if the match is an exact one. Even the
slightest difference between the two strings will return a false result (see FIG-4.4).

FIG-4.3

The Relational
Operators

 English Symbol

is less than <
is less than or equal to <=
is greater than >
is greater than or equal to >=
is equal to =
is not equal to <>

Activity 4.1

Which of the following are NOT valid Boolean expressions?

a) no1 < 0 b) name$ = “Fred” c) no1 * 3 >= no2 - 6
d) v# => 12.0 e) total <> “0” f) address$ = 14 High Street

FIG-4.4

String
Comparison 1

fred Fred
String1 String2

Uppercase
F

Not equalLowercase
f

value1 value2relational operatorFIG-4.2

Boolean
Expression

100 Hands On AGK BASIC: Screen Handling

Spaces count as characters too. So if one or more spaces are included in a string, their
number and positions within two strings must also match if the strings are to be
considered equal. Since spaces are so important, you will occasionally see the space
represented within a string as a triangle. So rather than show the contents of a string
as

 Hello world

you may see

 Hello∆world

This is only done when clarification of the exact contents of a string is required. For
example, the strings hello and hello∆ are not equal because the second string contains
a space character after the letter o.

Not only is it valid to test if two string values are equal, or not, as in the conditions

 if name$ = “Fred”
 if village$ <> “Turok”

it is also valid to test if one string value is greater or less than another. For example,
it is true that

 “B” > “A”

Such a condition is considered true not because B comes after A in the alphabet, but
because the coding used within the computer to store a “B” has a greater numeric
value than the code used to store “A”.

The method of coding characters is known as ASCII (American Standard Code for
Information Interchange). This coding system is given in Appendix A at the back of
the book.

If you are comparing strings which only contain letters, then one string is less than
another if that first string would appear first in an alphabetically ordered list. Hence,

 “Aardvark” is less than “Abolish”

But watch out for upper and lower case letters. All upper case letters are less than all
lower case letters. Hence, the condition

 “A” < “a”

is true.

If two strings differ in length, with the shorter matching the first part of the longer as

 “abc” < “abcd”

then the shorter string is considered to be less than the longer string. Also, because
the computer compares strings using their internal codes, it can make sense of a
condition such as

 “$” < “?”

which is also considered true since the $ sign has a smaller value than the ? character

Hands On AGK BASIC: Screen Handling 101

in the ASCII coding system.

Structured English to Code

It is not always obvious how to translate an IF statement written in structured English.
In fact, some may take a great deal of coding. For example, the structured English

 IF the text entered contains any punctuation marks THEN
 Remove the punctuation marks from the text
 ENDIF

would require several lines of programming code to achieve. On the other hand,
some statements that might look difficult to code are very simple:

 Structured English:

 IF number is negative THEN
 Make it positive
 ENDIF

 Code:

 if number < 0
 number = -number
 endif

 Structured English:

 IF number is even THEN
 Display “Even number”
 ENDIF

 Code:

 if number mod 2 = 0
 Print(”Even number”)
 endif

Activity 4.2

Determine the result of each of the following conditions (true or false). You
may have to examine the ASCII coding at the end of the book for f).

a) “wxy” = “w xy” b) “def” < “defg” c) “AB” < “BA”
d) “cat” = “cat.” e) “dog” = “Dog” f) “*” > “&”

 Ë Notice the use of
indentation in the program
listings. BASIC does not
demand that this be done,
but indentation makes a
program easier to read - this
is particularly true when
more complex programs are
written.

If you wanted the
display to update
immediately, you would
also add Sync() after the
Print() statement. Activity 4.3

Start a new project EnglishToCode. The program will accept values from
the screen buttons we used previously. The program should implement the
following logic:

 Read in values for no1 and no2
 IF no1 is exactly divisible by no2 THEN
 Display “Exactly divisible”
 ENDIF

Test your program.

Place the lines
 do

 loop
at the end of your
code.

102 Hands On AGK BASIC: Screen Handling

Using if

As we have already said, the syntax diagram for the if statement shows us that we
can have more than one statement between the condition and the term endif. For
example, if a game which used two dice required the dice to be re-thrown if they both
showed the same value, then we would write:

 if dice1 = dice2
 dice1 = Random(1,6)
 dice2 = Random(1,6)
 endif

Compound Conditions - the and and or Operators
Two or more simple conditions (like those given earlier) can be combined using
either the term and or the term or (just as we did in structured English in Chapter 1).

The term and should be used when we need two conditions to be true before an action
should be carried out. For example, if a game requires you to throw two sixes to win,
this could be written as:

 dice1 = Random(1,6)
 dice2 = Random(1,6)
 if dice1 = 6 and dice2 = 6
 Print(“You win!”)
 Sync()
 endif

The statements Print(“You win!”) and Sync() will only be executed if both
conditions, dice1= 6 and dice2 = 6, are true.

You may recall from Chapter 1 that there are four possible combinations for an if
statement containing two simple expressions. Because these two conditions are
linked by the and operator, the overall result will only be true when both conditions
are true. These combinations are shown in FIG-4.5.

Activity 4.4

Load Dice, the project you created in Chapter 3.

Modify the program so that, after the player has typed in his guess, the
program displays the word Wrong if the guess and dice values are not equal.

Test and save your program.

Activity 4.5

Modify the latest version of Dice so that, when the number generated differs
from the guess, the program displays the word Wrong and also the difference
between the two numbers. For example if the computer generates the value 8
and the player guesses 3 then the output would be:

 Wrong. You were out by 5
 My number was 8
 Your guess was 3

Hands On AGK BASIC: Screen Handling 103

We link conditions using the or operator when we require only one of the conditions
given to be true. For example, if a dice game produces a win when the total of two
dice is either 7 or 11, we could write the code for this as:

 dice1 = Random(1,6)
 dice2 = Random(1,6)
 total = dice1 + dice2
 if total = 7 or total = 11
 Print(“You win!”)
 Sync()
 endif

The four possible combinations for two conditions linked by an or are shown in FIG-
4.6.

When you use multiple conditions linked with and or or, each condition must be
properly formed; you cannot shorten things the way you might in standard English.
Hence, the compiler would not accept

 if total = 7 or 11

There is no limit to the number of conditions that can be linked using and and or. For
example, a statement of the form

 IF condition1 AND condition2 AND condition3

means that all three conditions must be true, while the statement

 IF condition1 OR condition2 OR condition3

means that at least one of the conditions must be true.

FIG-4.6

OR
Combinations

 condition 1 condition 2 condition 1 OR condition 2

 false false false
false true true
true false true
true true true

 condition 1 condition 2 condition 1 AND condition 2

 false false false
false true false
true false false
true true true

Activity 4.6

Start a new project called TwoDice. Create a program using the two-dice code
given above.

Add statements to display the values thrown on the two dice. This should
appear irrespective of the values thrown. You will have to reposition the
Sync() statement to get the program to operate correctly.

Test and save your program.

FIG-4.5

AND
Combinations

104 Hands On AGK BASIC: Screen Handling

A complex condition can also contain a mix of and and or operators. An obvious
example of this is the description of how to save a file in AGK:

 IF Save button pressed OR Ctrl key down AND S key pressed THEN
	 	 Save	current	file
 ENDIF

The trouble with conditions like this is that they are open to more than one
interpretation. We could take it to mean:

 that we must press the S key while either clicking on the Save button or
 holding down the Ctrl key

rather than the intended

 either clicking on the Save button or holding down the Ctrl key while pressing
 the S key.

Once we start to create conditions containing both and and or operators, we need to
be aware that Boolean operators (AND, OR and NOT) have a priority order just as
arithmetic operators do. In a condition that contains both and and or, the and operator
takes precedence over the or operator. Knowing this eliminates any ambiguity in the
conditions for saving a file in the example above.

The normal rule of performing the and operation before or can be modified by the
use of parentheses. Expressions within parentheses are always evaluated first. Hence,
if we really did have to click on the press the S key while pressing the Save button or
holding down the Ctrl key, we would write the condition as

 (Save button pressed OR Ctrl key down) AND S key pressed

Activity 4.7

Modify your TwoDice project so that the You win! message also appears if both
dice have equal values.

Test and save your program.

Activity 4.8

Start a new project called ThreeDice.
In this game three dice are thrown. If at least two dice show the same value,
the player has won.

Write a program which implements the following logic:

 Throw all three dice
 IF any two dice match THEN
 Display “You win!”
 ENDIF
 Display the value of each dice

Test and save your program.

Hands On AGK BASIC: Screen Handling 105

The not Operator

AGK BASIC’s not operator works in exactly the same way as that described in
Chapter 1. It is used to negate the final result of a Boolean expression.

In the ThreeDice project you created in Activity 4.8, the if statement used was

 if dice1 = dice2 or dice1 = dice3 or dice2 = dice3
 Print(“You win”)
 endif

Now, if we wanted to change the game to display “You lose” instead of “You win”
then we would have to test for the opposite condition.

As you can see, working out the opposite condition takes a few moments - you may
even have got it wrong on your first attempt. It’s much easier, given that you already
have the condition required for the “You win” message, just to add a not to the
condition:

 if not(dice1 = dice2 or dice1 = dice3 or dice2 = dice3)
 Print(“You lose”)
 endif

Note that the original condition is placed in parentheses. This is because the not
operator has an even higher priority than and and or. Without the parenthesis, the not
operation would be applied to the first term only - dice1 = dice2.

The Boolean operator priority is shown in FIG-4.7.

Operator Priority
()

and
not

1
2
3
4or

Activity 4.9

Write down formal conditions (including any necessary parentheses) for the
following situations:

a) In the game of Monopoly any one of three situations causes your
 piece to “go to jail”. These are: landing on the “Go to Jail” square,
 picking up a “Go to Jail” card, and, throwing the same value on both
 dice three times in a row.

b) In a video game, one way to win is to collect 10,000 gold pieces; an
 alternative is to free the princess from the tower and slay the dragon.

c) In a game of cards, you lose 100 points if you hold either the King or
 Queen of Spades when the Ace of Diamonds is played.

Activity 4.10

Without using the not operator, write down the condition that should be tested
when displaying “You lose” in the dice game.

FIG-4.7

Boolean Priority

106 Hands On AGK BASIC: Screen Handling

else - Creating Two Alternative Actions

In its present form the if statement allows us to perform an action when a given
condition is met. But sometimes we need to perform an action only when the condition
is not met. For example, when the user has to guess the number generated by the
computer, we use an if statement to display the word “Correct” when the user
guesses the number correctly:

 if guess = number
 Print(“Correct”)
 endif

However, shouldn’t we display an alternative message when the player is wrong?
One way to do this is to follow the first if statement with another testing the opposite
condition:

 if guess = dice
 Print(“Correct”)
 endif

 if not guess = dice
 Print(“Wrong”)
 endif

Although this will work, it’s not very efficient since we always have to test both
conditions - and the second condition can’t be true if the first one is!
As an alternative, we can add the word else to our original if statement and follow
this by the action we wish to have carried out when the stated condition is false:

 if guess = dice
 Print(“Correct”)
 else
 Print(“Wrong”)
 endif

This gives us the longer version of the if statement format as shown in FIG-4.8.

Note that we can have an unlimited number of statements between else and endif.

We could also have
written

if guess <> dice

FIG-4.8

if ..else..endif

if condition

else

statement

endif

statement

Activity 4.11

In your Dice program, modify the existing if statement to match the version
given above so that either “Correct” or “Wrong” is displayed. Remove the
code to calculate the difference between the dice and guess values.

Test and save your program.

Hands On AGK BASIC: Screen Handling 107

The Other if Statement
AGK BASIC actually offers a second version of the if statement which has the
format shown in FIG-4.9.

As with the previous if statement, the else section is optional but this version uses
the word then and omits the endif term. Also, as the syntax diagram shows, you are
restricted to a single statement after the then and else terms.

A major restriction when using this version of the if statement is that the else
section of the statement must appear on the same line of the screen as the rest of the
statement.

This means that the code you added in Activity 4.10 would have to be written as:

 if dice = guess then Print(“Correct”) else Print(“Wrong”)

This lack of indented layout is enough to have the hardened programmer throw up
her hands in horror!

Even when a single statement within the if statement is sufficient for the logic being
coded, it is probably best to avoid this version of the if statement, since the
requirement to place the if and else terms on the same line does not allow a good
layout for the program code.

FIG-4.9

if..then..else

Activity 4.12

Start a new project called TwoNumbers.

Make use of the button input files to read in two integer values and then
display the smaller of the two numbers. Also display a message indicating
whether this smaller value is an odd or even number.

The program should use the following logic:

 Display	a	prompt	message	for	first	number
	 Read	the	first	number
 Display a prompt message for the second number
 Read the second number
	 IF	first	number	is	less	than	the	second	number	THEN
	 	 Set	answer	to	first	number
 ELSE
 Set answer to second number
 ENDIF
 Display answer
 IF answer is an even number THEN
 Display “Even”
 ELSE
 Display “Odd”
 ENDIF

if condition elsestatement statementthen []

108 Hands On AGK BASIC: Screen Handling

Summary
± Conditional statements are created using the if statement.

± A Boolean expression is one which gives a result of either true or false.

± Conditions linked by the and operator must all be true for the overall result to
be true.

± Only one of the conditions linked by the or operator needs to be true for the
overall result to be true.

± When the not operation is applied to a condition, it reverses the overall result.

± The statements following a condition are only executed if that condition is
true.

± Statements following the term else are only executed if the condition is false.

± A second version of the if statement is available in AGK BASIC in which if
and else must appear on the same line.

Activity 4.13

a) What is a Boolean expression?
b) How many relational operators are there?
c) If a condition contains and, or and not operators, which will be
 performed first?

Hands On AGK BASIC: Screen Handling 109

Multi-Way Selection

Introduction
A single if statement is fine if all we want to do is perform one of two alternative
actions, but what if we need to perform one action from three or more possible
actions? How can we create code to deal with such a situation?

In structured English we use a modified IF statement of the form:

 IF
 condition 1:
 action1
 condition 2:
 action 2
 ELSE
 action 3
 ENDIF

However, this structure is not available in AGK BASIC and hence we must find some
other way to implement multi-way selection.

Nested if Statements
There are two main ways of achieving multi-way selection in AGK BASIC. One is
to use nested if statements - where one if statement is placed within another. For
example, let’s assume in the Dice project that we want to display one of three
messages: Correct, Your guess is too high, or Your guess is too low. Our previous
solution allowed for two alternative messages, Correct or Wrong, and was coded as:

 if guess = dice
 Print(“Correct”)
 else
 Print(“Wrong”)
 endif

In this new problem the Print(“Wrong”) statement needs to be replaced by the two
alternatives, Your guess is too high or Your guess is too low. But we already know
how to deal with two alternatives - use an if statement. The if statement for this
situation would be:

 if guess > dice
 Print(“Your guess is too high”)
 else
 Print(“Your guess is too low”)
 endif

If we now remove the Print (“Wrong”) statement from our earlier code and substitute
the four lines given above, we get:

 if guess = dice
 Print(“Correct”)
 else
 if guess > dice
 Print(“Your guess is too high”)
 else
 Print(“Your guess is too low”)
 endif
 endif

110 Hands On AGK BASIC: Screen Handling

We have created a nested if situation, where the if guess > dice statement is inside
the else section of the if guess = dice statement.

There is no limit to the number of if statements that can be nested. Hence, if we
required four alternative actions, we might use three nested if statements, while four
nested if statements could handle five alternative actions. To demonstrate this we’ll
take our number guessing game a stage further and have it display one of five possible
messages:

 Your guess is too high (if the guess is more than 2 above the dice)
 Your guess is slightly too high (if the guess is no more than 2 above the dice)
 Correct (if the guess equals the dice)
 Your guess is slightly too low (if the guess is no more than 2 below the dice)
 Your guess is too low (if the guess is more than 2 below the dice)

When we have a set of mutually exclusive conditions, as in the Dice example given
above, following the standard layout of indenting within an if statement results in
the layout shown below:

 if diff > 2
 Print(“Your guess is too low”)
 else
 if diff > 0
 Print(“Your guess is slightly too low”)
 else
 if diff = 0

Activity 4.14

Modify your Dice project so that the game will respond with one of three
messages as shown in the code given above.

Test and save your program.

Activity 4.15

Start a new project called Number.

The program should generate a random number in the range -12 to +12.

The program should now display one of the following messages: Negative (if
the number is less than zero), Zero (if the number is zero), or Positive (if the
number is greater than zero). Finally, the value of the number should also be
displayed.

Test and save your program.

Activity 4.16

Reload Dice.

Modify the code so that it displays one of the five messages given above under
the appropriate conditions. (HINT: You’ll have to calculate the difference
between the guess and dice values again.)

Test and save your program.

 Ë Mutually
exclusive conditions
refers to a set of
conditions where no
more than one of those
conditions can be true
at the same time.

Hands On AGK BASIC: Screen Handling 111

 Print(“Correct”)
 else
 if diff >= -2
 Print(“Your guess is slightly too high”)
 else
 Print(“Your guess is too high”)
 endif
 endif
 endif
 endif

In a situation that included even more options, the indentation can be so extreme that
you may reach the right-hand margin! To solve this problem we often re-arrange the
layout of nested if statements to be

 if diff > 2
 Print(“Your guess is too low”)
 else if diff > 0
 Print(“Your guess is slightly too low”)
 else if diff = 0
 Print(“Correct”)
 else if diff >= -2
 Print(“Your guess is slightly too high”)
 else
 Print(“Your guess is too high”)
 endif endif endif endif

with each option given the same indention as the last, and with the closing set of
endif keywords placed on a single line. This gives a much neater layout which is still
easy to follow.

elseif

The only problem with the previous solution is the need for so many endif terms at
the end of the selection process. To avoid this we can replace the separate else if
terms with the single word elseif. When we do this, only a single endif term is
required at the end of the structure:

if diff > 2
 Print(“Your guess is too low”)
 elseif diff > 0
 Print(“Your guess is slightly too low”)
 elseif diff = 0
 Print(“Correct”)
 elseif diff >= -2
 Print(“Your guess is slightly too high”)
 else
 Print(“Your guess is too high”)
 endif

Activity 4.17

Modify the layout of your Dice program to conform to this new layout style for
multi-way selection. Resave your project.

Activity 4.18

Modify Dice to use the elseif term. Resave your project.

112 Hands On AGK BASIC: Screen Handling

The select Statement
An alternative, and often clearer, way to deal with choosing one action from many is
to employ the select statement. The simplest way to explain the operation of the
select statement is simply to give you an example.

In the code snippet given below we display the name of the day of week corresponding
to the number generated. For example, 1 results in the word Sunday being displayed.

 day = Random(0,8)
 select day
 case 1:
 Print(“Sunday”)
 endcase
 case 2:
 Print(“Monday”)
 endcase
 case 3:
 Print(“Tuesday”)
 endcase
 case 4:
 Print(“Wednesday”)
 endcase
 case 5:
 Print(“Thursday”)
 endcase
 case 6:
 Print(“Friday”)
 endcase
 case 7:
 Print(“Saturday”)
 endcase
 endselect
 Print(day)
 Sync()

Once a value for day has been generated, the select statement chooses the case
statement that matches that value and executes the code given within that section. All
other case statements are ignored and any instructions following the endselect
statement are executed. For example, if day = 3, then the statement given beside case
3 will be executed (i.e. Print(“Tuesday”)) and the remainder of the whole select..
endselect structure ignored with the next statement executed being Print(day). If
day were to be assigned a value not given in any of the case statements (e.g. 0 or 8),
the whole select statement would be ignored and no part of it executed and the next
statement to be executed would be Print(day).

Optionally, a special case statement can be added just before the endselect keyword.
This is the case default option which is used to catch all other values which have
not been mentioned in previous case statements. For example, if we modified our
select statement above to end with the code

 case 7:
 Print(“Saturday”)
 endcase
 case default
 Print(“Invalid day”)
 endcase
 endselect

Hands On AGK BASIC: Screen Handling 113

then, if a value outside the range 1 to 7 is generated, the statement in the case default
option will be executed.

FIG-4.10 shows how the select statement is executed.

Several values can be specified for each case option. If the value of the term given
in the select statement matches any of the values listed in a case statement, then the
statement(s) in that case option will be executed. For example, using the lines

 num = Random(1,10)
 select num
 case 1,3,5,7,9:
 Print(“Odd”)
 endcase
 case 2,4,6,8,10:
 Print(“Even”)
 endcase
 endselect
 print(num)
 Sync()

FIG-4.10

How select Works

select expression

constant1case :
statements

endcase

case default

statements

endcase

endselect

constant2case

statements

endcase

:

3
Once the chosen
section of the select
statement has been
executed, control
moves to the first
statement following
endselect

2 - option 2
if not matching case
value is found, the
statments in the
case default option
are executed

2 - option 1
the statements in
the case containing
a match for
expression are
executed

1
expression is
evaluated

if no case
default is included, then

no part of the select
endselect structure is

executed

statements

114 Hands On AGK BASIC: Screen Handling

the word Odd would be displayed if any odd number between 1 and 9 was entered.

The values given beside the case keyword may also be a string as in the example
below:

 name$ = GetName()
 select name$
 case “Jack”,”Jill” :
 Print(“Hello friend”)
 endcase
 case default
 Print(“I do not know your name”)
 endcase
 endselect
 Sync()

Although the case value may also be a real value as in the line

 CASE 1.52

it is a bad idea to use these since the machine cannot store real values accurately. If
a real variable contained the value 1.52000001 it would not match with the case
value given above.

The general format of the select statement is given in FIG-4.11.

where:

 expression is a variable or expression which reduces to a single
 integer, real or string value.

 value is a constant of any type (integer, real or string).

 statement is any valid AGK BASIC statement
 (even another select statement!).

GetName() is
assumed to be
a user-written
function that
allows the player
to enter their
name.

FIG-4.11

select..endselect select expression

constantcase []
,

:

statement

endcase

case default

statement

endcase

endselect

Hands On AGK BASIC: Screen Handling 115

Not all multi-way selection situations can be coded using the select..endselect
statement. For example, let’s say a number can be in the range 1 to 1000 and we want
to perform specific actions for each of the groupings 1 to 200, 201 to 400, 401 to 600,
601 to 1000 then, since it would be impractical to list all the possible values for each
group in a case line, we would have to code such a problem using nested if
statements.

Testing Selective Code
When a program contains one or more if structures, our test strategy has to change
to cope with this. For every if statement within a program we need to create at least
two test values: one which results in the condition within the if statement being true,
the other in the condition being false. Therefore, if a program contained the lines

 no = GetButtonEntry()
 if no mod 2 = 0
 Print(“This is an even number”)
 endif

then we need to have a test value for no which is even and another which is odd. For
example, we could choose the values 10 and 3.

Another important test for conditions involving less than, or greater than operators
is to find out what happens when the variable’s value is exactly equal to the value
against which it is being tested. For example, if a program contained the lines

 if result < 0
 Print(“Negative”)
 else
 Print(“Positive”)
 endif

then we would want to include zero as one of our test values, giving us three test

This also applies to
less than or equal to
and greater than or
equal to operators.

Activity 4.19

Start a new project, Days.

The program should generate a random number in the range 0 to 8 and display
the corresponding day of the week if the number is in the range 1 to 7. For any
other value, the message Invalid day should be displayed.

Test and save your program.

Activity 4.20

Start a new project, Cards.

Generate a random number in the range 1 to 13 (the number represents the
value of a playing card - 11, 12 and 13 being the Jack, Queen and King).

The program should display the message Court card if 11, 12, or 13 is
generated and Spot card for all other values.

Test and run your program.

116 Hands On AGK BASIC: Screen Handling

values: one less than zero, zero, and one greater than zero. So we could use, say, -7,
0 and 8.

Some of our projects don’t allow for user input - instead they use randomly generated
values. So we have no control over what values will be used when the program is run!

For test purposes, in a situation like this, we can modify the program’s code
temporarily so we can control the value used. Hence, in our Numbers project, for
example, we could change the line

 no = Random(-12,12)

to

 no = -7

Now we can run the program and see if we get the expected result.

In the next two runs of the program we would change the assignment line to 0 and
then 8 to get our other two test values. Once we have satisfied ourselves that the
expected results have been obtained then we must restore the original code line to the
program allowing the value of no to be generated randomly once more.

When an if statement contains more than one condition linked with and or or
operators, testing needs to check each possible combination of true and false settings.
For example, if a program contained the line

 if dice1 = 6 and dice2 = 6

then our tests should include all possible combinations of true and false for the two
conditions. A possible set of values is shown in FIG-4.10.

In a complex condition it is sometimes not possible to create every theoretical
combination of true and false. For example, if a program contains the line

 if total = 7 or total = 11 or dice1 = dice2

then the combinations of true and false for the three conditions are shown in FIG-
4.11.

But the last two combinations in the table are impossible to achieve since total cannot

FIG-4.10

Test Data and
Condition Results

 dice1 dice2 Result

 3 5 false, false
1 6 false, true
6 4 true , false
6 6 true , true

FIG-4.11

Three Condition
Permutations

 total=7 total=11 dice1=dice2

 false false false
false false true
false true false
false true true
true false false
true false true
true true false
true true true

Hands On AGK BASIC: Screen Handling 117

contain the values 7 and 11 at the same time (the conditions are mutually exclusive).
So our test data will have test values which create only the remaining 6 combinations.

Summary
± The term nested if statements refers to the construct where one or more if

statements are placed within the structure of another if statement.

± Multi-way selection can be achieved using nested if or by using the select
statement.

± The select statement can be based on integer, real or string values.

±The case line can have any number of values, each separated by a comma.

±The case default option is executed when the value being searched for
matches none of those given in the CASE statements.

±Testing a simple if statement should ensure that both true and false results are
tested.

±Where a specific value is mentioned in a condition (as in no < 0) , that value
should be part of the test data.

±When a condition contains and or or operators, every possible combination of
results should be tested.

±Nested if statements should be tested by ensuring that every possible path
through the structure is executed by the combination of test data.

±select structures should be tested by using every value specified in the case
statements.

±select should also be tested using a value that does not appear in any of the
case statements.

Activity 4.21

Suggest a set of test values for the latest version of the Dice project (Activity
4.17).

How would we have to modify the program’s code in order to use these test
values?

118 Hands On AGK BASIC: Screen Handling

Solutions
Activity 4.1

a) Valid.
b) Valid.
c) Valid.
d) Invalid. => is not a relational operator (should be >=)
e) Invalid. Integer variable compared with string.
f) Invalid. 14 High Street should be in double quotes.

Activity 4.2
a) False. Only the second string contains a space.
b) True. “def”is shorter and matches the first three characters
 of “defg”.
c) True. “A” comes before “B”.
d) False. Only the second string contains a full stop.
e) False. Only the second string contains a capital D.
f) True. “*” has a greater ASCII coding than “&”

Activity 4.3
Program code:

rem *** include Buttons code ***
#include “Buttons.agc”
rem *** Setup the buttons for input ***
SetUpButtons()
rem *** Get the first value ***
Print(“Enter first value :”)
Sync()
Sleep(2000)
no1 = GetButtonEntry()
rem *** Get the second value ***
Print(“Enter second value : “)
Sync()
Sleep(2000)
no2 = GetButtonEntry()
rem *** if no remainder, display message ***
if no1 mod no2 = 0
 Print(“Exactly divisible”)
 Sync()
endif
do
loop

Activity 4.4
Modified code for Dice is:

rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print(“Guess what my number is “)
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
rem *** Display message if guess is wrong ***
if guess <> dice
 Print(“Wrong”)
endif
rem *** Display values ***
PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)
Sync()
do
loop

Activity 4.5
Modified code for Dice is:

rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print(“Guess what my number is “)
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
rem *** Display message and difference ***
rem *** if guess is wrong ***
if guess <> dice
 PrintC(“Wrong. You were out by “)
 difference = dice - guess
 Print(difference)
endif
rem *** Display values ***
PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)
Sync()
do
loop

You may get a negative value displayed when the guess is
greater than the random number generated.

Activity 4.6
Code for TwoDice:

rem *** Two dice ***

rem *** Throw dice ***
dice1 = Random(1,6)
dice2 = Random(1,6)
rem *** Check for a win ***
total = dice1 + dice2
if total = 7 or total = 11
 Print(“You win!”)
endif
rem *** Display dice values ***
PrintC(“Value of dice 1 : “)
Print(dice1)
PrintC(“Value of dice 2 : “)
Print(dice2)
Sync()
do
loop

Activity 4.7
Modified code for TwoDice:

rem *** Two dice ***

rem *** Throw dice ***
dice1 = Random(1,6)
dice2 = Random(1,6)
rem *** Check for a win ***
total = dice1 + dice2
if total = 7 or total = 11 or dice1 = dice2
 Print(“You win!”)
endif
rem *** Display dice values ***
PrintC(“Value of dice 1 : “)
Print(dice1)
PrintC(“Value of dice 2 : “)
Print(dice2)
Sync()
do
loop

Hands On AGK BASIC: Screen Handling 119

Activity 4.8
Code for ThreeDice:

rem *** Three Dice ***

rem *** Throw dice ***
dice1 = Random(1,6)
dice2 = Random(1,6)
dice3 = Random(1,6)
rem *** IF any two dice match THEN ***
if dice1 = dice2 or dice1 = dice3 or dice2 = dice3
 Print(“You win!”)
endif
rem *** Display values ***
PrintC(“dice 1: “)
Print(dice1)
PrintC(“dice 2: “)
Print(dice2)
PrintC(“dice 2: “)
Print(dice3)
Sync()
do
loop

Activity 4.9
a) IF player lands on “Go to Jail” OR player picks up a
 “Go to Jail” card OR player throws three doubles in a
 row THEN

b) IF 10,00 gold pieces collected OR princess freed AND
 dragon slayed THEN

c) IF (holding King of Spades OR holding Queen of
 Spades) AND Ace of Diamonds played THEN

Activity 4.10
dice1 <> dice2 and dice1 <> dice3 and dice2 <> dice3

Activity 4.11
Modified code for Dice is:

rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print(“Guess what my number is “)
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
rem *** Display message ***
if guess = dice
 Print(“Correct”)
else
 Print(“Wrong”)
endif
rem *** Display values ***
PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)
Sync()
do
loop

Activity 4.12
Code for TwoNumbers

rem *** Smaller odd/even ***

rem *** include Buttons functions ***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Get numbers ***
Print(“Enter first number “)
Sync()
Sleep(2000)
no1 = GetButtonEntry()
Print(“Enter second number “)
Sync()
Sleep(2000)
no2 = GetButtonEntry()
rem *** Determine smaller value ***
if no1 < no2
 answer = no1
else
 answer = no2
endif
rem *** Display smaller ***
PrintC(“Smaller value is “)
Print(answer)
rem *** Determine if answer is odd or even ***
if answer mod 2 = 0
 Print(“This is an even number”)
else
 Print(“This is an odd number”)
endif
Sync()
do

loop

Activity 4.13
a) A Boolean expression is an expression whose result is
 either true or false.
b) Six. <, <=, >, >=, =, <>
c) not is performed first, and next and or last. This order
 will change if parentheses are used.

Activity 4.14
Modified code for Dice is:

rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print(“Guess what my number is “)
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
rem *** Display message ***
if guess = dice
 Print(“Correct”)
else
 if guess > dice
 Print(“Your guess is too high”)
 else
 Print(“Your guess is too low”)
 endif
endif
rem *** Display values ***
PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)
Sync()
do
loop

Activity 4.15
Code for Number:

rem *** Random number between -12 and 12 ***

rem *** Generate number ****
no = Random(-12,12)
rem *** Display number’s sign ***

120 Hands On AGK BASIC: Screen Handling

if no < 0
 Print(“Negative”)
else
 if no = 0
 Print(“Zero”)
 else
 Print(“Positive”)
 endif
endif
rem *** Disply number ***
Print(no)
Sync()
do
loop

Activity 4.16
Modified code for Dice:

rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print(“Guess what my number is “)
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
rem *** Display message ***
diff = dice - guess
if diff > 2
 Print(“Your guess is too low”)
else
 if diff > 0
 Print(“Your guess is slightly too low “)
 else
 if diff = 0
 Print(“Correct”)
 else
 if diff >= -2
 Print(“Your guess is slightly too
 high”)
 else
 Print(“Your guess is too high”)
 endif
 endif
 endif
endif
rem *** Display values ***
PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)
Sync()
do
loop

Activity 4.17
The multi-way selection section of Dice’s code should now
be have the following layout:

if diff > 2
 Print(“You guess is too low”)
else if diff > 0
 Print(“Your guess is slightly too low “)
else if diff = 0
 Print(“Correct”)
else if diff >= -2
 Print(“Your guess is slightly too high”)
else
 Print(“Your guess is too high”)
endif endif endif endif

Activity 4.18
New new multi-way selection coding in Dice should now be:

if diff > 2
 Print(“You guess is too low”)

elseif diff > 0
 Print(“Your guess is slightly too low “)
elseif diff = 0
 Print(“Correct”)
elseif diff >= -2
 Print(“Your guess is slightly too high”)
else
 Print(“Your guess is too high”)
endif

Activity 4.19
Code for Days:

rem *** Display day of the week ***

rem *** Generate value ***
day = Random(0,8)

rem *** Display day of week ***
select day
 case 1:
 Print(“Sunday”)
 endcase
 case 2:
 Print(“Monday”)
 endcase
 case 3:
 Print(“Tuesday”)
 endcase
 case 4:
 Print(“Wednesday”)
 endcase
 case 5:
 Print(“Thursday”)
 endcase
 case 6:
 Print(“Friday”)
 endcase
 case 7:
 Print(“Saturday”)
 endcase
 case default
 Print(“Invalid day”)
 endcase
endselect
rem *** Display number generated ***
Print(day)
Sync()
do
loop

Activity 4.20
Code for Cards:

rem *** Cards ***

rem *** Generate card value ***
card = Random(1,13)

rem *** Display card type ***
select card
 case 11,12,13:
 Print(“Court card”)
 endcase
 case default
 Print(“Spot card”)
 endcase
endselect
Print(card)
Sync()
do
loop

Note that all of the spot cards can be handled in the case
default option because there is no chance of an invalid value
being used.

Activity 4.21
The test data needs to cover all the possible paths through the
nested if statements. In doing this we will have tested each
condition for both true and false options.

Hands On AGK BASIC: Screen Handling 121

So possible values are

 dice guess Expected results
 8 2 Your guess is too low
 5 4 Your guess is slightly too low
 7 7 Correct
 2 4 Your guess is slightly too high
 3 8 Your guess is too high

In addition, we would expect the values of dice and guess to
be displayed.

Since the dice values are randomly generated it would
be impractical to use our test data. We can overcome this
problem by setting the variable dice to a specific value rather
than determining its value using Random(). Once testing is
complete, the random assignment can be restored.

122 Hands On AGK BASIC: Screen Handling

Hands On AGK BASIC: Iteration 123

In this Chapter:

T while..endwhile Structure

T repeat..until Structure

T for..next Structure

T do..loop Structure

T Validating Input

T The exit Statement

T Testing Loop Structures

Iteration

124 Hands On AGK BASIC: Iteration

Iteration

Introduction
Iteration is the term used when one or more statements are carried out repeatedly. As
we saw in Chapter 1, structured English has three distinct iterative structures: FOR ..
ENDFOR, REPEAT .. UNTIL and WHILE .. ENDWHILE.

AGK BASIC, on the other hand, has four iterative structures. One of these takes the
same form as their structured English equivalent, but others differ slightly and
therefore care should be taken when translating structured English statements to
AGK BASIC.

The while..endwhile Construct
The while statement is probably the easiest of AGK BASIC’s loop structures to
understand, since it is identical in operation and syntax to the WHILE loop in
structured English.

This structure allows us to continually execute a section of code as long as a specified
condition is being met. For example, if, in a game, a player’s character sustains
damage of 10 points while he stands on a “bad health” area, this can be described in
structured English as

 WHILE player on “bad health” area DO
 Reduce player’s health by 10
 ENDWHILE

which can be coded in AGK BASIC as:

	while	floor_area	=	25
		 health	=	health	-	10
 endwhile

The syntax of AGK BASIC’s while .. endwhile construct is shown in FIG-5.1.

where:

 condition is a Boolean expression and may include and,	or,	not	
 and parentheses as required.

 statement is any valid AGK BASIC statement.

while..endwhile is an entry-controlled loop. That is, the condition at the start of
the loop is tested and only if that condition is true, are the statements within the loop
executed. When the endwhile term is reached, control returns to the while line and
the condition is retested. If the condition is found to be false, then looping stops with
an immediate jump from the while line to the endwhile line, skipping the statements
in between.

FIG-5.1

while..endwhile

AGK BASIC’s
while statement
does not use the
term do.

while condition

statement

endwhile

The code assumes a
variable called floor_
area records the position
of the character and that
the “bad health” area is
at position 25.

Hands On AGK BASIC: Iteration 125

A visual representation of how this loop operates is shown in FIG-5.2.

Note that the loop body may never be executed if condition is false when first tested.

A common use for this loop statement is validation of input. So, for example, in our
number guessing game, we might ensure that the user types in a value between 0 and
9 when entering their guess by using the logic

 Get guess
 WHILE guess outside the range 0 to 9 DO
 Display error message
 Get guess
 ENDWHILE

which can be coded in AGK BASIC using our GetButtonEntry() function as:

	Print(“Enter	your	guess	(0	-	9)	:	”)
	Sync()
	Sleep(2000)
	guess	=	GetButtonEntry()
	while	guess	<	0	or	guess	>	9
		 Print(“Your	guess	must	be	between	0	and	9”)
		 Print(“Enter	your	guess	again(0	-	9)	:	”)
		 Sync()
		 Sleep(2000)
		 guess	=	GetButtonEntry()
 endwhile

FIG-5.2

How while..
endwhile Operates

Earlier Statements

Later Statements

1
 is testedcondition

2 - option 1
if is true,

the loop body statements
are executed

condition

After the loop body
has been executed, the program

returns to the start of the loop
and is retested condition

2 - option 2
if is false,

the program jumps to the
end of the loop

condition

...

while condition

statements

endwhile

The test guess	<	0 is not
required since the function
GetButtonEntry() does
not allow negative values
to be entered. However,
the condition has been
included so that, should
GetButtonEntry()	ever be
modified to allow entry of
negative values, the while
loop will catch any values
less than zero.

126 Hands On AGK BASIC: Iteration

The repeat..until Construct
Like structured English, AGK BASIC has a repeat..until statement. The two
structures are identical. Hence, if in structured English we write

 Set total to zero
 REPEAT
 Get a number
 Add number to total
 UNTIL number is zero

then the same logic would be coded in AGK BASIC as

	total	=	0
	repeat
		 number	=	GetButtonEntry()
		 total	=	total	+	number
	until	number	=	0

The repeat..until statement is an exit-controlled loop structure. That is, the action
within the loop is executed and then an exit condition is tested. If that condition is
found to be true, then looping stops, otherwise the statements specified within the
loop are executed again. Iteration continues until the exit condition is true.
The syntax of the REPEAT statement is shown in FIG-5.3.

The code assumes
we are using the
Button routines
introduced in the
previous chapter to
accept input.

FIG-5.3

repeat..until

repeat

condition

statement

until

Activity 5.1

Modify your Dice project to incorporate the code given above. Check that the
program works correctly by attempting to make guesses which are outside the
range 0 to 9. Resave your project.

Activity 5.2

A simple dice game involves counting how many times in a row a pair of dice
can be thrown to produce a value of 8 or less. The game stops as soon as a
value greater than 8 is thrown.

Create a new project, DiceCount, which implements the following logic:

 Set count to zero
 Throw the two dice
 Display dice values
 WHILE the sum of the two dice <= 8 DO
 Add 1 to count
 Throw the two dice
 Display dice values
 ENDWHILE
 Display “You had a run of “ , count, “throws”

Test and save your program.

Hands On AGK BASIC: Iteration 127

where:

 condition is a Boolean expression and may include and, or, not and
 parentheses as required.

 statement is any valid AGK BASIC statement.

The operation of the repeat	..	until construct is shown graphically in FIG-5.4.

Earlier Statements

Later Statements

2
 is testedcondition

repeat

condition

statements

until

1
Statements

in the loop body
are executed

3 - option 1
condition true:

exit loop3 - option 2
condition false:
return to start

of loop

FIG-5.4

How repeat..until
Operates

Activity 5.3

Create a new project, Total, to read in a series of integer values, stopping only
when a zero is entered. The values entered should be totalled and that total
displayed at the end of the program. Use the Buttons routines to accept input.

Use the following logic:

 Set total to zero
 REPEAT
 Get a number
 Add number to total
 UNTIL number is zero
 Display total

Test and save your project.

128 Hands On AGK BASIC: Iteration

The for..next Construct
In structured English, the FOR loop is used to perform an action a specific number
of times. For example, we might describe dealing seven cards to a player using the
logic:

 FOR 7 times DO
 Deal card
 ENDFOR

Sometimes the number of times the action is to be carried out is less explicit. For
example, if each player in a game is to pay a £10 fine, we could write:

 FOR each player DO
	 	 Pay	£10	fine
 ENDFOR

However, in both examples, the action specified between the FOR and ENDFOR
terms will be executed a known number of times.

In AGK BASIC the for construct makes use of a variable to keep a count of how
often the loop is executed and the first line of the structure takes the form:

	for	variable	=	start_value	to	finish_value

Hence, if we want a for loop to iterate 7 times we would write

	for	c	=	1	to	7

In this case c would be assigned the value 1 when the for loop is about to start. Each
time the statements within the loop are completed, c will be incremented, and
eventually, when c is equal to 7 and the loop body has been executed, iteration stops.

The variable used in a for loop is known as the loop counter.

While structured English marks the end of a FOR loop using the term ENDFOR, in
AGK BASIC the end of the loop is indicated by the term next followed by the name
of the loop counter variable used in the for statement. For example, the code

	for	k	=	1	to	10
		 Print(“*”)
	next	k
	Sync()

Activity 5.5

Write the first line of a for loop that is to be executed 10 times, using a
variable j as the loop counter. The starting value of j should be 1.

Activity 5.4

Modify Dice to allow the player to keep guessing until the correct number is
arrived at.

Test and save your project.

Hands On AGK BASIC: Iteration 129

contains a single statement within the loop body and will display a column of 10
asterisks.

The loop counter in a for loop can be made to start and finish at any value, so it is
quite valid to start a loop with the line:

	for	m	=	3	to	12

The loop counter m will contain the value 3 when the loop is first executed and 12
when the final execution is complete. The loop will be executed exactly 10 times.

If the start and finish values are identical, as in the line

	for	r	=	10	to	10

 then the loop is executed once only.

Where the start value is greater than the finish value, the loop will not be executed at
all so the code within the loop body will be ignored. Such a result would be produced
from the line

	for	k	=	10	to	9

Normally, 1 is added to the loop counter each time the loop body is performed.
However, we can change this by adding a step value to the for loop as in the example
shown below:

	for	c	=	2	to	10	step	2

In this last example the loop counter, c, will start at 2 and then increment to 4 on the
next iteration. The program in FIG-5.5 uses the step option to display the 7 times
table from 1 x 7 to 12 x 7.

Activity 5.6

What would be displayed by the code

 for	p	=	1	to	10
	 	 Print(p)
	 next	p
	 Sync()

FIG-5.5

7 Times Table

rem	***	7	Times	Table	***

rem	***	Display	title	***
Print(“7	Times	Table”)
Print(“”)
rem	***	Display	the	table	values	***
for	c	=	7	to	84	step	7
				Print(c)
next	c
Sync()
do
loop

130 Hands On AGK BASIC: Iteration

By using the step keyword with a negative value, it is even possible to create a for
loop that reduces the loop counter on each iteration as in the line:

	for	d	=	10	to	0	step	-1

This last example causes the loop counter to start at 10 and finish at 0.

It is possible that the step value given may cause the loop counter never to match the
finish value. For example, in the line

	for	c	=	1	to	12	step	5

the variable c will take on the values 1, 6, and 11. The loop body will not be executed
when the loop counter passes the finishing value (12, in this case) and the looping
will stop.

The start, finish and even step values of a for loop can be defined using a variable or
arithmetic expression, as well as a constant. For example, in FIG-5.6 below the user
is allowed to enter the upper limit of the for loop.

The program will display every integer value between 1 and the number entered by
the user. If this involves many numbers being displayed, there will not be space
within the app window to show them all at the same time. Therefore, the program
displays one number at a time with 0.2 secs delay between each value.

Activity 5.8

Modify Tables so that the 12 times table is displayed with the highest value
first. That is, starting with 144 and finishing with 12.

FIG-5.6

Using a Variable in a
for..next Statement

#include	“Buttons.agc”

SetUpButtons()
rem	***	Get	a	number	***
Print(“Enter	upper	limit”)
Sync()
Sleep(2000)
num	=	GetButtonEnrty()
rem	***	Display	values	between	1	and	num	***
for	c	=	1	to	num
	 Print(c)
	 Sync()
	 Sleep(200)
next	c
do
loop

Activity 5.7

Start a new project, Tables, that implements the code shown in FIG-5.5.

Test the program.

Modify the program so that it displays the 12 times table from 1 x 12 to 12 x
12.

Hands On AGK BASIC: Iteration 131

The for loop counter can also be specified as a real value with a step value which is
not a whole number. For example:

	for	ch#	=	1.0	to	2.0	step	0.1
		 Print(ch#)	
	next	ch#
 Sync()

Notice that most of the values displayed by the last Activity are slightly out. For
example, instead of the second value displayed being 1.1, it displays as 1.10000002384.

This difference is caused by rounding errors when converting from the decimal
values that we use to the binary values favoured by the computer.

Although we might have expected the for loop to perform 11 times (1.0,1.1,1.2, etc.
to 2.0), in fact, it only performs 10 times up to 1.90000021458. Again, this discrepancy
is caused by the rounding error problem.

The format of the for..next construct is shown in FIG-5.7.

where:

 variable is either an integer or real variable. Both variable tiles in the
 diagram refer to the same variable. Hence, the name used after

Activity 5.10

Create a project, ForReal, which includes the code given above and check out
the result.

 Ë The latest version
of AGK no longer
displays values to 11
decimal places; only
6, so the rounding
errors are no longer
visible but still occur
internally.

Activity 5.11

Modify ForReal so that the upper limit of the loop is 2.01.

How many times is the iteration performed now?

FIG-5.7

for..next

for variable value1

next

= to value2 []step value3

statement

variable

Activity 5.9

Start a new project, OneTo, containing the code given in FIG-5.6. (Remember
you have to include the three Buttons files in your project folder).

Modify the program so that the user may also specify the starting value of the
for loop.

Change the program a second time so that the user can specify a step size for
the for loop.

Test each version of the program.

132 Hands On AGK BASIC: Iteration

 the keywords for and next must be the same. This
 variable is known as the loop counter.

 value1 is the initial value of the loop counter. The loop counter
 will contain this value the first time the statements within
 the loop are executed.

 value2 is the final value of the loop variable. The loop variable
 will usually contain this value the last time the loop body
 is executed.

 value3 is the value to be added to the loop counter after each
 iteration. If this is omitted then a value of 1 is added
 to the loop counter.

 statement is any valid AKG BASIC statement.

The operation of the for..next statement is shown graphically in FIG-5.8.

FIG-5.8

How for..next
Operates

for variable value1

next

= to value2 []step value3

statement

variable

1
value1 is copied

to variable

2
variable compared

to value2

3 (option 2)
(variable not

passed value2)

Loop statements
executed

3 (option 1)
(variable passed

 value2)

Loop exits

4
value3 added

to variable

(if value3 omitted,
1 added to variable)

Activity 5.12

Create a new project, InTotal, which reads in and displays the total of 6
numbers. Make use of the Buttons files for input.

Test and save your project.

Hands On AGK BASIC: Iteration 133

Finding the Smallest Value in a List of Values
There are several tasks that will crop up over and over again in your programs. One
of these is finding the smallest value in a list of numbers. This is a trivial enough task
for our own brains as long as the list is short enough to be taken in at a glance, but if
asked how you managed to come up with the correct answer, you might struggle to
give a verbal description of the strategy you used.

Now, let’s imagine you wanted to record the coldest temperature achieved in your
area during the current year. Since this involves a longer list of data which also takes
a full year to access, you would have to come up with an organised way of getting
the information you want. Perhaps you would write down the lowest temperature on
January 1st and then check each day to see if a lower temperature has been achieved.
When a lower temperature does occur, you can erase the previous record and write
down this new temperature. By the end of the year your record would show the
lowest temperature achieved during the year.

This is exactly how we tackle the same type of problem in a computer program. We
set up one variable to hold the smallest value we’ve come across so far and if a later
value is smaller, it is copied into this variable. The algorithm used is given below and
assumes 7 numbers will be entered in total:

	 Get	first	number
	 Set	smallest	to	first	number	
 FOR 6 times DO
 Get next number
 IF number < smallest THEN
 Set smallest to number
 ENDIF
 ENDFOR
 Display smallest

Activity 5.14

Create a new project called Smallest.

In this program implement the logic shown above to display the smallest of 5
integer values entered.

Modify the program to find the largest, rather than the smallest, of the numbers
entered. Save your project.

Activity 5.13

Start a new project called Shades.

Code a program which uses a for loop with a start value of 0 and finish of 255.

Inside the loop, execute a SetClearColor() statement and use the value of
the loop counter as the red parameter to the statement. The green and blue
parameter values for the SetClearColor() statement should both be zero.

Add a delay (using Sleep()) of 20 milliseconds between each iteration of the
loop.

Test and save your project.

134 Hands On AGK BASIC: Iteration

The exit Statement
The exit statement is used to terminate the loop currently being executed. The next
statement to be executed after an exit command is the statement immediately after
the end of the loop. The exit statement takes the form shown in FIG-5.9.

Normally, the exit statement will appear within an if statement.

Let’s look at an example where the exit statement might come in useful. In a dice
game we are allowed to throw a pair of dice 5 times and our score is the total of the
five throws. However, if during our throws we throw a 1, then, according to the rules
of the game, our turn ends and our final score becomes the total achieved up to that
point (excluding the throw containing a 1). We could code this game as shown in
FIG-5.10.

FIG-5.9

The exit Statement exit

FIG-5.10

Using exit

rem	***	set	total	to	zero	***
total	=	0
rem	***	for	5	times	do	***
for	c	=	1	to	5
	 	 rem	***	Display	roll	number	***
	 	 PrintC(“Roll	number	“)
	 	 Print(c)
	 	 Sync()
	 	 Sleep(1000)
	 	 rem	***	throw	both	dice	***
	 	 dice1	=	Random(1,6)
	 	 dice2	=	Random(1,6)
	 	 rem	***	display	throw	number	and	dice	values	***
	 	 PrintC(“dice	1	:	“)
	 	 PrintC(dice1)
	 	 PrintC(”										dice	2	:	“)
	 	 Print(dice2)
	 	 Sync()
	 	 Sleep(4000)
	 	 rem	***	if	either	dice	is	a	1	then	quit	loop	***
	 	 if	dice1	=	1	or	dice2	=	1
	 	 	 exit
 endif
	 	 rem	***	add	dice	throws	to	total	***
	 	 total	=	total	+	dicel	+	dice2
	 next	c
	 rem	***	display	final	score	***
	 PrintC(“your	final	score	was	:	”)
	 Print(total)
	 Sync()
	 do
	 loop

Activity 5.15

Create a new project call SumDice. Delete the existing code in main.agc and
enter the program given in FIG-5.10.

Run the program and check that the loop exits if a 1 is thrown.

Modify the program to exit only if both dice show a 1.

Hands On AGK BASIC: Iteration 135

The do .. loop Construct
The do..loop construct is a rather strange loop structure, since, while other loops are
designed to terminate eventually, the do	..	loop structure will continue to repeat the
code within its loop body indefinitely.

The default code that exists when we begin a new project makes use of this loop
structure to continually display the words Hello world - the traditional text for a first
program.

When a do loop is executing, then, under normal circumstances, the program will
only terminate when forced to do so by an external event. In all our projects so far,
the external event has been the operating system closing down our program in
response to our clicking on the X button at the top-right of the app window.
Alternatively, an exit statement can be included within the loop to allow the loop to
be exited when a given condition occurs.

As we write more complex programs you will begin to understand why a do loop is
so often needed to get the game to run smoothly.

The do..loop structure takes the format shown in FIG-5.11.

Nested Loops
A common requirement within a program is to place one loop control structure within
another. This is known as nested loops. For example, to input six game scores (each
between 0 and 100) and then calculate their average, the logic required is:

 1. Set total to zero
 2. FOR 6 times DO
 3. Get valid score
 4. Add score to total
 5. ENDFOR
 6. Calculate average as total / 6
 7. Display average

This appears to have only a single loop structure beginning at statement 2 and ending
at statement 5. However, if we add detail to statement 3, this gives us

 3. Get valid score
 3.1 Read score
 3.2 WHILE score is invalid DO
 3.3 Display “Score must be between 0 to 100”
 3.4 Read score
 3.5 ENDWHILE

which, if placed in the original solution, results in a nested loop structure, where a
while loop appears inside a for loop:

 1. Set total to zero
 2. FOR 6 times DO
 3.1 Read score

FIG-5.11

do..loop

do

statement

loop

136 Hands On AGK BASIC: Iteration

 3.2 WHILE score is invalid DO
 3.3 Display “Score must be between 0 to 100”
 3.4 Read score
 3.5 ENDWHILE
 4. Add score to total
 5. ENDFOR
 6. Calculate average as total / 6
 7. Display average

s

Nested for Loops
A very common example of nested loops are nested for loops. And, although
someone new to programming can sometimes have difficulties with the concept, its
actually easy enough to see real world examples of how nested for loops work.

Next time you are out in the car, have a look at the odometer (that’s the one that tells
you how many miles/kilometres the car has done). Now, look at the right two digits
of the odometer. As you travel along you’ll see the far right hand digit move slowly
until it reaches 9; at that point it returns to zero and the digit to its left increments
before the whole process repeats itself. You’ll see the same sort of thing on a digital
clock.

The code in FIG-5.12 emulates those last two digits on the odometer. Initially, they
are set to 00 and then move onto 01, 02 ... 09,10,11, etc

The tens loop is known as the outer loop, while the units loop is known as the inner
loop.

A few points to note about nested for loops:

± The inner loop increments fastest.

± Only when the inner loop is complete does the outer loop variable increment.

± The inner loop counter is reset to its starting value each time the outer loop
counter is incremented.

Activity 5.16

Turn the above algorithm into an AKG BASIC project, AverageScore, using
the Buttons files to allow input.

Run and test the program, making sure it operates as expected.

FIG-5.12

Nested for loops Rem	***	Nested	for	loop	***

for	tens	=	0	to	9
				for	units	=	0	to	9
								PrintC(tens)
								PrintC(“	“)
								Print(units)
								Sync()
								Sleep(200)
				next	units
next	tens
do
loop

Hands On AGK BASIC: Iteration 137

Testing Iterative Code
We need a test strategy when looking for errors in iterative code. Where possible, it
is best to create at least three sets of values:

± Test data that causes the loop to execute zero times.

± Test data that causes the loop to execute once.

± Test data that causes the loop to execute multiple times.

For example, in Dice we added statements to ensure that the guess entered was in the
range 0 to 9 using the following code:

	guess	=	GetButtonEntry()
	while	guess	<	0	or	guess	>	9
		 Print(“Your	guess	must	be	between	0	and	9”)
		 Print(“Enter	your	guess	again(0	-	9)	:	”)
		 Sync()
		 Sleep(2000)
		 guess	=	GetButtonEntry()
 endwhile

To test the while loop in this code we could use the test data shown in FIG-5.13.

The while loop is only executed if guess is outside the range 0 to 9, so Test 1, which
uses a value inside that range, will skip the while loop body giving zero iterations.

Test 2 starts with an invalid value (10) for guess, causing the while loop body to be
executed, and then uses a valid value (5). This loop is therefore exited after only one
iteration.

FIG-5.13

Test Data

Test No. guess
1

3
2

7
10, 5

18, 12, 3

Activity 5.17

Start a new project, NestedFor, and code the program to match FIG-5.12.
Test and save your project.

Activity 5.18

What would be output by the following code?

 for	no1	=	-2	to	1
	 	 for	no2	=	0	to	3
	 	 	 PrintC(no1)
	 	 	 PrintC(“	“)
	 	 	 Print(no2)
	 	 	 Sync()
	 	 	 Sleep(200)
	 	 next	no2
	 next	no1

138 Hands On AGK BASIC: Iteration

Test 3 uses two invalid values (18 and 12) before entering a valid value (3), causing
the while loop body to execute twice.

There will be cases where using all three tests strategies are not possible. For example,
a repeat loop cannot execute zero times and, in this case, we have to satisfy ourselves
with single and multiple iteration tests.

A for loop, when written for a fixed number of iterations can only be tested for that
number of iterations. So a loop beginning with the line

 for	c	=	1	to	10

can only be tested for multiple iterations (10 iterations, in this case), the exception
being if the loop body contains an exit statement, in which case zero and one
iteration tests may also be possible by supplying values which cause the exit
statement to be terminated during the required iteration.

A for loop which is coded with a variable upper limit as in

	for	c	=	1	to	max

may be fully tested by making sure max has the values 0, 1, and more than 1 during
testing.

Activity 5.19

The following code is meant to calculate the average of a sequence of numbers.
The sequence ends when the value zero is entered. This terminating zero is not
considered to be one of the numbers in the sequence.

 total	=	0
	 count	=	0
	 Print(“Enter	number	(0	to	stop)”)
	 Sync()
	 Sleep(2000)
	 num	=	GetButtonEntry()
	 while	num	<>	0
	 	 total	=	total	+	num
	 	 count	=	count	+	1
	 	 Print(“Enter	number	(0	to	stop)”)
	 	 Sync()
	 	 Sleep(2000)
	 	 num	=	GetButtonEntry()
 endwhile
	 average	=	total	/	count
	 PrintC(“Average	is	“)
	 Print(average)
	 Sync()
	 do
	 loop

Make up a set of test values (similar in construct to FIG-5.13) for the while
loop in the code.

Create a new project, Average, containing the code given above and use the test
data to find out if the code functions correctly.

Hands On AGK BASIC: Iteration 139

A do loop can only be tested for zero and one iterations if it contains an exit statement.

Summary
± AGK BASIC contains four iteration constructs:

 while .. endwhile
		 repeat	..	until
		 for	..	next
		 do	..	loop

± The while..endwhile construct executes a minimum of zero times and exits
when the specified condition is false.

± The repeat..until construct executes at least once and exits when the
specified condition is true.

± The for..next construct is used when iteration has to be done a specific
number of times.

± A step size may be included in the for statement. The value specified by the
step term is added to the loop counter on each iteration.

± If no step size is given in the for statement, a value of 1 is used.

± for loops counters can be integer or real.

± The start, finish and step values in a for loop can be defined using variables or
arithmetic expressions.

± If the start value is equal to the finish value, a for loop will execute only once.

± If the start value is greater than the finish value and the step size is a positive
value, a for loop will execute zero times.

± Using the do..loop structure creates an infinite loop.

± The exit statement can be used to exit from any loop.

± One loop structure can be placed within another loop structure. Such a
structure is known as a nested loop.

± Loops should be tested by creating test data for zero, one and multiple
iterations during execution whenever possible.

140 Hands On AGK BASIC: Iteration

Solutions
Activity 5.1

Modified code for Dice:
rem	***	Dice	program	***
rem	***	Simulates	the	roll	of	a	10-sided	dice	***

rem	***	include	Buttons***
#include	“Buttons.agc”

rem	***	Display	buttons	***
SetUpButtons()
rem	***	Throw	dice	***
dice	=	Random(0,9)
rem	***	Display	prompt	***
Print(“Guess	what	my	number	is	“)
Sync()
Sleep(2000)
rem	***	Get	a	value	***
guess	=	GetButtonEntry()
while	guess	<	0	or	guess	>	9
	 	 Print(“your	guess	must	be	between	0	and	9”)
	 	 Print(“Enter	your	guess	again(0	-	9)	:	“)
	 	 Sync()
	 	 Sleep(2000)
	 	 guess	=	GetButtonEntry()
 endwhile
rem	***	Display	message	***
diff	=	dice	-	guess
if	diff	>	2
				Print(“You	guess	is	too	low”)
else
				if	diff	>	0
								Print(“Your	guess	is	slightly	too	low	“)
				else
								if	diff	=	0
												Print(“Correct”)
								else
												if	guess	>	-2
																Print(“Your	guess	is	slightly	too	
 high”)
												else
																Print(“Your	guess	is	too	high”)
 endif
 endif
 endif
endif
rem	***	Display	values	***
PrintC(“My	number	was	:	“)
Print(dice)
PrintC(“Your	guess	was	:	“)
Print(guess)
Sync()
do
loop

Activity 5.2
Code for DiceCount:

rem	***	Count	dice	run	***

rem	***	Set	count	to	zero	***
count	=	0
rem	***	Throw	dice	***
dice1	=	Random(1,6)
dice2	=	Random(1,6)
rem	***	display	dice	values	***
PrintC(dice1)
PrintC(“	“)
Print(dice2)
Sync()
Sleep(500)
rem	***	Keep	going	while	total	is	less	than	9	***
while	dice1	+	dice2	<=	8
				rem	***	add	1	to	count	***
				count	=	count	+	1
				rem	***	Throw	dice	***
				dice1	=	Random(1,6)
				dice2	=	Random(1,6)
				rem	***	display	dice	values	***
				PrintC(dice1)
				PrintC(“	“)
				Print(dice2)

				Sync()
				Sleep(500)
endwhile
PrintC(“You	had	a	run	of	“)
PrintC(count)
Print(“	throws”)
Sync()
do

loop

Activity 5.3
Set the app window dimensions to 768 wide by 1024 high.

Code for Total:

rem	***	Total	a	sequence	of	numbers	***

rem	***	include	Buttons	routines	***
#include	“Buttons.agc”

rem	***	Set	up	buttons	***
SetUpButtons()
rem	***	Set	total	to	zero	***
total	=	0
rem	***	Keep	going	until	zero	entered	***
repeat
				rem	***	Get	value	***
				no	=	GetButtonEntry()
				rem	***	Add	value	to	total	***
				total	=	total	+	no
until	no	=	0
rem	***	Display	total	***
PrintC(“Total	=	“)
Print(total)
Sync()
do
loop

Activity 5.4
Modified code for Dice (remember to indent all the code
between the repeat and until terms):

rem	***	Dice	program	***
rem	***	Simulates	the	roll	of	a	10-sided	dice	***

rem	***	include	Buttons***
#include	“Buttons.agc”

rem	***	Display	buttons	***
SetUpButtons()
rem	***	Throw	dice	***
dice	=	Random(0,9)
repeat
				rem	***	Display	prompt	***
				Print(“Guess	what	my	number	is	“)
				Sync()
				Sleep(2000)
				rem	***	Get	a	value	***
				guess	=	GetButtonEntry()
				while	guess	<	0	or	guess	>	9
	 	 	 Print(“your	guess	must	be	between	0	and	9”)
	 	 	 Print(“Enter	your	guess	again(0	-	9)	:	“)
	 	 	 Sync()
	 	 	 Sleep(2000)
	 	 	 guess	=	GetButtonEntry()
 endwhile
				rem	***	Display	message	***
				diff	=	dice	-	guess
				if	diff	>	2
								Print(“You	guess	is	too	low”)
				else	if	diff	>	0
								Print(“Your	guess	is	slightly	too	low	“)
				else	if	diff	=	0
								Print(“Correct”)
				else	if	diff	>=	-2
								Print(“Your	guess	is	slightly	too	high”)
				else
								Print(“Your	guess	is	too	high”)
 endif endif endif endif
until	guess	=	dice

rem	***	Display	values	***
PrintC(“My	number	was	:	“)
Print(dice)
PrintC(“Your	guess	was	:	“)

Hands On AGK BASIC: Iteration 141

Print(guess)
Sync()
do
loop

Activity 5.5
for	j	=	1	to	10

Activity 5.6
This code would display the values 1 to 10.

Activity 5.7
Modified code for Tables (12 times table):

rem	***	12	Times	Table	***

rem	***	Display	title	***
Print(“12	Times	Table	“)
Print(“”)
rem	***	Display	the	table	values	***
for	c	=	12	to	144	step	12
				Print(c)
next	c
Sync()
do

loop

Activity 5.8
Modified version of Tables:

rem	***	12	Times	Table	***

rem	***	Display	title	***
Print(“12	Times	Table	“)
Print(“”)
for	c	=	144	to	12	step	-12
				Print(c)
next	c
Sync()
do

loop

Activity 5.9
Code for OneTo:

rem	***	Display	all	values	in	a	range	***

rem	***	include	Buttons	functions	***
#include	“Buttons.agc”

rem	***	Set	up	buttons	***
SetUpButtons()
rem	***	Get	limit	***
Print(“Enter	the	upper	limit”)
Sync()
Sleep(2000)
num	=	GetButtonEntry()
rem	***	Display	numbers	1	to	num	***
for	c	=	1	to	num
				Print(c)
				Sync()
				Sleep(200)
next	c
do
loop

Start value version of OneTo:
rem	***	Display	all	values	in	a	range	***

rem	***	include	Buttons	functions	***
#include	“Buttons.agc”

rem	***	Set	up	buttons	***
SetUpButtons()
rem	***	Get	lower	limit	***
Print(“Enter	the	lower	limit”)
Sync()
Sleep(2000)
start	=	GetButtonEntry()

rem	***	Get	upper	limit	***
Print(“Enter	the	upper	limit”)
Sync()
Sleep(2000)
num	=	GetButtonEntry()
rem	***	Display	numbers	start	to	num	***
for	c	=	start	to	num
				Print(c)
				Sync()
				Sleep(200)
next	c
do
loop

Step size version of OneTo:
rem	***	Display	values	in	a	range	***

rem	***	include	Buttons	functions	***
#include	“Buttons.agc”

rem	***	Set	up	buttons	***
SetUpButtons()
rem	***	Get	lower	limit	***
Print(“Enter	the	lower	limit”)
Sync()
Sleep(2000)
start	=	GetButtonEntry()

rem	***	Get	upper	limit	***
Print(“Enter	the	upper	limit”)
Sync()
Sleep(2000)
num	=	GetButtonEntry()
rem	***	Get	step	size	***
Print(“Enter	the	step	size”)
Sync()
Sleep(2000)
increment	=	GetButtonEntry()
rem	***	Display	numbers	start	to	num	***
for	c	=	start	to	num	step	increment
				Print(c)
				Sync()
				Sleep(200)
next	c
do
loop

Activity 5.10
Code for ForReal:

rem	***	Display	values	from	1	to	2	***
for	ch#	=	1.0	to	2.0	step	0.1
				Print(ch#)
				Sync()
				Sleep(200)
next	ch#
do
loop

Notice that the values displayed are 1.0 to 1.9.

Activity 5.11
Modified version of ForReal:

rem	***	Display	values	from	1	to	2	***
for	ch#	=	1.0	to	2.1	step	0.1
				Print(ch#)
				Sync()
				Sleep(200)
next	ch#
do
loop

The display now runs from 1.0 to 2.0.

Activity 5.12
Code for InTotal:

rem	***	Total	input	values	***

rem	***	Include	button	functions	***
#include	“Buttons.agc”

142 Hands On AGK BASIC: Iteration

rem	***	Set	up	buttons	***
SetUpButtons()
rem	***	Set	total	to	zero	***
total	=	0
rem	***	Read	and	sum	6	numbers	***
for	c	=	1	to	6
				Print(“Enter	number”)
				Sync()
				Sleep(1000)
				no	=	GetButtonEntry()
				total	=	total	+	no
next	c
PrintC(“Total	=	“)
Print(total)
Sync()
do
loop

Activity 5.13
Code for Shades:

rem	***	Display	all	shades	of	red	***
rem	***	Set	red	intensity	to	***
rem	***	range	from	0	to	255
for	red	=	0	to	255
				SetClearColor(red,0,0)
				Sync()
				Sleep(20)
next	red
do

loop

Activity 5.14
Code for Smallest:

rem	***	Find	Smallest	Number	Entered	***

rem	***	Include	Button	functions	***
#include		“Buttons.agc”

rem	***	Display	buttons	***
SetUpButtons()
rem	***	Get	first	number	***
Print(“Enter	number	“)
Sync()
Sleep(2000)
no	=	GetButtonEntry()
rem	***	Set	smallest	to	first	number	***
smallest	=	no
rem	***	FOR	4	times	DO	***
for	c	=	1	to	4
				rem	***	Get	next	number	***
				Print(“Enter	number	“)
				Sync()
				Sleep(1000)
				no	=	GetButtonEntry()
				rem	***	If	number	smaller,	record	it	***
				if	no	<	smallest
								smallest	=	no
 endif
next	c
rem	***	Display	smallest	value	***
PrintC(“Smallest	value	entered	was	“)
Print(smallest)
Sync()
do
loop

Modified version of Smallest:
rem	***	Find	Largest	Number	Entered	***

rem	***	Include	Button	functions	***
#include		“Buttons.agc”

rem	***	Display	buttons	***
SetUpButtons()
rem	***	Get	first	number	***
Print(“Enter	number	“)
Sync()
Sleep(2000)
no	=	GetButtonEntry()
rem	***	Set	largest	to	first	number	***
largest	=	no
rem	***	FOR	4	times	DO	***
for	c	=	1	to	4

				rem	***	Get	next	number	***
				Print(“Enter	number	“)
				Sync()
				Sleep(1000)
				no	=	GetButtonEntry()
				rem	***	If	number	larger,	record	it	***
				if	no	>	largest
								largest	=	no
 endif
next	c
rem	***	Display	largest	value	***
PrintC(“Largest	value	entered	was	“)
Print(largest)
Sync()
do

loop

Activity 5.15
Modified version of SumDice:

rem	***	Total	dice	throws	***

rem	***	set	total	to	zero	***
total	=	0
rem	***	for	5	times	do	***
for	c	=	1	to	5
			rem	***	Display	roll	number	***
	 PrintC(“Roll	number	“)
	 Print(c)
	 Sync()
	 Sleep(1000)
	 rem	***	throw	both	dice	***
	 dice1	=	Random(1,6)
	 dice2	=	Random(1,6)
	 rem	***	display	throw	number	and	dice	values	***
	 PrintC(“dice	1	:	“)
	 PrintC(dice1)
	 PrintC(“										dice	2	:	“)
	 Print(dice2)
	 Sync()
	 Sleep(2000)
	 rem	***	if	either	dice	is	a	1	then	quit	loop	***
	 if	dice1	=	1	and	dice2	=	1
	 	 exit
 endif
	 rem	***	add	dice	throws	to	total	***
	 total	=	total	+	dicel	+	dice2
next	c
rem	***	display	final	score	***
PrintC(“Your	final	score	was	:	“)
Print(total)
Sync()
do
loop

Activity 5.16
rem	***	Display	average	of	6	scores	***

rem	***	Include	Button	functions	***
#include	“Buttons.agc”

rem	***	Display	buttons	***
SetUpButtons()
rem	***	Set	total	to	zero	***
total	=	0
rem	***	FOR	6	times	DO	***
for	c	=	1	to	6
				rem	***	Get	valid	score	***
				Print(“Enter	score	“)
				Sync()
				Sleep(2000)
				score	=	GetButtonEntry()
				while	score	<	0	or	score	>	100
								Print(“Score	must	lie	between	0	and	100”)
								Print(“Enter	score	“)
								Sync()
								Sleep(2000)
								score	=	GetButtonEntry()
 endwhile
				rem	***	Add	score	to	total	***
				total	=	total	+	score
next	c
rem	***	Calculate	average	***
average	=	total/6
rem	***	Display	average	***

Hands On AGK BASIC: Iteration 143

PrintC(“Average	=	“)
Print(average)
Sync()
do

loop

Activity 5.17
No solution required.

Activity 5.18
The output would be:

 -2 0
 -2 1
 -2 2
 -2 3
 -1 0
 -1 1
 -1 2
 -1 3
 0 0
 0 1
 0 2
 0 3
 1 0
 1 1
 1 2
 1 3

On the computer screen, all output would occur on the same
line with a slight delay between each set of values.

Activity 5.19
The code contains a while loop so we need to create three
sets of test data to allow zero, one and more than one
iteration of the loop.

Possible test values are:
 num Expected Results
 (for average)

Test 1 0 0
Test 2 8,0 8
Test 3 12,6,0 9

Code for Average:

rem	***	Calculate	average	of	values	entered	***

rem	***	Include	Button	functions	***
#include	“Buttons.agc”

rem	***	Set	up	buttons	***
SetUpButtons()

total	=	0
count	=	0
Print(“Enter	number	(0	to	stop)”)
Sync()
Sleep(2000)
num	=	GetButtonEntry()
while	num	<>	0
	 total	=	total	+	num
	 count	=	count	+	1
	 Print(“Enter	number	(0	to	stop)”)
	 Sync()
	 Sleep(2000)
	 num	=	GetButtonEntry()
endwhile
average	=	total	/	count
PrintC(“Average	is	“)
Print(average)
Sync()
do
loop

When we run the program with the test data, it turns out that
all the results are as we expected.

However, this is more by good fortune than the fact that the
code is foolproof.

The line
	 average	=	total/count

would, in most languages, cause the program to crash when
we did the first test. This is because count would have the
value zero and hence the calculation would cause a division
by zero error. However, as we saw back in Chapter 3, AGK
BASIC returns zero when division by zero is performed - just
the answer we want!

However, you really should guard against this problem. For
example, if you were to rewrite your code in C++, then that
division by zero calculation would cause a crash.

We can solve the problem by changing the code to
	 if	count	=	0
	 	 average	=	0
	 else
	 	 average	=	total	/	count
 endif

144 Hands On AGK BASIC: Iteration

Hands On AGK BASIC: Resources - A First Look 145

In this Chapter:

T Introducing Images

T Introducting Sprites

T Sound

T Music

T Introducing Text

T Introducing User Interaction

Resources - A First Look

Hands On AGK BASIC: Resources - A First Look 146

Resources - A First Look

Introduction
Any additional visual components or files that we make use of within an AGK project
are known as resources. Typical resources are: images, sounds, music, sprites,
buttons and even text.

Every resource is assigned an integer ID value. No two resources of the same type
may have the same ID. However, resources of different types may share the same ID.
So, it’s okay for an image, say, to have an ID of 1 and a sound resource to also have
an ID of 1.

A resource’s ID can be chosen by the programmer or automatically by the program
itself.

Any separate files required by a resource must be copied into the project’s media
folder.

Images
Image Formats

The type of image you create using your camera or download from the web is a
bitmap image. A bitmap image is constructed from a series of coloured dots known
as pixels. You have probably come across this term before, since the resolution of any
screen or camera is usually quoted in pixels. For example, the Apple iPad 1 & 2
screen has a resolution of 768 pixels by 1024 pixels.

The more pixels an image contains, the more detail it will hold. Therefore, we often
talk about the resolution of an image as being its size in pixels. Many cameras can
easily obtain image resolutions of over 4000 by 3000 pixels.

The other simple way to create a bitmap image is to use a paint package such as
Adobe Photoshop or even the modest Paint program included with Microsoft
Windows.

Many painting packages can resize images. This allows you to shrink or expand the
number of pixels in an image. Decreasing the size of an image means that some of
the details that were in the original image will be lost. On the other hand, increasing
an image’s size cannot create detail that was not there in the original and can often
make the enlarged image look fuzzy and slightly out of focus.

Image files can be stored in many formats. Some formats will save an exact copy of
the original image (known as lossless formats) but others lose a small amount of the
original’s detail (lossy formats). This second option doesn’t sound like a great idea,
but the reason such formats are popular - in fact, the most widely used of all - is
because these lossy formats use compression techniques to create much smaller files.
A lossy image can be stored in a file that is only 10% or even 5% of the lossless file
equivalent.

AGK BASIC recognises three image file formats. These are: BMP, PNG and JPG.
BMP and PNG are lossless file formats and so should only be used for relatively
small images; perhaps character figures and other visual components of a game. JPG

147 Hands On AGK BASIC: Resources - A First Look

is a lossy format and is ideal for use with photographs and larger graphics. The degree
of compression used when saving a file in JPG format can be specified. Less
compression means a better quality image but a larger file.

Image Transparency

Images are always rectangular in shape. So how do you create a game that displays
a football or a spaceship or anything else that isn’t rectangular? All we need to do is
make part of the image transparent. In AGK, there are two methods of achieving
transparent areas within a displayed image. One option is to make black areas within
an image invisible on the screen (see FIG-6.1).

However, there are three things to be careful of when using this option:

± Only pixels which are truly black (red, green and blue intensities = 0) are made
invisible. Part of the image which look black to you may not be completely
black and therefore will not appear transparent when displayed.

± You have to make sure that no part of the image that should remain visible
contains black pixels.

± A final, and perhaps more subtle problem, is caused by anti-aliasing.

Anti-aliasing is an attempt by image manipulation software to blend the edges of
objects within an image in such a way as to give a smooth transition from one object
to the next. This helps hide the pixelated nature of a digital image and in most cases
improves the image. However, it can cause havoc when trying to create a transparent
background. When anti-aliasing has been used in an image, the transition from visible
area to the black invisible area will have a halo of near-black pixels and this halo will
be all too visible when your image appears on screen (see FIG-6.2).

FIG-6.1

Black Pixel
Transparency Black areas

within an image
are...

Original Image Screen Display

...transparent
when displayed on

the screen

FIG-6.2

Anti-aliasing

Halo of
dark pixels caused

by anti-aliasing

Hands On AGK BASIC: Resources - A First Look 148

To avoid the halo problem, make sure anti-aliasing is switched off when you are
creating an image. Using black pixels to produce transparency does have its
limitations. For example, it does not allow us to create semi-transparent elements
within an image.

A second option for creating transparency is to include an alpha channel in the
image itself.

We already know that an image is constructed from a sequence of pixels and that the
colour of each pixel is determined by the intensity of its red, green and blue,
components. These three colour components are sometimes referred to as the image’s
colour channels. Some image formats allow you to add a fourth channel known as
the alpha channel. This channel is a grey-scaled overlay of the image surface and
determines the transparency setting for every pixel within the image. In an area
where the alpha channel is black, the image is fully transparent; where the alpha
channel displays white, the image is opaque; and where the alpha channel is grey, the
image is translucent. The shade of grey determines the degree of translucency.

FIG-6.3 shows an image, its alpha channel and how that image looks when displayed
on screen.

The transparency is more obvious if we place a second image behind the original one
(see FIG-6.4).

BMP and PNG files both allow alpha channel information to be stored (though in
slightly different ways).

FIG-6.3

An Image with an
Alpha Channel

Original Alpha Channel Displayed Image

The alpha
channel determines

transparency

FIG-6.4

Alpha Channel
Transparency

The background
grid shows through
the transparent
parts of Image 1.

Image 1
(with alpha channel)

Image 2

Display

JPG files cannot have an
alpha channel.

149 Hands On AGK BASIC: Resources - A First Look

Images in AGK
LoadImage()

If we want to display one or more images in a game, we need to start by copying the
files containing the images into the AGK project’s media folder. Next we need to
issue a command to load each image into the game itself. This is done using the
LoadImage() statement. There are two variations on this statement (see FIG-6.5).

where:

 id is an integer value specifying the ID to be assigned to the image.
 This value must be 1 or above. No two images may have the
 same ID value.

 sfile is a string giving the name of the file containing the image.
 The file must be in the media folder for this project.

 iflag is an integer (0 or 1) which is used to determine how transparency
 is handled when the image is displayed. If iflag has the value
 zero, then the alpha channel of the image sets the transparency;
 if the value is 1, then the alpha channel is ignored and all black
 pixels within the image are made invisible. A value of zero is
 assumed if this parameter is omitted.

Using the first version of this command, you need to specify the ID being assigned
to the image for the duration of the program. For example, if the first image to be
loaded is called “ball.bmp”, then we would load the image using the statement

 LoadImage(1,”ball.bmp”,1)

This will assign the ID value of 1 to the image and black pixels will be invisible.
Alternatively, we could use version 2 of the statement and write

 id = LoadImage(“ball.bmp”,1)

This time the program decides on the ID to be assigned, but IDs are assigned in
ascending order starting at 10001, so, as long as this is the first image to be loaded it
will be assigned an ID of 10001.

Using the second version guarantees that we will not attempt to assign the same ID
to two different images (which would, in any case, produce an error).

CreateSprite()

Although all images need to be loaded before they can be used, in order to see an
image on the screen, you’ll need to load that image into a sprite. To do this you need
to create a sprite and specify the image to be displayed by the sprite. This is done
using the CreateSprite() statement (see FIG-6.6).

FIG-6.5

LoadImage() ()

integer

LoadImage id
Version 1

, sfile iflag,[]
Version 2

()LoadImage sfile iflag,[]

Hands On AGK BASIC: Resources - A First Look 150

where:

 id is an integer value specifying the ID to be assigned to the sprite.
 This value must be 1 or above. No two sprites may have the
 same ID value.

 imageId is an integer value specifying the ID of the image being copied
 into the sprite. This image must previously have been loaded
 using a LoadImage() statement. Use 0 to create a white sprite
 without an image.

Like the two versions of LoadImage(), the two options in the CreateSprite()
statement allow you to choose between deciding on the ID number yourself (version
1) or letting the program decide for you (version 2 - assigned values start at 10001).

In the example we are about to create, we will assign our own ID numbers since it
uses only a single image and a single sprite. So, to create a sprite showing the ball
image, we would first load the image and then create the sprite:

 LoadImage(1,”ball.bmp”,1)
 CreateSprite(1,1)

Notice that the image and sprite have both been assigned an ID of 1. This is not a
problem since they are two different types of objects (image and sprite). Only when
you assign the same ID to two objects of the same type do you cause an error. Now
we are ready to create a program to display our first image (see FIG-6.7).

AGK has a problem with sizing the image. Since we are working with a percentage-
based screen layout, it has no idea exactly how large to make the sprite. It handles
this by assuming the physical size of the image represents the percentage required.
The ball image is 64 pixels wide by 64 pixels high, so AGK assumes you want the

()

integer

CreateSprite id
Version 1

, imageId

Version 2

()CreateSprite imageId

FIG-6.6

CreateSprite()

FIG-6.7

Displaying a Sprite

When a sprite is first
created, its top left
corner is at position
(0,0) - the top left corner
of the app window.

rem *** First Sprite ***
rem *** Load image ***
LoadImage(1,”ball.bmp”,1)
rem *** Create sprite ***
CreateSprite(1,1)
Sync()
do
loop

Activity 6.1

Create a new project called FirstSprite. Compile the default code in order to
create the project’s media folder. From the files you downloaded to accompany
this book, go to the AGKDownloads/Chapter 6 folder and copy the file ball.
bmp to the project’s media folder.

Change the contents of main.agc to match that given in FIG-6.7. Run and save
the project. What is strange about the image?

At this stage we can
think of a sprite as
nothing more than an
image which appears
on the screen. But, as
we will discover later,
there are many sprite-
related commands which
allow us to do various
operations such as move,
rotate, resize and detect
sprite collisions.

151 Hands On AGK BASIC: Resources - A First Look

image to take up 64% of the width and 64% of the height of the app window.
Unfortunately, this is nowhere near the actual size we want.

SetSpriteSize()

The SetSpriteSize() statement allows use to specify the dimensions of a sprite. The
sizes are given as a percentage of the screen, or in virtual pixels, depending on the
option chosen when the program was created. The statement has the format shown in
FIG-6.8.

where:

 id is the integer value previously assigned as the ID of the sprite
 to be resized.

 fx is a real value giving the width required. This value is given as a
 percentage of the screen width or in virtual pixels as appropriate.

 fy is a real value giving the height required (percentage or virtual
 pixels).

So, if we wanted the ball sprite to occupy only 10% of the screen, we would use the
line:

 SetSpriteSize(1,10,10)

As you can see from Activity 6.2, making the sprite 10% in both directions works
only when the app window is square. Increasing the app window height also means
an increase in the height of the sprite and our ball is no longer circular.

To solve this problem, SetSpriteSize() allows you to set the actual size of one
dimension and use the value -1 for the other. When you choose this option, AGK
works out the second dimension automatically to ensure that the sprite retains its
original shape. For example, if we set the fx parameter to 10 and fy to -1 using the
line

 SetSpriteSize(1,10,-1)

the sprite will return to its round shape.

Of course, setting the fy to 10 and fx to -1 with

 SetSpriteSize(1,-1,10)

will still result in a round ball, but it will be larger since 10% of the app window’s
height is much greater than 10% of its width (see FIG-6.9).

FIG-6.8

SetSpriteSize()

()SetSpriteSize id fx fy

Activity 6.2

Modify FirstSprite by adding the SetSpriteSize() statement given above.
Run the program and see how this changes the image displayed.

Change the height setting in setup.agc to 1024. Rerun the program. How is the
sprite affected? Save your project.

Hands On AGK BASIC: Resources - A First Look 152

 The only problem now with our sprite app is that, since the app window background
is black, we really can’t see if the black areas of the sprite are, indeed, invisible.

SetSpritePosition()

An existing sprite can be moved to a new position on the screen using the
SetSpritePosition() statement which has the format shown in FIG-6.10.

where:

 id is the integer value previously assigned as the ID of the sprite
 to be moved.

 fx is a real value giving the new x-coordinate (percentage or virtual
 pixels).

 fy is a real value giving the new y-coordinate. Measured in virtual
 pixels or percentage.

By default, it is the top left corner of a sprite that is placed at the position specified.

Activity 6.3

Modify FirstSprite to use the -1 parameter in SetSpriteSize(). Try out both
options, making the width -1 on the first run and the height -1 on the second
run.

Save your project.

SetSpriteSize(1,-1,10)SetSpriteSize(1,10,-1)

10%
100%

100%

10%

FIG-6.9

How Sprite Size
Changes

Activity 6.4

Add a SetClearColor() statement to your FirstSprite program to create a
white background. (You’ll also need to add an extra Sync()statement.)

Are the black pixels within the ball image invisible?

Save your project.

FIG-6.10

SetSpritePosition() ()SetSpritePosition id , fx , fy

153 Hands On AGK BASIC: Resources - A First Look

By placing the SetSpritePosition() statement within a for loop and using the loop
counter as a parameter, we can get the sprite to travel across the window.

SetSpriteDepth()

The program in FIG-6.11 is an extension of your FirstSprite project and demonstrates
one sprite passing “behind” another.

Activity 6.5

In FirstSprite, add a two second delay and then move the sprite to the centre of
the app window. Test and save your project.

Activity 6.6

Remove your last modification from FirstSprite and replace it with the
following code:

 for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
 Sleep(50)
 next p

Test the new version of the project.

FIG-6.11

Demonstrating Sprite
Depth

rem *** Sprite Depth ***
rem *** Clear screen to white ***
SetClearColor(255,255,255)
Sync()
rem *** Load images ***
LoadImage(1,”ball.bmp”,1)
LoadImage(2,”poppy.bmp”,1)
rem *** Create ball sprite ***
CreateSprite(1,1)
SetSpriteSize(1,10,-1)
rem *** Create poppy sprite ***
CreateSprite(2,2)
SetSpriteSize(2,20,-1)
SetSpritePosition(2,50,50)
Sync()
rem *** Move sprite across the screen ***
for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
 Sleep(50)
next p
do
loop

Activity 6.7

Modify your FirstSprite project to match the code given in FIG-6.11.

Test and save your project.

Hands On AGK BASIC: Resources - A First Look 154

The ball passes “behind” the poppy because the ball sprite was created before the
poppy. If we had wanted the ball to pass over the poppy, then we could have achieved
this by having created the ball sprite after the poppy sprite. But another option is
available; we can adjust the depth of a sprite using the SetSpriteDepth() statement.
Sprite depth can be set to any value from 0 to 10000.

In original hand-drawn cartoons, the overall image is made up of a layer of transparent
acetates. Different elements of the picture were drawn on different acetates. Those
elements on the top-most acetate were at the “front” and those on the bottom acetate
were at the “back”. AGK depth settings are equivalent to those acetate layers: depth
0 is at the “front”; depth 10000 is at the “back”.

 The format of the SetSpriteDepth() statement is shown in FIG-6.12.

where:

 id is the integer value previously assigned as the ID of the sprite.

 idepth is an integer value giving the layer setting. A lower number will
 bring the sprite “forward” towards the top layer. This value can
 be in the range 0 to 10,000.

When a sprite is created, it is assigned a default layer of 10. Sprites on the same layer
have a depth determined by the order in which they were created (as we have already
seen).

GetSpriteDepth()

To determine the current depth of a sprite, use the GetSpriteDepth() statement (see
FIG-6.13).

where:

 id is the integer value previously assigned as the ID of the sprite.

CloneSprite()

You can make a copy of a sprite using the CloneSprite() statement. This will make
an exact copy of the sprite specified. The statement’s format is shown in FIG-6.14.

where:

 id is the integer value of the ID to be assigned to the new sprite.

FIG-6.12

SetSpriteDepth()

()SetSpriteDepth id , idepth

Activity 6.8

Modify FirstSprite, assigning the ball sprite to layer 9 immediately after its
creation. How does this affect the program’s display? Save your project.

FIG-6.13

GetSpriteDepth()

()GetSpriteDepthinteger id

FIG-6.14

CloneSprite()

()CloneSprite id , idToCopy

155 Hands On AGK BASIC: Resources - A First Look

 idToCopy is an integer value giving the ID of the existing sprite to be
 cloned.

Whatever characteristics have been set for the original sprite (size, transparency,
depth, etc.) will be duplicated in the clone.

SetSpriteVisible()

We can make a sprite invisible - and make it reappear - using the SetSpriteVisible()
statement which has the format shown in FIG-6.15.

where:

 id is the integer value previously assigned as the ID of the sprite.

 ivisible is an integer value (0 or 1) specifying that the sprite is to be
 hidden (0) or made visible (1).

DeleteSprite()

When a sprite is no longer required by a program, that sprite can be deleted. Although
deletion is not necessary, it does free up resources on the machine which can, in turn,
speed up your game. Sprites are deleted using the DeleteSprite() statement whose
format is shown in FIG-6.16.

where:

 id is an integer value giving the ID of the sprite to be deleted.

DeleteAllSprites()

If your program contains several sprites, they can all be deleted, using the
DeleteAllSprites() statement (see FIG-6.17).

Activity 6.9

Modify FirstSprite, making a copy of the poppy sprite and positioning it at
(20,20).

Assign the new sprite a depth setting of 8. What happens as the ball passes the
two poppies? Save your project.

FIG-6.15

SetSpriteVisible()

()SetSpriteVisible id , ivisible

Activity 6.10

Modify FirstSprite so that the two poppy sprites are hidden after the ball has
moved to the bottom of the screen. Save your project.

FIG-6.16

DeleteSprite()

(DeleteSprite id)

FIG-6.17

DeleteAllSprites() ()DeleteAllSprites

Hands On AGK BASIC: Resources - A First Look 156

DeleteImage()

When an image is no longer required by a sprite, or when the sprite using an image
has been deleted, then that image can be deleted, thereby freeing up further resources.
To delete an image we use the DeleteImage() statement (see FIG-6.18).

where:

 id is an integer value giving the ID of the image to be deleted.

Deleting a resource only deletes it from the computer’s memory; the actual file
containing the resource is not affected.

DeleteAllImages()

Rather than delete images individually, you can delete every loaded image using the
DeleteAllImages() statement (see FIG-6.19).

Of course, you should only call this statement when every image in the program is no
longer being used by other program elements such as a sprite.

There are many more sprite commands and these will be covered in later chapters.

Sound
Sound files, like image files, come in many different formats. And like those for
images, some formats are lossy, but have small file sizes, while others are lossless
with larger file sizes. The current version of AGK will handle only uncompressed
WAV sound files.

To play a sound, the file containing that sound must first be copied into the project’s
media folder. Within the program we can then load and play the file.

LoadSound()

Like images, sounds must be loaded before they can be used. This is done using the
LoadSound() statement (see FIG-6.20).

where:

 id is an integer value specifying the ID to be assigned to the sound
 file.

 sfile	 is a string giving the name of the file to be loaded. This must be
 a WAV file and must be stored in the project’s media folder.

FIG-6.18

DeleteImage() (DeleteImage id)

FIG-6.19

DeleteAllImages() ()DeleteAllImages

FIG-6.20

LoadSound() ()

integer

LoadSound id
Version 1

, sfile

Version 2

()LoadSound sfile

157 Hands On AGK BASIC: Resources - A First Look

In the first version of the statement the program chooses the ID number; in the second
version the ID value is automatically selected by AGK and returned by the statement.

PlaySound()

Once loaded, a sound file can be played using the PlaySound() statement (see FIG-
6.21).

where:

 id is an integer value specifying the ID previously assigned to the
 sound.

 ivol is an integer value (0 to 100) representing the volume setting.
 The default setting is 100.

 iloop is an integer value (0 or 1) which determines if the sound is to
 play continuously. If set to 0, the sound will play only once; if
 set to 1, the sound will be repeated. Zero is the default value.

 iprrty is an integer value which is designed to be used to set the sound’s
 priority. This option is currently not implemented.

StopSound()

When a sound is set to play only once, it will, obviously, stop when the end of the file
is reached, but if you want playing to stop prematurely, you can do so using the
StopSound()statement. This statement has the format shown in FIG-6.22.

where:

 id is an integer value giving the ID of the sound that is to be stopped.

DeleteSound()

When a sound resource is no longer required, it is best to delete that resource from
your program. This can be done using the DeleteSound() statement (see FIG-6.23
for format).

where:

 id is an integer value giving the ID of the sound that is to be deleted.

SetSoundSystemVolume()

Although the volume of a specific sound is set when that sound is first loaded and
cannot be adjusted later, the system volume can be adjusted at any time using the
SetSoundSystemVolume() statement which has the format shown in FIG-6.24.

Automatically assigned
ID values start at 1.

FIG-6.21

PlaySound() ()PlaySound id ,[ivol ,[iloop ,[iprrty]]]

Several sound files can
be played at the same
time.

FIG-6.22

StopSound()

(StopSound id)

FIG-6.23

DeleteSound() (DeleteSound id)

Hands On AGK BASIC: Resources - A First Look 158

where:

 ivol is an integer (0 to 100) giving the percentage volume adjustment.
 For example, 50 would give half volume, 100 would leave the
 volume unchanged.

GetSoundExists()

You can check that a sound with a specific ID value currently exists using
GetSoundExists() (see FIG-6.25).

where:

 id is an integer value giving the ID of the sound to be checked.

The statement will return 1 if a sound of the specified ID currently exists; otherwise
zero is returned.

GetSoundsPlaying()

We can also check the number of instances of a sound that are playing at the same
time. GetSoundsPlaying()returns the number of instances of a specified sound
currently in existence (see FIG-6.26).

where:

 id is an integer value giving the ID of the sound whose number of
 instances is to be returned.

GetSoundInstances()

The GetSoundsInstances()statement performs exactly the same purpose as
GetSoundsPlaying() and so the two statements are interchangeable. The statement’s
syntax is shown in FIG-6.27.

where:

 id is an integer value giving the ID of the sound whose number of
 instances is to be returned.

FIG-6.24

SetSoundSystemVolume()

(SetSoundSystemVolume ivol)

FIG-6.25

GetSoundExists()

(GetSoundExists id)integer

(GetSoundsPlaying id)integer
FIG-6.26

GetSoundsPlaying()

FIG-6.27

GetSoundInstances() (GetSoundInstances id)integer

Activity 6.11

Start a new project called Sounds. Compile the default code to create the media
folder. Copy the file J1to10.wav from the AGKDownloads/Chapter6 to the
project’s media folder.

159 Hands On AGK BASIC: Resources - A First Look

When the program plays a sound file it does not halt execution of the other statements
in your program while the sound is played. It merely passes the sound file details to
your sound card, leaves the sound card to deal with playing the file, and then gets on
with executing the other statements in your program.

We have seen in previous chapters that the Sleep() statement halts the program for
a specified time. However, since the sound file is being handled by the sound card,
any sounds already being played are not affected by the Sleep() statement.

Activity 6.11 (continued)

Recode the contents of main.agc to read:

 LoadSound(1,”J1to10.wav”)
 PlaySound(1)
 do
 loop

Make sure the sound is activated and the volume turned up on your computer.

Compile and run the program. Does the sound play? Save your project.

Activity 6.12

Modify the code in Sounds so that it displays the numbers 1 to 10 as the sound
file plays. The code for this is:
 LoadSound(1,”J1to10.wav”)
 PlaySound(1)
 for c = 1 to 10
 Print(c)
 Sync()
 Sleep(1000)
 next c
 do
 loop
Test the program. Does the sound stop when the Sleep(1000) statement is
executed? Save your project.

Activity 6.13

In this Activity we are going to examine what is required in order to have a
sound file played repeatedly.

Remove the for..next loop and its loop body from Sounds.
Change the line
 PlaySound(1)
to
 PlaySound(1,100,1)
so that the sound should play repeatedly at full volume. Run the program. Does
the sound play more than once?

Inside the do..loop add the line
 Sync()
How does this affect the playing of the sound file? Save your project.

Hands On AGK BASIC: Resources - A First Look 160

So the Sync() statement needs to be executed in order for the sound to play
continuously. This is because the Sync() statement does more than just update the
screen. It handles details about other things within the program including making
sure sound files are replayed when appropriate.

Music
Music files are handled separately from sound files and although some of the
commands for handling music look very similar to those for sounds, there are major
differences.

AGK currently plays only MP3, OGG Vorbis and ACC formatted music files.

LoadMusic()

The LoadMusic() statement loads a specified music file and assigns it an ID number.
The statement has the format shown in FIG-6.28.

where:

 id is an integer value specifying the ID to be assigned to the music
 file.

 sfile	 is a string giving the name of the file to be loaded, This must be
 an MP3, OGG Vorbis or AAC file and must be stored in the
 project’s media folder.

In the first version of the statement, the programmer chooses the ID number; in the
second version, the ID value is automatically selected by AGK and returned by the
statement.

PlayMusic()

Once loaded, a music file is played using the PlayMusic() statement (see FIG-6.29).

where:

 id is an integer value giving the ID of the music file to be played.

 iloop is an integer value (0 or 1) which determines if the music is to
 play continuously. If set to 0, the music will play only once; if
 set to 1, the music will be repeated. Zero is the default value.

 idStrt is an integer value giving the lowest ID of the list of music files
 to be played.

FIG-6.28

LoadMusic() ()

integer

LoadMusic id

Version 1

, sfile

Version 2

()LoadMusic sfile

Automatically assigned
ID values start at 1.

FIG-6.29

PlayMusic()

()PlayMusic id idStrtiloop idFin

Only one music file
can be playing at any
one time.

161 Hands On AGK BASIC: Resources - A First Look

 idFin is an integer value giving the highest ID of the list of music files
 to be played.

This command will play all or most of the MP3 files stored in the media folder
without explicitly specifying all the ID numbers. To stop this you need to use the
longest form of the command and state explicitly which file or group of files are to
be played.

The simplest version of this command is

 PlayMusic()

which will play the music file with the lowest ID. For example, if a program started
with the lines

 LoadMusic(1,“TrackA.mp3”)
 LoadMusic(2,”TrackB.mp3”)
 LoadMusic(3,”TrackC.mp3”)
 LoadMusic(4,”TrackD.mp3”)
 LoadMusic(5,”TrackE.mp3”)

and followed this with

 PlayMusic()

then TrackA would be played first and then all other tracks played in sequence.

 PlayMusic(2,0)

would play TrackB followed by TrackC, TrackD and TrackE. The tracks would be
played once only.

 PlayMusic(3,1)

would play TrackC, TrackD, and TrackE and then play all five tracks continuously.

 PlayMusic(1,1,3,5)

would play TrackA, TrackB then repeat TrackC, TrackD and TrackE continuously.

 PlayMusic(3,0,3,3)

would play TrackC once only.

Using this command also requires you to add a Sync() statement within the do..
loop structure.

These tracks would
have to be stored in the
project’s media folder.

Activity 6.14

For copyright reasons, no MP3 files are included in the downloads for this
book.

Start a new project called Music. Compile the default code to create the
project’s media folder. Copy three of your own MP3 files into the media folder.

Modify main.agc to load all three files but play only the last one. The file
should be played only once. Test and save your code.

Hands On AGK BASIC: Resources - A First Look 162

PauseMusic()

You can pause a playing MP3 file using the PauseMusic() statement. This has the
format shown in FIG-6.30.

Note that there is no need for an ID parameter since only one music file can be
playing at any instant.

ResumeMusic()

A paused MP3 file can be resumed from the point where it paused using the
ResumeMusic() statement (see FIG-6.31).

StopMusic()

To stop a music file completely use StopMusic() (see FIG-6.32).

DeleteMusic()

When a music resource is no longer required you can use the DeleteMusic()
statement to free up the memory occupied by the file (see FIG-6.33).

where:

 id is an integer value giving the ID of the music resource to be
 deleted from the program.

We can determine various characteristics about music files from several other music
statements.

GetMusicExists()

The GetMusicExists() statement returns 1 if a music resource of a specified ID
currently exists; otherwise zero is returned (see FIG-6.34).

where:

 id is an integer value giving the ID of the music resource to be
 checked.

SetMusicFileVolume()

You can set the volume of a specific music file using the SetMusicFileVolume() (see
FIG-6.35).

FIG-6.30

PauseMusic()

(PauseMusic)

FIG-6.31

ResumeMusic()

(ResumeMusic)

FIG-6.32

StopMusic()

(StopMusic)

FIG-6.33

DeleteMusic()

(DeleteMusic)id

FIG-6.34

GetMusicExists()

(GetMusicExists id)integer

FIG-6.35

SetMusicFileVolume() (SetMusicFileVolume ivol)id

163 Hands On AGK BASIC: Resources - A First Look

where:

 id is an integer value giving the ID of the music whose volume is
 to be changed.

 ivol is an integer giving the volume as a percentage of full volume
 (0 - silent; 100 - full volume).

SetMusicSystemVolume()

To set the volume for every music track, the SetMusicSystemVolume() statement can
be used (see FIG-6.36).

where:

 ivol is an integer giving the volume as a percentage of full volume
 (0 - silent; 100 - full volume).

Detecting User Interaction
Most programs react to the user clicking a mouse or touching a pressure-sensitive
screen. AGK uses three main commands to detect a mouse/screen press.

GetPointerPressed()

One of these commands is the GetPointerPressed() statement which has the format
shown in FIG-6.37.

The statement returns 1 immediately the press occurs. Before and after that instant,
zero is returned.

GetPointerReleased()

A complementary statement is GetPointerReleased() which returns 1 the instant
the mouse button is released, or the finger lifted from the screen. This statement has
the format shown in FIG-6.38.

GetPointerState()

This third statement returns 1 while the button or finger is being pressed down and
returns 0 when the button/finger is not pressed. Note this is different from the first
two statements which only return 1 for a single instant as the mouse/finger is pressed/
lifted. The GetPointerState() command has the format shown in FIG-6.39.

The code in FIG-6.40 demonstrates the use of the GetPointerPressed() and
GetPointerReleased() statements.

(SetMusicSystemVolume ivol)
FIG-6.36

SetMusicSystemVolume()

FIG-6.37

GetPointerPressed()

()GetPointerPressedinteger

FIG-6.38

GetPointerReleased()

()GetPointerReleasedinteger

FIG-6.39

GetPointerState()

()GetPointerStateinteger

Hands On AGK BASIC: Resources - A First Look 164

Notice that for the first time, the main code is within the do..loop structure which
loops continually while testing for the button/screen press.

If we are not interested in detecting the exact moment the button is pressed or
released, but want to know if the button/finger is currently pressed down/touching the
screen or up/not touching the screen, then the GetPointerState() command will be
more useful.

GetPointerX() and GetPointerY()

We can find out the exact position on the screen where a press has occurred using
GetPointerX() (which returns the x-coordinate) and GetPointerY() (which returns
the y-coordinate). The formats for these two statements are shown in FIG-6.41.

FIG-6.40

Using Pointer
Statements

Sync()
do
 rem *** Check for press ***
 if GetPointerPressed()=1
 Print(“Pressed”)
 endif
 rem *** Check for release ***
 if GetPointerReleased()=1
 Print(“Released”)
 endif
 Sync()
loop

Activity 6.15

Start a new project called, PressedFlower and change the code in main.agc to
match that given in FIG-6.40.

Test the program and check that you can see messages as you press and release
the mouse button. Save your project.

Activity 6.16

Modify the code in PressedFlower to read:
 Sync()
 do
 if GetPointerState()=1
 Print(“Pressed”)
 else
 Print(“Released”)
 endif
 Sync()
 loop
Test the new code. How do the messages that appear on the screen differ from
those displayed by the previous version of the program? Save your project.

FIG-6.41

GetPointerX()
GetPointerY()

()GetPointerXinteger

()GetPointerYinteger

165 Hands On AGK BASIC: Resources - A First Look

GetSpriteHit()

We can find out if a particular screen position is over a sprite using the GetSpriteHit()
command. This is useful for finding out if the user has, for example, clicked/pressed
on a sprite. The command’s format is shown in FIG-6.42.

where:

 fx, fy are real numbers giving the position within the app window to be
 tested. The values will represent percentages or virtual
 coordinates depending on the window setup.

If the location is over a sprite, the sprite ID is returned, otherwise zero is returned.

Text Resources
We’ve already seen how to display information on the screen using the Print()
statement, but its main limitation is that we cannot choose the exact position at which
the output is to appear. This will be a critical requirement for any game.

Activity 6.17

Modify the code in PressedFlower by removing the line
 Print(“Pressed”)
and replacing it with
 PrintC(GetPointerX())
 PrintC(“ “)
 Print(GetPointerY())

Test and save your project.

FIG-6.42

GetSpriteHit()

()GetSpriteHitinteger fx fy

Activity 6.18

Modify PressedFlower by removing all of the code within the do..loop
structure.

Add code to display a sprite showing poppy.bmp at the centre of the app
window (set the sprite’s width to 15%).

To hide the poppy when it is clicked on, change the code within the do..loop
structure to:
 if GetPointerPressed()=1
 x# = GetPointerX()
 y# = GetPointerY()
 hit = GetSpriteHit(x#,y#)
 if hit <> 0
 SetSpriteVisible(1,0)
 endif
 endif
 Sync()

Test and save your project.

Hands On AGK BASIC: Resources - A First Look 166

Luckily, AGK offers a second and more controlled way of creating textual output;
text resources. Just like images, sprites, sound, and music resources, text resources
are created and assigned a unique ID.

A few of the many statements available for manipulating text resources are described
here.

CreateText()

The CreateText() statement allows us to create a new text resource. The statement
has the format shown in FIG-6.43.

where:

 id is an integer value specifying the ID to be assigned to the text
 resource.

 string is a string containing the text to be held within the text resource.

Version 1 of the statement allows the programmer to select the resource ID; version
2 automatically assigns an ID and returns that ID.

For example, we could create a text resource containing the phrase Hello world,
assigning it an ID of 1 using the statement:

 CreateText(1, “Hello world”)

SetTextColor()

We can select the color and transparency of the text using the SetTextColor()
statement (see FIG-6.44).

where:

 id is an integer value specifying the ID of the text resource whose
 colour is to be set.

 ired is an integer value specifying the intensity of the red component
 of the colour. Range 0 to 255.

 igreen is an integer value specifying the intensity of the green component
 of the colour. Range 0 to 255.

 iblue is an integer value specifying the intensity of the blue component
 of the colour. Range 0 to 255.

 Ë Text resources
use the same
character images as
Print() to form the
displayed text.

FIG-6.43

CreateText() ()

integer

id

Version 1

, string

Version 2

()CreateText string

CreateText

FIG-6.44

SetTextColor()

()SetTextColor id , ired , igreen , iblue itrans,

The default colour
for a text resource is
white.

167 Hands On AGK BASIC: Resources - A First Look

 itrans is an integer value specifying the opaqueness of the text.
 Range 0 (invisible) to 255 (fully opaque).

For example, if we have already created a text resource with an ID of 1, then we can
display that text in opaque black using the line:

 SetTextColor(1,0,0,0,255)

SetTextPosition()

By default, text will appear in the top left corner of the app window. To position it
elsewhere we need to use the SetTextPosition() statement which has the format
shown in FIG-6.45).

where:

 id is the integer value previously assigned as the ID of the text
 to be moved.

 x is a real value giving the new x-coordinate. This will be in virtual
 pixels or percentage depending on the coordinate system defined
 when the app window was created.

 y is a real value giving the new y-coordinate measured in virtual
 pixels or percentage.

We could place text resource 1 at the centre of the app window using the statement:

 SetTextPosition(1,50,50)

The position (50,50) refers to the top left part of the text (see FIG-6.46).

SetTextSize()

The size of the text can be adjusted using the SetTextSize() statement (see FIG-
6.47).

FIG-6.45

SetTextPosition() ()SetTextPosition id , x , y

FIG-6.46

Positioning a Text
Resource

Hello world

50%

50%

FIG-6.47

SetTextSize() ()SetTextSize id , fsize

Hands On AGK BASIC: Resources - A First Look 168

where:

 id is the integer value previously assigned as the ID of the text
 to be resized.

 fsize is a real value specifying the height of the characters within the
 text. This is measured in percentage or virtual pixels depending
 on the setup. The width is calculated automatically.

The default size for all text output is 4. Remember also that the larger the text
becomes, the more obvious the limitations of the images from which it is derived.

We could change the size of the text displayed by text resource 1 from the default 4
to 6 using the statement:

 SetTextSize(1,6)

SetTextString()

The actual text contained within a text resource can be changed using the
SetTextString() statement (see FIG-6.48).

where:

 id is the integer value previously assigned as the ID of the text
 resource whose text is to be changed.

 string is the new string to be assigned to the text resource.

SetTextVisible()

You can hide a text resource or make it reappear using the SetTextVisible()
statement (see FIG-6.49).

where:

 id is the integer value previously assigned as the ID of the text
 resource to be operated on.

 ivisible is an integer value (0 or 1) used to hide or display the text.
 (0 - hide ; 1 - show)

DeleteText()

When a text resource is no longer required, it should be deleted, thereby freeing up
memory resources. This is done using the DeleteText() statement (see FIG-6.50).

where:

FIG-6.48

SetTextString() ()SetTextString id , string

FIG-6.49

SetTextVisible() ()SetTextVisible id ivisible

FIG-6.50

DeleteText() ()idDeleteText

169 Hands On AGK BASIC: Resources - A First Look

 id is an integer value giving the ID of the text resource to be
 deleted from the program.

DeleteAllText()

If your program contains several text resources and you wish to remove all of them,
use DeleteAllText() (see FIG-6.51).

Using a Text Resource

The program below demonstrates most of the text resource statements we have
covered here. The purpose of the code is to display a sequence of dots. Starting with
one dot and increasing to 10 before starting again at one dot. This sequence is repeated
five times before the program stops. A simple animation such as this might be used
to indicate to the user that the program is busy.

The program’s logic can be described in structured English as:

Create empty text resource
Set text colour
Set text size
Set text position
FOR 5 times DO
 Create empty string
 FOR dots = 1 TO 10 DO
 Add dot to string
 Place string in text resource
 Wait 200 msecs
 ENDFOR
 Empty text resource
 Wait 1 sec
ENDFOR
Delete text resource

The code for the program is shown in FIG-6.52.

FIG-6.51

DeleteAllText() ()DeleteAllText

FIG-6.52

Using a Text Resource

rem *** Text Resource demo ***

rem *** Create empty string ***
CreateText(1,””)
rem *** Set resource attributes ***
SetTextPosition(1,15,30)
SetTextColor(1,250,250,0,255)
SetTextSize(1,10)
rem *** FOR 5 times DO ***
for c = 1 to 5
 rem *** Empty string ***
 text$ = “”
 for dots = 1 to 10
 rem *** Add dot to string ***
 text$ = text$+”.”
 rem *** Place string in text resource ***
 SetTextString(1,text$)
 Sync()
 rem *** Wait 200 msecs ***
 Sleep(200)
 next dots

Hands On AGK BASIC: Resources - A First Look 170

Later
This chapter has covered all of the statements available for manipulating sound and
music resources. However, there are many other commands that can be used with
images, sprites, text and user input which are not covered here. These will be
explained in later chapters.

Summary
± Resources is the name given to other elements added to a project. These can be

images, sounds, music, sprites, virtual buttons, or text.

± A resource needs to be created and assigned an ID before it can be used.

± No two resources of the same type may be assigned the same ID number.

± Resources of different types may have identical ID numbers.

± As a general rule, resources should be deleted when no longer required.

± Files containing resources must be stored in the project’s media folder.

± Most images are constructed from colour dots known as pixels.

± An image constructed from pixels is known as a bitmap image.

± Bitmap images can be stored in many different formats.

± Lossless formats save an exact copy of an image but create large files.

± Lossy formats save a degraded copy of the image but create smaller files.

± AGK can handle three bitmap formats: BMP, PNG, and JPG.

± BMP and PNG are lossless file formats; JPG is a lossy file format.

± Images can contain transparent elements.

± Transparency can be achieved in one of two ways: by making all black pixels

FIG-6.52
(continued)

Using a Text Resource

 rem *** Empty text resource ***
 SetTextString(1,””)
 Sync()
 rem *** Wait one second ***
 Sleep(1000)
next c
rem *** Delete resource ***
DeleteText(1)
Sync()
do
loop

Activity 6.19

Start a new project called UsingText and modify the code in main.agc to match
that given in FIG-6.52. Test the program.

Modify the code to use the underscore character (_) instead of the full stop.

Test and save your project.

171 Hands On AGK BASIC: Resources - A First Look

invisible or by adding an alpha channel to the image.

± Alpha channels allow degrees of translucency.

± When creating an image in which black elements are to be made invisible
make sure that the image has not been created using anti-aliasing.

± Anti-aliasing can cause problems around the edges of objects within an image.

± Images need to be loaded into AGK and given a unique ID number.

± To display an image on the screen it must first be loaded into a sprite.

± Using the default setup, screen distances are given in percentage terms and
sprites use the pixel size of the image it contains as a percentage value when
determining the size of the image.

± Sprites can be resized, moved, and made invisible.

± Sprites can be placed on different layers.

± There are 10,001 layers numbered 0 to 10,000.

± Layer 0 is the top layer; layer 10,000 is the bottom layer.

± A sprite placed on a higher layer will pass in front of a sprite placed on a lower
layer.

± A sprite can be cloned.

± A sprite can be made invisible.

± Deleting a sprite frees up the resources it requires.

± Sound files must be in uncompressed WAV format.

± A sound can be set to play one time only or repeatedly.

± The volume of an individual sound can be set only when playing starts.

± The overall system volume can be modified at any time.

± Music files must be in MP3 OGG Vorbis or AAC formats.

± By default, all music files are played once when a PlayMusic() command is
issued.

± Basic user interaction allows us to detect a screen touch or mouse button press.

± It is possible to detect when:
 the mouse button/screen is first pressed
 the mouse button/screen is first released
 the current state of the mouse button/screen - pressed or unpressed.

± We can detect if a mouse/screen press occurs over a sprite.

± Using a text resource allows us to control attributes of a string.

± The string within a text resource can be modified, resized, positioned,
coloured, and made transparent.

Hands On AGK BASIC: Resources - A First Look 172

Solutions
Activity 6.1

Although the image is only 64 x 64 pixels it appears much
larger within the app window.

Activity 6.2
Modified FirstSprite:

rem *** First Sprite ***

rem *** Load image ***
LoadImage(1,”ball.bmp”,1)
rem *** Create sprite ***
CreateSprite(1,1)
rem *** Resize sprite ***
SetSpriteSize(1,10,10)
Sync()
do
loop

The sprite now occupies 10% of the width and height of the
app window. Because the app window is square, this means
that the ball is perfectly round.

To modify the app window height, the height line in setup.
agc needs to changed to

 height=1024

When the height of the app window is changed, 10% of the
height is much greater than 10% of the width and so the ball
becomes stretched.

Activity 6.3
The line

 SetSpriteSize(1,10,10)

should first be changed to
 SetSpriteSize(1,-1,10)

The ball will be round but this time it is 10% of the height
and so, much larger than previously.

On the next run the line should now read
SetSpriteSize(1,10,-1)

which will return the ball to the size it had been before we
resized the app window (10% of the width).

Activity 6.4
Modified FirstSprite:

rem *** First Sprite ***

rem *** Clear screen to white ***
SetClearColor(255,255,255)
Sync()
rem *** Load image ***
LoadImage(1,”ball.bmp”,1)
rem *** Create sprite ***
CreateSprite(1,1)
rem *** Resize sprite ***
SetSpriteSize(1,10,-1)
Sync()
do
loop

The black pixels are invisible.

Activity 6.5
Modified FirstSprite:

rem *** First Sprite ***

rem *** Clear screen to white ***
SetClearColor(255,255,255)
Sync()
rem *** Load image ***
LoadImage(1,”ball.bmp”,1)
rem *** Create sprite ***
CreateSprite(1,1)
rem *** Resize sprite ***
SetSpriteSize(1,10,-1)
Sync()
rem *** Wait then reposition sprite ***
Sleep(2000)
SetSpritePosition(1,50,50)
Sync()
do
loop

Activity 6.6
Modified FirstSprite:

rem *** First Sprite ***

rem *** Clear screen to white ***
SetClearColor(255,255,255)
Sync()
rem *** Load image ***
LoadImage(1,”ball.bmp”,1)
rem *** Create sprite ***
CreateSprite(1,1)
rem *** Resize sprite ***
SetSpriteSize(1,10,-1)
Sync()
rem *** Move sprite across the screen ***
for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
 Sleep(50)
next p
do
loop

Activity 6.7
No solution required.

Activity 6.8
Modified FirstSprite:

rem *** Sprite Depth ***

rem *** Change screen to white ***
SetClearColor(255,255,255)
Sync()

rem *** Load images ***
LoadImage(1,”ball.bmp”,1)
LoadImage(2,”poppy.bmp”,1)
rem *** Create ball sprite ***
CreateSprite(1,1)
rem *** Bring sprite forward ***
SetSpriteDepth(1,9)
SetSpriteSize(1,10,-1)
rem *** Create poppy sprite ***
CreateSprite(2,2)
SetSpriteSize(2,20,-1)
SetSpritePosition(2,50,50)
Sync()
rem *** Move sprite across the screen ***
for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
 Sleep(50)
next p
do
loop

The ball passes in front of the poppy rather than behind it.

Activity 6.9
Modified FirstSprite:

173 Hands On AGK BASIC: Resources - A First Look

rem *** Sprite Depth ***

rem *** Change screen to white ***
SetClearColor(255,255,255)
Sync()

rem *** Load images ***
LoadImage(1,”ball.bmp”,1)
LoadImage(2,”poppy.bmp”,1)
rem *** Create ball sprite ***
CreateSprite(1,1)
rem *** Bring sprite forward ***
SetSpriteDepth(1,9)
SetSpriteSize(1,10,-1)
rem *** Create poppy sprites ***
CreateSprite(2,2)
SetSpriteSize(2,20,-1)
SetSpritePosition(2,50,50)
CloneSprite(3,2)
SetSpritePosition(2,20,20)
rem *** Move cloned sprite to layer 8 ***
SetSpriteDepth(3,8)
Sync()
rem *** Move sprite across the screen ***
for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
 Sleep(50)
next p
do
loop

The ball passes under the new poppy and over the original
poppy.

Activity 6.10
Modified FirstSprite:

rem *** Sprite Hide ***

rem *** Change screen to white ***
SetClearColor(255,255,255)
Sync()
rem *** Load images ***
LoadImage(1,”ball.bmp”,1)
LoadImage(2,”poppy.bmp”,1)
rem *** Create ball sprite ***
CreateSprite(1,1)
rem *** Bring sprite forward ***
SetSpriteDepth(1,9)
SetSpriteSize(1,10,-1)
rem *** Create poppy sprites ***
CreateSprite(2,2)
SetSpriteSize(2,20,-1)
SetSpritePosition(2,50,50)
CloneSprite(3,2)
SetSpritePosition(2,20,20)
rem *** Move cloned sprite to layer 8 ***
SetSpriteDepth(3,8)
Sync()
rem *** Move sprite across the screen ***
for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
 Sleep(50)
next p
rem *** Hide poppies ***
SetSpriteVisible(2,0)
SetSpriteVisible(3,0)
Sync()
do
loop

Activity 6.11
The sound file J1to10.wav should play if everything is set up
properly.

The sound file voices the numbers 1 to 10 in Japanese.

Activity 6.12
The text should be in sync with the spoken words. Although
the speaker pauses, the sound plays continuously even while
the Sleep() statement is being executed.

Activity 6.13
Modified Sounds:

rem *** Play sound file ***
rem *** Load file ***
LoadSound(1,”J1to10.wav”)
rem *** Start playing file ***
PlaySound(1,100,1)
do
 Sync()
loop

Without the Sync()statement the file will play only once.

Activity 6.14
Code for Music:

rem *** Play music ***

rem *** Load music Files ***
LoadMusic(1,”TrackA.mp3”)
LoadMusic(2,”TrackB.mp3”)
LoadMusic(3,”TrackC.mp3”)
rem ** Play last track once ***
PlayMusic(3,0,3,3)
do
loop

Activity 6.15
The messages will appear briefly as the mouse button is
pressed and released.

Activity 6.16
The Pressed message remains visible while the mouse button
is down; the Released message remains visible while the
mouse button is up.

Activity 6.17
Modified PressedFlower:

Sync()
do
 if GetPointerState()=1
 PrintC(GetPointerX())
 PrintC(“ “)
 Print(GetPointerY())
 else
 Print(“Released”)
 endif
 Sync()
loop

Activity 6.18
Modified PressedFlower:

rem *** Load image ***
LoadImage(1,”poppy.bmp”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpritePosition(1,50,50)
SetSpriteSize(1,15,-1)
Sync()
do
 rem *** IF pointer pressed THEN ***
 if GetPointerPressed()=1
 rem *** Get its coordinates ***
 x# = GetPointerX()
 y# = GetPointerY()
 rem *** Check if coord over a sprite ***
 hit = GetSpriteHit(x#,y#)
 rem ***IF they are THEN hide sprite ***
 if hit <> 0
 SetSpriteVisible(1,0)
 endif
 endif
 Sync()
loop

Hands On AGK BASIC: Resources - A First Look 174

Activity 6.19
Modified UsingText:

rem *** Text Resources demo ***

rem *** Create empty string ***
CreateText(1,””)
rem *** Set resource attributes ***
SetTextPosition(1,15,30)
SetTextColor(1,250,250,0,255)
SetTextSize(1,10)
rem *** FOR 5 times DO ***
for c = 1 to 5
 rem *** Empty string ***
 text$ = “”
 for dots = 1 to 10
 rem *** Add underscore to string ***
 text$ = text$+”_”
 rem *** Place string in text resource ***
 SetTextString(1,text$)

 Sync()
 rem *** Wait 200 msecs ***
 Sleep(200)
 next dots
 rem *** Empty text resource ***
 SetTextString(1,””)
 Sync()
 rem *** Wait one second ***”
 Sleep(1000)
next c
rem *** Delete resource ***
DeleteText(1)
Sync()
do
loop

Hands On AGK BASIC : Spot the Difference Game 175

Spot the Difference Game

In this Chapter:

T Designing Screen Layouts

T Creating Sprite Images

T Adding Background Music

T Adding Sound Effects

T Changing Screen Orientation

T Game Testing

176 Hands On AGK BASIC: Spot the Difference Game

Game - Spot the Difference

Introduction
At last, we know enough AGK BASIC to create a first game. This game is a 21st
century update on the spot-the-difference game so beloved of many magazines. The
game shows two almost identical images and the challenge is to spot the differences
between the two images.

Game Design
When creating a game, there are many aspects of that game that we have to think
about before we start to write program code.

Since this is a computer game derived from an existing paper-based one, we don’t
have to worry about giving an in-depth description of the game, defining the rules or
stating how the game is won.

On the other hand, we still need to design the screen layout for the game. In fact, there
may be several layouts to design: a start-up splash screen, the main game screen, an
end-game screen and a credits screen detailing all those involved in the game
development. Not only the overall screen designs need to be considered, but also the
design of any individual sprites that may appear during the game play.

Any background music and sound effects not only have to be created, but when these
are to be played also needs to be specified.

User interaction methods and help options are other aspects that have to be considered.

Game Description

In our game, the player is presented with two almost identical images. The left-hand
image is the original image; the right-hand image has six modifications. The aim of
the game is for the player to click (press) on the areas of the right-hand image that
differ from those in the left-hand image.

The time elapsed since the start of the game is continually displayed.

The total time (in seconds) taken to find all six differences is displayed at the end of
the game.

Screen Layouts

This game will have four screen layouts: splash screen, game screen, finish screen
and credits screen.

You may want to create a rough drawing of the various screen layouts before going
on to create a more detailed design using a drawing or paint package.

Another important point at this stage is to consider the screen size and resolution of
the device(s) on which you want the game to run. Although AGK will allow your
game to run on almost any platform, you may still want to consider how the screen
size will affect the playability of your game. For example, 10 buttons along the right-
hand edge of an iPad looks fine, but try the same thing on an iPhone and only the

Hands On AGK BASIC: Spot the Difference Game 177

smallest of fingers will be able to use the buttons easily! And what about the near
future? If you create images which are 1024 x 768 pixels in size with the iPad 2 in
mind, what happens if a later iPad has a screen resolution of 2048 x 1536 pixels?
Your images may not look as good on that!

For this game, the screen layouts have been designed using Adobe Illustrator which
is a vector-drawing package. The great advantage of a vector-based image is that it
can be converted to a regular bitmap image giving the best possible quality for a
required resolution.

The splash screen (filename : AGKSplash.png) is shown in FIG-7.1.

This is a single PNG image. Note that it includes the name of the game, the company
name (Digital Skills), text stating that it was built using AGK and the AGK website
address. This last element is requested of you by The Game Creators if you are
going to publish your app, but is not compulsory.

The second image (see FIG-7.2) is of the game screen containing the two photographs
that form the game. This is the only image in landscape mode.

FIG-7.1

The Splash Screen pot the Difference

Made with AGK www.appgamekit.com

pot the Difference
Original Press on the 6 Di�erences

Time :
FIG-7.2

The Main Screen

178 Hands On AGK BASIC: Spot the Difference Game

The photos themselves are not separate entities but part of the single overall image.
Note that the top right corner leaves a gap where the time is to be displayed in real-
time.

The third image is the end screen which shows the total time taken in seconds (see
FIG-7.3).

Again, you can see that a space has been left for the actual number of seconds taken
to find all the differences. In addition, this screen also shows a separate button sprite
in the bottom-right which allows the user to view the credits screen if required.

The final screen (see FIG-7.4) shows the names of those involved in creating the
various aspects of the game: graphics, code, music. It also adds copyright details and
the AGK logo.

FIG-7.3

The End Screen

pot the Difference

You found all 6 di�erences in:

 seconds

Credits

FIG-7.4

The Credits Screen pot the Difference

Credits

Coding Alistair Stewart

Alistair Stewart
Music Emily Aurora Knight

©2011 Digital Skills

Graphics

Hands On AGK BASIC: Spot the Difference Game 179

A final visual component is the ring which appears around the differences in the
photograph when the player presses in the correct area. Although there will be six of
these, all make use of the same image (see FIG-7.5).

Other Resources

The only other resources used in the game are a sound effect, which plays when a
modified area of the photo is pressed for the first time, and music which plays in the
background while the game is running.

Overall Game Document

A useful document to produce is one showing not only the four screen layouts but
also giving details of any sounds or actions that can occur during each stage of the
game (see FIG-7.6).

FIG-7.5

The Circle Spite

FIG-7.6

The Overall Game
Document

pot the Difference

Made with AGK www.appgamekit.com

pot the Difference
Original Press on the 6 Di�erences

Time : xxx

pot the Difference

You found all 6 di�erences in:

xxx seconds

Credits

pot the Difference
Credits

Coding Alistair Stewart

Music Emily Aurora Knight

©2011 Digital Skills

Splash Screen

Main Screen

End Screen

Credits Screen

Music begins
Rings appear around
 correctly selected areas
Sound effect when ring
 appears
Time in seconds displayed

Music continues
Displays total time taken to
 find all differences

Music continues

time

All differences found

Credits button pressed

1

2

3

4

time

180 Hands On AGK BASIC: Spot the Difference Game

In the Main and End screen layouts X’s are used to indicate where text is to be
positioned, but the exact value of that text is unknown at the time of the design.

The Main screen is in landscape mode, while the other three screens are designed for
portrait mode. As a general rule, it is best not to switch between modes within a game,
but in this example it is interesting to see how the actual game play experience is
affected by the transition.

On the right of FIG-7.6 is a state-transition diagram. The numbered circles represent
the four different screen layouts. When each new screen appears during the game we
consider the game to have entered a new state. The lines between the circles represent
the moving from one state to another (i.e. from one screen to another). The text
beside the lines explains what causes the game to move from one state to another. So
we see that we move from the splash screen to the main game screen once an
unspecified amount of time has passed; we move from the main screen to the end
screen when all 6 differences have been found. Notice that we move to the credits
screen only if the Credits button is pressed and that we return from the credits screen
to the end screen after some time has elapsed.

For a more complex game, we might need to give greater detail for the design of each
screen and the individual sprites which may appear on that screen.

Copyright Issues

Of course, if you intend to create a game simply for the amusement of yourself and
your family, then making use of images you find on the internet, or adding your
favourite music to the game isn’t really a problem. However, should you wish to turn
your game into a commercial product then you must make sure all aspects of the
game are either copyright free, that you have permission from the copyright holder
to use the material, or that the material is entirely of your own creation.

Even if you created the photographs used in a game, you can still breach copyright.
For example, you can’t use someone’s image in a commercial product without their
approval. You can’t even use some buildings! If you were to use images taken in a
Disney park for example, you would probably have their lawyers on your doorstep
before you had made your first 10 sales!

Even if you record your own music, the melody itself may be copyrighted. Play and
write your own music to be on the safe side.

You mustn’t even borrow a one second sound effect without approval.

Don’t worry! There are websites which offer copyright free material - but check that
it can be used in a commercial product.

Finally, the images have no copyright problems, you have written and played the
music, created all the sound effects, so you must be safe now, right? Afraid not! If
you save your music in MP3 format, you’ll find another set of lawyers wanting to
have a few words. This time it won’t happen until you’ve sold 5000 copies of your
game but at that point you’ll have to hand over large sums of money for the privilege
of using the MP3 format. The way round this one is to use the OGG Vorbis format
for your music files. AGK will automatically look for a file in this format even when
your code specifies MP3.

And once you’ve made sure all your resources have no copyright issues, are you safe
at last to write your game? Well, not entirely. You can still be on the receiving end of

Hands On AGK BASIC: Spot the Difference Game 181

a legal communication if someone thinks you’ve ripped off their game idea or even
if your code makes use of some technique that has been copyrighted.

Have you given up all hope of creating a commercial game? Well, you can do a few
things to protect yourself from the unexpected legal challenge. One option is to set
up a limited company and publish your games through that (it’s really not too
complicated). Using this method, only your company can be sued if the worst should
happen - not you. So you won’t have to sell your home and flash new car to pay all
the legal claims that have arrived on the doorstep.

And perhaps the easiest option of all is to let The Game Creators publish your game
for you. Okay they are going to want 30%, but on the other hand they will test your
game, suggest any changes, market it for you, even add revenue-gathering adverts
and organise the cut-down free version and the paid-for full version. Chances are
you’ll sell more copies through them than you would do on your own and even after
giving them their cut, you’ll still make more money. And perhaps best of all, they are
legally responsible - not you. Now, on with the game ...

Game Logic

The next stage is to do a high-level structured English description of the game.

The first level should be kept short:

 1 Load resources
 2 Set up game screen
 3 Play game
 4 End game

More detail can be added to each of these using stepwise refinement:

 1 Load resources
 1.1 Load images
 1.2 Load sound
 1.3 Load music

 2 Set up game screen
 2.1 Start music
 2.2 Display Main screen
 2.3 Add circles over differences
 2.4 Hide circles

 3 Play game
 3.1 Start timer
 3.2 REPEAT
 3.3 IF user selected a difference THEN
 3.4 Show ring
 3.5 Play sound effect
 3.6 ENDIF
 3.7 Update time
 3.8 UNTIL all 6 differences selected
 3.9 Delete Main screen resources

 4 End game
 4.1 Show End screen
 4.2 Display time taken
 4.3 Display Credits button
 4.4 DO
 4.5 IF Credits button pressed THEN
 4.6 Show Credits screen for 5 seconds
 4.7 ENDIF
 4.8 LOOP

182 Hands On AGK BASIC: Spot the Difference Game

Game Code
The game code follows the logic given above. The first section loads the resources
but also includes comments on the overall program.

Structured English:

 Load resources

Code:

rem *************************************
rem * program : Spot the Difference *
rem * version : 1.0 *
rem * language : AGK BASIC v1.02 *
rem * date : 18 Aug 2011 *
rem * author : A. Stewart *
rem * platform : Ipad 1 *
rem *************************************

rem *** Load resources ***

rem *** Load images ***
main = LoadImage(“Main.jpg”)
finish = LoadImage(“End.jpg”)
credits = LoadImage(“Credits.jpg”)
ring = LoadImage(“Ring.png”,0)
button = LoadImage(“Button.bmp”,1)

rem *** Load sounds ***
ringsound = LoadSound(“Click.wav”)

rem *** Load music ***
backgroundmusic = LoadMusic(“Background.wav”)

Structured English:

 Set up game screen

Code:

rem *** Play music ***
PlayMusic(BackgroundMusic)

rem *** Show main screen ***
CreateSprite(1,main)
SetSpriteSize(1,100,100)

rem *** Load rings at image differences ***
CreateSprite(2,ring)
SetSpriteSize(2,-1,10)
SetSpritePosition(2,91,86)
CloneSprite(3,2)
SetSpritePosition(3,51.5,22)
CloneSprite(4,2)
SetSpritePosition(4,49,68)
CloneSprite(5,2)
SetSpritePosition(5,73,66)
CloneSprite(6,2)
SetSpritePosition(6,88.5,66)
CloneSprite(7,2)

Hands On AGK BASIC: Spot the Difference Game 183

SetSpritePosition(7,55.75,62.5)

rem *** Hide rings ***
for c = 2 to 7
 SetSpriteDepth(c,9)
 SetSpriteVisible(c,0)
next c
rem *** Update screen ***
Sync()

Structured English:

 Play game

Code:

rem *** Start timer ***
start = GetSeconds()
CreateText(1,Str(timetaken))
SetTextColor(1,0,0,0,255)
SetTextPosition(1,88,6)

rem *** Set count of differences found ***
found = 0
rem *** Get user clicks until all 6 differences found ***
repeat
 rem *** Check for clicked button ***
 pressed = GetPointerPressed()
 rem *** IF pressed, then check for sprite hit ***
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF clicked over hidden ring THEN
 if hit > 1 and hit <=7 and GetSpriteVisible(hit)=0
 rem *** Show ring ***
 SetSpriteVisible(hit,1)
 rem *** Play sound effect ***
 PlaySound(1)
 rem *** Add 1 to differences found ***
 found = found + 1
 endif
 endif
 rem *** Update time so far ***
 timetaken = GetSeconds() - start
 SetTextString(1,Str(timetaken))
 Sync()
until found = 6

rem *** Delete existing sprites ***
for c = 1 to 7
 DeleteSprite(c)
next c
rem *** Delete sound ***
DeleteSound(ringsound)
rem *** Delete text ***
DeleteText(1)

Note that we have had to add a found variable to keep count of how many differences
have been found.

184 Hands On AGK BASIC: Spot the Difference Game

Structured English:

End game

Code:

rem *** Show End screen... ***
CreateSprite(1,finish)
SetSpriteSize(1,100,100)
rem *** ... with button... ***
CreateSprite(2,button)
SetSpriteSize(2,15,-1)
SetSpritePosition(2,80,90)
rem *** ...and total time taken ***
CreateText(1,Str(timetaken))
SetTextColor(1,0,0,0,255)
SetTextPosition(1,36,31)
Sync()

rem *** Allow for Credits button press ***
do
 pressed = GetPointerPressed()
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF Credit button pressed THEN ***
 if hit = 2
 rem *** Show credits screen for 5 seconds ***
 CreateSprite(3,credits)
 SetSpriteSize(3,100,100)
 SetSpriteDepth(3,8)
 Sync()
 Sleep(5000)
 rem *** Remove Credits screen ***
 DeleteSprite(3)
 endif
 endif
 Sync()
loop

The Credits screen is displayed “on top of” the End screen, so when it is deleted after
5 seconds, the End screen reappears.

No program is likely to be perfect on the first attempt. Perhaps there will be problems
with the code: the logic may be wrong and this will be highlighted during testing.

Activity 7.1

Start a new project called SpotTheDifference and compile the default code so
that the project’s media folder is created.

From AGKDownloads/Chapter7, copy all the files in the folder to the project’s
media folder.

In setup.agc set width to 1024 and height to 768. This will create a landscape
oriented app window.

Modify main.agc to match the code given over the last few pages. Test and
save your code. What problems occurred?

Hands On AGK BASIC: Spot the Difference Game 185

The main problem with this first version of the game is caused by the fact that the
main screen is in landscape mode but the End and Credits screens are in portrait
mode. To get this to operate correctly, we need to change the screen orientation after
the game is complete.

SetDisplayAspect()

We can change the screen’s aspect ratio using the SetDisplayAspect() statement. In
this statement we set the ratio of the width to the height. At the start of a program, the
aspect ratio is determined by the values given for width and height in the setup.agc
file. When the program is running, we can change to portrait orientation (but without
changing the actual app window dimensions) using the line:

 SetDisplayAspect(768/1024.0)

 The SetDisplayAspect() statement has the format shown in FIG-7.7.

where:

 value is a real number giving the ratio of the width to the height.

An important aspect to check is the finer details of game playability. For example,
you may have noticed that when the last difference is found, the game jumps
immediately to the End screen without giving the player a chance to see the placing
of that final ring. We could solve this problem by getting the program to pause for
one second before the End screen appears.

A major problem with the game is that it has no way of stopping the player just
pressing anywhere at random in the hope of hitting on a difference merely by chance.
To stop this, we could introduce a maximum number of presses on the modified
image. Perhaps 7 - this would allow the player one wrong attempt. However,
introducing this change would mean that a new screen would have to be introduced

One of the numbers has
to be real so that the
calculation will produce a
real (not integer) result.

FIG-7.7

SetDisplayAspect()

SetDisplayAspect ()value

Activity 7.2

Modify your program so that, immediately after the resources of the main
screen have been deleted, the display ratio is set using the lines:

 rem *** Reset aspect ratio ***
 SetDisplayAspect(768.0/1024.0)

Retest and save your program.

Activity 7.3

Add the lines

 rem *** Wait before showing next screen ***
 Sleep(1000)

immediately after the DeleteText(1) line.

Test this modification and check that the player has time to see the final ring
in position before the End screen appears.

186 Hands On AGK BASIC: Spot the Difference Game

into the game, showing that the player had failed to complete the game. The Failed
image is shown in FIG-7.8. This page will also show the Credits button.

This modification to the program means that various parts of the game documentation
also need to be changed. The first of these is the overall game document showing the
various pages of the game and the state-transition diagram. The updated version of
this document is shown in FIG-7.9.

pot the Difference

Sorry!
You failed to spot
all the differences
after 7 attempts

FIG-7.8

The Fail Screen

FIG-7.9

The Updated Game
Document

pot the Difference

Made with AGK www.appgamekit.com

pot the Difference
Original Press on the 6 Di�erences

Time : xxx

pot the Difference

You found all 6 di�erences in:

xxx seconds

Credits

Splash Screen

Main Screen

Failed Screen

End Screen

Credits Screen

Music begins
Rings appear around
 correctly selected areas
Sound effect when ring
 appears
Time in seconds displayed

Music continues
Displays total time taken to
 find all differences

Music continues

time

All differences
found

Credits button
pressed

1

2

4

3

5
time and
all differences
found

pot the Difference
Credits

Coding Alistair Stewart

Alistair Stewart
Music Emily Aurora Knight

©2011 Digital Skills

Graphics

pot the Difference

Sorry!
You failed to spot
all the differences
after 7 attempts

Credits

Music continues
Displays failed message

7 presses and
all differences
not found

Credits button
pressed

time and
all differences
not found

Hands On AGK BASIC: Spot the Difference Game 187

Note how much the state-transition diagram has changed. Not only have the state
numbers assigned to the End and Credits screens changed, but the paths through the
structure have become much more complex. From the Main screen (2) we may go to
the End screen (4) if all 6 differences are found, but there is also an option to go to
the Fail screen (3) when 7 presses have been made without all 6 differences being
found. Both screens 3 and 4 have an option to show the Credits screen (5) for a set
time period before screen 3 or 4 reappears. When the paths through the game start to
become complex (as in this case), the state-transition diagram is a great way of
maintaining an easy-to-follow overview of the whole game process.

The next part of the documentation to be changed is the structured English. Level 1
remains unchanged but the breakdown of some of its steps need to be modified. The
updated logic is shown below with the changes highlighted.

 3 Play game
 3.1 Start timer
 3.2 REPEAT
 3.3 IF user selected a difference THEN
 3.4 Show ring
 3.5 Play sound effect
 3.6 ENDIF
 3.7 Update time
 3.8 UNTIL all 6 differences selected or 7 presses made
 3.9 Delete Main screen resources

 4 End game
 4.1 IF all 6 differences found THEN
 4.2 Show End screen
 4.3 Display time taken
 4.4 ELSE
 4.5 Show Fail screen
 4.6 ENDIF
 4.7 Display Credits button
 4.8 DO
 4.9 IF credits button pressed THEN
 4.10 Show Credits screen for 5 seconds
 4.11 ENDIF
 4.12 LOOP

Luckily, returning from the Credits screen to either the End or Failed screen isn’t a
problem since the Credits screen is shown on top of the previous screen. When the
Credits screen is removed the appropriate screen will reappear.

Activity 7.4

Update your project to implement the changes described above. This requires
the following steps:

• Copy the file Fail.jpg to the media folder.
• Add a line of code to load the image.
• The ID given to the image should be stored in the variable fail.
• Before the repeat..until loop, create a variable called presscount and
 set it to zero. Increment this variable every time pressed = 1 is true.
• Add or presscount = 7 to the condition in the until statement.
• Add the code for the new if statement described in the End Game structured
 English.

Check that the updated version of the program operates correctly by first
winning a game and then losing one. Check that the Credits screen shows
correctly in both cases. Resave your project.

Update the program’s
comments as
appropriate.

188 Hands On AGK BASIC: Spot the Difference Game

Solutions
Activity 7.1

The media folder should contain the following files:

 AGKSplash.png
 Background.wav
 Button.bmp
 Click.wav
 Credits.jpg
 End.jpg
 Main.jpg
 Ring.png

The dimension setting lines in setup.agc should be changed
to:

 width=1024
 height=768

The complete program code in main.agc is:
rem *************************************
rem * program : Spot the Difference *
rem * version : 1.0 *
rem * language : AGK BASIC v1.02 *
rem * date : 18 Aug 2011 *
rem * author : A. Stewart *
rem * platform : Ipad 1 *
rem *************************************

rem *** Load resources ***

rem *** Load images ***
main = LoadImage(“Main.jpg”)
finish = LoadImage(“End.jpg”)
credits = LoadImage(“Credits.jpg”)
ring = LoadImage(“Ring.png”,0)
button = LoadImage(“Button.bmp”,1)

rem *** Load sounds ***
ringsound = LoadSound(“Click.wav”)

rem *** Load music ***
backgroundmusic = LoadMusic(“Background.wav”)

rem *** Play music ***
PlayMusic(BackgroundMusic)

rem *** Show main screen ***
CreateSprite(1,main)
SetSpriteSize(1,100,100)

rem *** Load rings at image differences ***
CreateSprite(2,ring)
SetSpriteSize(2,-1,10)
SetSpritePosition(2,91,86)
CloneSprite(3,2)
SetSpritePosition(3,51.5,22)
CloneSprite(4,2)
SetSpritePosition(4,49,68)
CloneSprite(5,2)
SetSpritePosition(5,73,66)
CloneSprite(6,2)
SetSpritePosition(6,88.5,66)
CloneSprite(7,2)
SetSpritePosition(7,55.75,62.5)

rem *** Hide rings ***
for c = 2 to 7
 SetSpriteDepth(c,9)
 SetSpriteVisible(c,0)
next c
rem *** Update screen ***
Sync()

rem *** Start timer ***
start = GetSeconds()
CreateText(1,Str(timetaken))
SetTextColor(1,0,0,0,255)
SetTextPosition(1,88,6)

rem *** Set count of differences found ***
found = 0

rem *** Get user clicks until all 6 differences
found ***
repeat
 rem *** Check for clicked button ***
 pressed = GetPointerPressed()
 rem *** IF pressed, check for sprite hit ***
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF clicked over hidden ring THEN
 if hit > 1 and hit <=7 and
 GetSpriteVisible(hit)=0
 rem *** Show ring ***
 SetSpriteVisible(hit,1)
 rem *** Play sound effect ***
 PlaySound(1)
 rem *** Add 1 to differences found ***
 found = found + 1
 endif
 endif
 rem *** Update time so far ***
 timetaken = GetSeconds() - start
 SetTextString(1,Str(timetaken))
 Sync()
until found = 6

rem *** Delete existing sprites ***
for c = 1 to 7
 DeleteSprite(c)
next c
rem *** Delete sound ***
DeleteSound(ringsound)
rem *** Delete text ***
DeleteText(1)

rem *** Show End screen... ***
CreateSprite(1,finish)
SetSpriteSize(1,100,100)
rem *** ... with button... ***
CreateSprite(2,button)
SetSpriteSize(2,15,-1)
SetSpritePosition(2,80,90)
rem *** ...and total time taken ***
CreateText(1,Str(timetaken))
SetTextColor(1,0,0,0,255)
SetTextPosition(1,36,31)
Sync()

rem *** Allow for Credits button press ***
do
 pressed = GetPointerPressed()
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF Credit button pressed THEN ***
 if hit = 2
 rem *** Show credits for 5 secs ***
 CreateSprite(3,credits)
 SetSpriteSize(3,100,100)
 SetSpriteDepth(3,8)
 Sync()
 Sleep(5000)
 rem *** Remove Credits screen ***
 DeleteSprite(3)
 endif
 endif
 Sync()
loop

The main problem is that although the main screen appears
correctly, the End and Fail screens are not positioned
correctly.

Activity 7.2
The new lines (shown in bold) should be placed as follows:

rem *** Reset aspect ratio ***
SetDisplayAspect(768.0/1024.0)

rem *** Show End screen... ***
CreateSprite(1,finish)
SetSpriteSize(1,100,100)

This modification should ensure the End screen is correctly
sized.

Hands On AGK BASIC: Spot the Difference Game 189

Activity 7.3
The new lines (shown in bold) should be placed as follows:

DeleteText(1)

rem *** Wait before showing next screen ***
Sleep(1000)

rem *** Show End screen ***
CreateSprite(1,finish)

This gives a slight delay before the main screen disappears.

Activity 7.4
The file Fail.jpg should be added to the project’s media file.

The final program code should be:
rem *************************************
rem * program : Spot the Difference *
rem * version : 1.1 *
rem * language : AGK BASIC v1.02 *
rem * date : 18 Aug 2011 *
rem * author : A. Stewart *
rem * platform : Ipad 1 *
rem *************************************

rem *** Load resources ***

rem *** Load images ***
main = LoadImage(“Main.jpg”)
finish = LoadImage(“End.jpg”)
credits = LoadImage(“Credits.jpg”)
ring = LoadImage(“Ring.png”,0)
button = LoadImage(“Button.bmp”,1)
fail = LoadImage(“Fail.jpg”)

rem *** Load sounds ***
ringsound = LoadSound(“Click.wav”)

rem *** Load music ***
backgroundmusic = LoadMusic(“Background.wav”)

rem *** Play music ***
PlayMusic(BackgroundMusic)

rem *** Show main screen ***
CreateSprite(1,main)
SetSpriteSize(1,100,100)

rem *** Load rings at image differences ***
CreateSprite(2,ring)
SetSpriteSize(2,-1,10)
SetSpritePosition(2,91,86)
CloneSprite(3,2)
SetSpritePosition(3,51.5,22)
CloneSprite(4,2)
SetSpritePosition(4,49,68)
CloneSprite(5,2)
SetSpritePosition(5,73,66)
CloneSprite(6,2)
SetSpritePosition(6,88.5,66)
CloneSprite(7,2)
SetSpritePosition(7,55.75,62.5)

rem *** Hide rings ***
for c = 2 to 7
 SetSpriteDepth(c,9)
 SetSpriteVisible(c,0)
next c
rem *** Update screen ***
Sync()

rem *** Start timer ***
start = GetSeconds()
CreateText(1,Str(timetaken))
SetTextColor(1,0,0,0,255)
SetTextPosition(1,88,6)

rem *** Set count of differences found ***
found = 0
rem *** Number of clicks so far is zero ***
presscount = 0
rem *** Get user clicks until all 6 differences
found ***
repeat
 rem *** Check for clicked(pressed)
 pressed = GetPointerPressed()

 rem *** IF pressed, ***
 if pressed = 1
 rem *** Add 1 to clicks ***
 inc presscount
 rem *** Check for sprite hit ***
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF clicked over hidden ring THEN
 if hit > 1 and hit <=7 and
 GetSpriteVisible(hit)=0
 rem *** Show ring ***
 SetSpriteVisible(hit,1)
 rem *** Play sound effect ***
 PlaySound(1)
 rem *** Add 1 to differences found ***
 found = found + 1
 endif
 endif
 rem *** Update time so far ***
 timetaken = GetSeconds() - start
 SetTextString(1,Str(timetaken))
 Sync()
until found = 6 or presscount = 7

rem *** Delete existing sprites ***
for c = 1 to 7
 DeleteSprite(c)
next c
rem *** Delete sound ***
DeleteSound(ringsound)
rem *** Delete text ***
DeleteText(1)
rem *** Wait before showing next screen ***
Sleep(1000)
rem *** Reset aspect ratio ***
SetDisplayAspect(768.0/1024.0)
rem *** IF all differences found ***
if found = 6
 rem *** Show End screen... ***
 CreateSprite(1,finish)
 SetSpriteSize(1,100,100)
 rem *** ...and total time taken ***
 CreateText(1,Str(timetaken))
 SetTextColor(1,0,0,0,255)
 SetTextPosition(1,36,31)
else
 rem *** Show Fail screen... ***
 CreateSprite(1,fail)
 SetSpriteSize(1,100,100)
endif
Sync()
rem *** ... with button... ***
CreateSprite(2,button)
SetSpriteSize(2,15,-1)
SetSpritePosition(2,80,90)

rem *** Allow for Credits button press ***
do
 pressed = GetPointerPressed()
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF Credit button pressed THEN ***
 if hit = 2
 rem *** Show credits for 5 secs ***
 CreateSprite(3,credits)
 SetSpriteSize(3,100,100)
 SetSpriteDepth(3,8)
 Sync()
 Sleep(5000)
 rem *** Remove Credits screen ***
 DeleteSprite(3)
 endif
 endif
 Sync()
loop

190 Hands On AGK BASIC: Spot the Difference Game

Hands On AGK BASIC : User Defined Functions 191

User-Defined Functions

In this Chapter:

T Creating Functions

T gosub and return Statements

T Mini-Specs

T Modular Programming Concepts

T Parameter Passing

T Return Values

T Pre-Conditions

192 Hands On AGK BASIC: User-Defined Functions

Functions

Introduction
Look at the computer in front of you. Notice how it is made up of several separate
components: keyboard, screen, mouse, and inside the main casing are other discreet
pieces such as the hard disk and CDROM.

Why are computers made this way, as a collection of separate pieces rather than
having everything encased in a single frame?

Well, there are several reasons. Firstly, by using separate components, each can be
designed to perform just one specific task such as: get information from the user (the
keyboard); display information (the screen); store information (the disk) etc. This
allows all of these items to be made and tested separately.

Also, if a component breaks down or needs to be replaced, you simply have to unplug
that component and replace it with a new one.

Why is all of this relevant to creating games programs? Years of experience have
shown that the advantages of this modular approach to construction doesn’t just
apply to physical items such as computers, it also applies to software.

Rather than create a program which consists of one continuous set of instructions, we
can split the program into several routines (also known as modules, functions or
subroutines). Each routine is designed to perform just one specific function. This
approach is particularly important in long programs and when several programmers
are involved in creating the software.

In fact, routines in AGK BASIC are usually referred to as functions, and that’s the
term we’ll use from here on in.

Functions
Designing a Function

The first stage in creating a function is to decide what task the function has to perform.
For example, we might want a function to do something as simple as display a line
of asterisks or move a sprite about the screen.

A good function will perform only a single task and be relatively short - perhaps no
more than 20 to 30 lines of code (often much less).

When a team of people is involved in creating the software, it is important that the
exact purpose of each function is written out in detail so there can be no misconceptions
between the people designing the routine and those programming it.

Functions must also be given a name. This name should reflect the purpose of the
function and often starts with a verb, since functions perform tasks.

So let’s have a first attempt at writing out a design for a function that is to draw a line
of asterisks.

Hands On AGK BASIC: User-Defined Functions 193

This function document is known as a mini-spec and, although it does not yet show
all the features that will appear in a full mini-spec, it contains all the details we need
to create our simple function. The only tricky part is to write a description that is
unambiguous - something that is not always that easy! Notice the word horizontal
has been included so that there is no possibility of the programmer deciding to create
a function that produces a vertical line of asterisks.

Coding a Function

From the mini-spec we get the name and purpose of the function. From that we can
create the following code:

 function DrawLine()
 Print(“**********”)
 endfunction

Notice that the module begins with the keyword function and ends with the keyword
endfunction.

The first line also contains the name of the function, DrawLine, and an empty set of
parentheses.

Between the first and last lines go the set of instructions that perform the task the
function has been designed to do. In this case, only one line of code is needed.

Calling a Function

The code within a function will only be executed if that function is called. To call a
function, a program need only specify the function’s name and the empty parentheses:

DrawLine()

This is a request for the code within the named function to be executed.

The Final Code

The complete program will now contain two sections. One section will contain the
code for the function and the other section the main logic of the program.

The function code must be placed after the end of the main logic.

This gives us the code shown in FIG-8.1.

Activity 8.1

List any other details that might be added to the description to make the
requirements more exact.

FUNCTION NAME : DrawLine

DESCRIPTION : Draws a horizontal line of 10 asterisks.

194 Hands On AGK BASIC: User-Defined Functions

Notice that the end statement has been added to emphasise the end of the main
program logic.

 How the Code is Executed

When a call is made to a function, control transfers to that function, its code is
executed, and then control returns to the line immediately following the original call
to the function. FIG-8.2 shows the stages involved during the execution of the
program shown above.

FIG-8.1

Using a Function

rem *** main program ***

DrawLine()
Sync()
do
loop
end

rem *** Draw a line function ***
function DrawLine()
 Print(“**********”)
endfunction

Activity 8.2

Start a new project called UsingFunctions. Modify main.agc to match the code
given in FIG-8.1. Test and save your project.

The two sections that make up the
program are represented here as
two rectangles.

Execution begins in the main program
code where the call to DrawLine()
is reached.

This causes control to jump to the
DrawLine() function.

The code within DrawLine() is
then executed...

main DrawLine main DrawLine

DrawLine()

main DrawLine

DrawLine()

main DrawLine

DrawLine()

Code
within function

executed

Control
jumps to called

function

Execution
reaches the call
to DrawLine()

Print(”**********”)

FIG-8.2

The Function Calling
Mechanism

Hands On AGK BASIC: User-Defined Functions 195

A function can be called as often as required from any point in the main program
logic.

So, if we wanted to draw two lines of asterisks, we would change the code for the
main section to

DrawLine()
DrawLine()
Sync()
do
loop
end

which adds a second call to the function.

Local Variables

We are at liberty to use variables within a function. The variables used within a
function are local to that function and hence are known as local variables. When a
variable is local to a function, it is allocated space within the computer’s memory
only while that function is being executed. Once execution finishes, the allocated
memory space is freed up and the variable no longer exists.

Because a variable is local to a function, that means that we may use a variable within
a function that has the same name as a variable in the main program logic without
causing an error. The program will treat the two variables as separate entities. The
program in FIG-8.3 demonstrates this use of a local variable sharing a name with a
variable in the main part of the program.

The variable v in the main program is assigned the value 3 while v within the function
is assigned the value 6. The Print statement within the function will display the
value held in the local variable (6) while the Print statement in the main section will

Activity 8.3

Modify UsingFunctions so that two calls are made to DrawLine() as in the
code shown above.

Test your program to check that two lines of asterisks are drawn. Resave your
project.

Now control returns to the line in the
main program immediately following
the call to DrawLine().

Any remaining lines in the main
program are executed.

main DrawLine

Control
returns to the
main program

main DrawLine

Remaining
lines executed

DrawLine()
Sync()
do
loop

DrawLine()
Sync()
do
loop

Print(”**********”) Print(”**********”)

FIG-8.2
(continued)

The Function Calling
Mechanism

196 Hands On AGK BASIC: User-Defined Functions

print 3 - the value in the other variable named v.

Alternative Coding

As long as a function performs the task described within the mini-spec, then exactly
how that result is achieved is up to the programmer. Back on the first page of Chapter
1 we saw that there is usually more than one algorithm for achieving a required result
(the 4 litre problem). So let us look at another way of creating a line of 10 asterisks:

 function DrawLine()
 for c = 1 to 10
 PrintC(“*”)
 next c
 Print(“ “) //New line
 endfunction

If we take a moment to look at the code above, we can see that the for loop will print
the 10 asterisks - one at a time - and the final Print()statement will move the cursor
onto a new line.

Parameters
Sometimes a device needs to be supplied with information before it can perform its
function. For example, you need to press a button on your TV remote to specify
which channel you want to view. This same principle also holds for software
functions: most functions need to be supplied with one or more values in order to
determine exactly what is required of it. These values are known as parameters.

FIG-8.3

Using Local Variables

rem *** Variable v in the main program ***
v = 3
Test()
Print(v)
Sync()
do
loop
end

function Test()
 rem *** Variable v local to the function ***
 v = 6
 Print(v)
endfunction

Activity 8.4

Create a new project called LocalVariable and change main.agc to contain the
code shown in FIG-8.3.

Run the program and verify that each variable contains a different value.

Activity 8.5

Modify UsingFunctions, replacing the existing code for DrawLine() with the
new code given above.

Check that exactly the same results are produced as before. Resave your
project.

Hands On AGK BASIC: User-Defined Functions 197

If we wanted to allow the length of the line created by DrawLine() to be specified
when the function is called, we need to pass that information to the function in the
form of a parameter.

To pass a parameter to a function, we need to rewrite the description of that function
adding parameter details such as the parameter name and its type. In the case of the
DrawLine() function, the new mini-spec would be:

Notice that the parameter is described as an in parameter. This description is used
because the value is being “given” to the function.

From our updated description we create the new code:

 function DrawLine(ilength)
 for c = 1 to ilength
 PrintC(“*”)
 next c
 Print(“ “)
 endfunction

Notice that the parameter is placed within the parentheses of the first line of the
function and that the parameter is then used as the end value in the for statement so
that the loop now iterates ilength times.

And finally, the call made to the function from the main section of the program must
supply a value for the parameter:

 DrawLine(8)

This value will be copied into the function’s formal parameter, ilength, just before the
code of the function is executed.

The actual parameter passed to a function can be given as a constant (as in the
example above), a variable or an expression. Hence, if we start by storing a number
in a variable

 num = Random(1,20)

we can pass the value held in that variable as the parameter to our function with the
line

 DrawLine(num)

FUNCTION NAME : DrawLine
PARAMETERS
 In : ilength : integer

DESCRIPTION : Draws a horizontal line of ilength asterisks

The parameter given in
the function’s code is
known as the formal
parameter.

The parameter specified
when the function is
called is known as the
actual parameter.

Activity 8.6

In UsingFunctions, modify DrawLine() to match the code given above.

Change the calls to DrawLine() so that a line of 5 asterisks followed by a line
of 12 asterisks is displayed. Test and save your project.

198 Hands On AGK BASIC: User-Defined Functions

or we can include a calculation within the function call

 DrawLine(num * 2)

and the result of that calculation will be passed as the parameter value.

A final option is to use the value returned by one function as the parameter for another
as in the line:

 DrawLine(Random(1,10))

which will generate a random number in the range 1 to 10 and then use that value as
the parameter to DrawLine().

FIG-8.4 shows what’s happening when a parameter is passed to a function.

FIG-8.4

How Parameter Passing
Works

When the function is called, any local
variables in that function and any
parameters are assigned memory
space.

The value specified in the function
call is then copied to the parameter
variable...

...and the function’s code executed. When the end of the function is
reached, any local variables and
parameters have their space
deallocated.

function DrawLine(ilength)
 for c = 1 to ilength
 Print(“*”)
 next c
 PrintC(” “)
endfunction

cilength

Parameter
and local variables
 allocated space

function DrawLine(ilength)
 for c = 1 to ilength
 Print(“*”)
 next c
 PrintC(” “)
endfunction

cilength

8 ?

Local
variables
deleted

function DrawLine(ilength)
 for c = 1 to ilength
 Print(“*”)
 next c
 PrintC(” “)
endfunction

DrawLine(8) cilength

8

cilength

function DrawLine(ilength)
 for c = 1 to ilength
 Print(“*”)
 next c
 PrintC(” “)
endfunction

c
changes value as

code executes

8 ?

Activity 8.7

Modify UsingFunctions so that the main program generates a random number in
the range 1 to 10, storing the result in a variable, num.

Change the parameters given in the calls to DrawLine() so that the first call uses
num as the parameter and the second call uses num*3 -2 as the parameter.

Test and save your project.

Hands On AGK BASIC: User-Defined Functions 199

Multiple Parameters

A function can have as many parameters as required and these parameters can be of
any type: integer, real or string.

To demonstrate this, we’ll write yet another version of the DrawLine() function in
which the character used to construct the line is also passed as a parameter. Of course,
we start by updating the mini-spec:

From this we can create the modified function:

 function DrawLine (ilength, schar$)
 for c = l to ilength
 PrintC(schar$)
 next c
 Print(“ “)
 endfunction

Notice that parameters are separated from each other by commas. The second
parameter’s name differs slightly from that in the mini-spec because of AGK BASIC’s
requirement that string variables must end with a dollar symbol ($).

Now we need to supply two values when we call the function; one for the length of
the line, the other for the character to be used in the construction of the line. A typical
call would be:

 DrawLine (12, “=”)

which would assign the value 12 to the parameter ilength and the string “=” to schar$
and thereby produce a line on the screen created from twelve = symbols.

It’s important that you put the values in the correct order when you call up a function.
For example, the line

 DrawLine (“=” ,12)

would be invalid since the function expects the first value given in the parentheses to
be an integer.

FUNCTION NAME : DrawLine
PARAMETERS
 In : ilength : integer
 : schar : string

DESCRIPTION : Draws a horizontal line of ilength characters. The
 character used in the construction of the line is
 schar.

The $ symbol is
omitted from the
parameter name
since this is a BASIC
requirement and not
part of the design.

Activity 8.8

Modify your DrawLine() function so that the character used can be passed as a
parameter.

Change the main section of the code so that a single line of 10 # characters is
drawn.

200 Hands On AGK BASIC: User-Defined Functions

Pre-conditions

When a function uses a parameter, we will often need to restrict the range of values
which may sensibly be assigned to that parameter. For example, when we specify
what length of line we want DrawLine() to produce, it doesn’t make sense to pass a
negative value to the function. Equally, it makes little sense to request a line hundreds
of characters long, since there is a limit to how many characters can fit on a single
line of the app window. We might therefore expect the value specified for ilength to
be in a range such as 1 to 100.

When we place limitations on the conditions under which a function can operate
successfully, these limitations are known as the pre-conditions of the function.

We can therefore state that the pre-condition for DrawLine() is that the parameter
ilength lies between 1 and 100.

We would start by adding this restriction to the mini-spec:

Now we need some way of enforcing this limit. We do this by adding an if statement
at the beginning of the DrawLine() function which causes that function to be aborted
if the value of ilength is outside the acceptable range.

exitfunction

The exitfunction statement is designed to be placed within a function. When
executed, this statement causes the remaining statements in the function to be ignored,
ending execution of the routine and returning to the code which called the function
in the first place.

We can make use of this statement to terminate execution of a function when its
parameter(s) fall outside an acceptable range. In the case of DrawLine(), we would
add the following lines right at the start of the routine to check the value of ilength:

 rem *** if ilength outside 1 to 100, terminate function ***
 if ilength < 1 or ilength > 100
 exitfunction
 endif

FUNCTION NAME : DrawLine
PARAMETERS
 In : ilength : integer
 schar : string

PRE-CONDITION : 1 <= ilength <= 100

DESCRIPTION : Draws a horizontal line of ilength characters. The
 character used in the construction of the line is
 schar.

Activity 8.9

Modify your DrawLine() function so that if ilength is outside the range 1 to
100, the function terminates without anything being drawn.

Check that the new code works by attempting to draw a line 101 characters
long constructed from the + symbol.

Hands On AGK BASIC: User-Defined Functions 201

About Pre-Conditions

Be careful when choosing the pre-condition for a function. A pre-condition should
only prevent situations which the function itself cannot handle. Do not create a pre-
condition simply because you feel that using a value outside a range seems
unreasonable to you. If the function’s code can handle the situation then allow that
situation to occur.

For example, we have stated in the pre-condition of DrawLine() that ilength must be
in the range 1 to 100. But could the code handle values outside that range? The
answer to this question is - yes.

Values of zero or less will simply mean that the for loop will iterate zero times and
so the only output will be that caused by the Print(“ “) statement which will move
subsequent output onto the next line on the screen. Values greater than 100, the
characters produced may spread over several lines, but the function will still work as
described.

So we were probably mistaken to impose a pre-condition on DrawLine().

When a function has no restrictions we would describe the pre-condition within the
mini-spec as:

 PRE-CONDITION : None

Return Types

Not only can we supply values to a function (in the form of parameters), but some
functions also return results.

For example, let’s assume we wish to create a function called SumIntegers() which
takes an integer parameter, ival, and returns the sum of all the integer values between
1 and ival.

When describing such a routine in a mini-spec, we add the returning value as an out
parameter.

To return a value from an AGK BASIC function we add the value to be returned
immediately after the term endfunction. So SumIntegers() would be coded as:

 function SumIntegers(ival)
 iresult = 0
 for c = 1 to ival
 iresult = iresult + c
 next c
 endfunction iresult

FUNCTION NAME : SumIntegers
PARAMETERS
 In : ival : integer
 Out : iresult : integer

PRE-CONDITION : None

DESCRIPTION : Sets iresult to the sum of the integers between 1
 and ival.

202 Hands On AGK BASIC: User-Defined Functions

When calling a function that returns a value, that value can be assigned to a variable,
displayed, or used in an expression. Examples of valid calls to SumIntegers() are
given below:

 sum = SumIntegers(10)
 Print(SumIntegers(5))
 answer = SumIntegers(9)/3
 if SumIntegers(no) < 100

Functions can also return a string value. For example, the function FillString(ch$,
num) returns a string containing num copies of ch$:

function FillString(ch$,num)
 sresult$ = “”
 for c = 1 to num
 sresult$ = sresult$ + ch$
 next c
endfunction sresult$

and might be called with a line such as

 h$ = FillString(“H”,10)

which would place a string containing 10 H’s in the variable h$.

Return Values and Pre-Conditions

Routines such as SumIntegers() and Factorial() cannot successfully return a result
for all integer values, since the space assigned to a variable is of a fixed size so there
would be insufficient space to hold the result produced by SumIntegers(100) or
Factorial(16). For this reason we need to impose a pre-condition in each case limiting
the value of the In parameter.

Activity 8.10

Create a project called TestFact which contains a function named Factorial
which implements the following mini-spec:

The main program should generate a random number between 1 and 10,
display that number, then display the result of Factorial() using the generated
value as the In parameter.

Test and save your project.

FUNCTION NAME : Factorial
PARAMETERS
 In : ival : integer
 Out : iresult : integer

PRE-CONDITION : None

DESCRIPTION : Sets result to the product of the integers
 between 1 and ival. For example, if ival is 5 then
 iresult would be the value of 1 x 2 x 3 x 4 x 5.

Hands On AGK BASIC: User-Defined Functions 203

Of course, this is easily done in the mini-spec. We could add the line

 PRE-CONDITION : ival <= 50

in SumIntegers

and

 PRE-CONDITION : 1 <= ival <= 15

in Factorial.

The problem arises when we attempt to implement these restrictions in the code of
the functions. We might be tempted to start SumIntegers() with the lines

 if ival > 50
 exitfunction

but because SumIntegers() is designed to return a value, it is not legal to exit that
function without returning a value.

This means that the exitfunction statement, as shown above, is not valid since it
attempts to exit the function without returning a value. Luckily, the statement’s
format allows for a value to be specified after the keyword exitfunction and this
value is returned by the function.

But that just leaves us with another problem - what value should we return when the
routine does not meet its pre-conditions? We can return any value we like, but usually
this is handled by returning a special value which cannot occur when the function’s
pre-conditions are met. For example, here we could return the value -1, since it is an
impossible result to achieve when ival is less than 50. We would do this with the line:

 exitfunction -1

This allows us to add back the pre-condition to our routine, the final version of the
code being:

 function SumIntegers(ival)
 rem *** Exit with -1 if pre-condition ***
 rem *** not met ***
 if ival > 50
 exitfunction -1
 endif

 iresult = 0
 for c = 1 to ival
 iresult = iresult + c
 next c
 endfunction iresult

Activity 8.11

Modify your Factorial() function from the last Activity so that it implements
the pre-condition that ival must lie between 1 and 15. The function should
return zero if the parameter is outside this range.

Test the update by calling the function with the parameter value set to 16.
Resave your project.

204 Hands On AGK BASIC: User-Defined Functions

When a function such as SumIntegers() (which returns a dummy result if its pre-
condition has not been met) is called, the main program must check that the function
has performed correctly. This is done by making the main program check the value
returned by the function. A typical piece of code for doing this is:

 result = SumIntegers(number)
 if result = -1
 Print(“Could not calculate result”)
 else
 Print(result)
 endif

Returning a string from a function is no more difficult than returning a numeric value.

The program in FIG-8.5 contains a function which returns a random-length string of
random letters.

The parameter
number is assumed
to be a variable that
has been assigned a
value earlier in the
program.

Activity 8.12

In TestFact, change the main program to generate a number between 10 and 20.
Attempt to find the factorial of the number generated, but if the number is
over 15, display the message “Factorial too high to calculate.” along with the
generated value.
Run your program so that at least one run produces the error message.

rem *** Generate string ***
text$ = RandomString()
rem *** Display string ***
Print(text$)
Sync()
do
loop

rem *** Generate a random-length string of random letters ***
function RandomString()
 rem *** Generate length for string ***
 size = Random(1,50)
 rem *** start with empty string ***
 sresult$ =””
 rem *** FOR size times ***
 for c = 1 to size
 rem *** Add new character to end of string ***
 sresult$ = sresult$ + Chr(Random(65,90))
 next c
 rem *** return the string generated ***
endfunction sresult$

FIG-8.5

Random Length String
Function

Activity 8.13

Create a mini-spec for the function RandomString() given in FIG-8.5.

Create a new project called StringFunction. Edit main.agc to match the code
given in FIG-8.5.

Test and save the project.

This code makes use of
an AGK function called
Chr() which returns the
character whose ASCII
code matches the value
of the parameter. More
about this function in
the next chapter.

Hands On AGK BASIC: User-Defined Functions 205

Function Flexibility

The more flexible a function, the more useful it is. For example, the final version of
DrawLine() is much more flexible than the first, since it allows the length and
construction character of the line to be specified when the function is called, whereas
the first version could create only a line of exactly ten asterisks. With this added
flexibility we could use the function to draw a simple bar chart for example -
something not possible with the original version of the routine.

So, wherever possible, you should always try to add the maximum flexibility to any
routine you create as long as this does not lead to over-complex code or unacceptable
execution times.

We will add some flexibility to our RandomString() function with a new mini-spec:

Notice that the mini-spec’s description makes use of structured English this time. A
description can be written in any way you please; the only requirement is that it must
be complete and unambiguous. A mini-spec is the document used by the programmer
as a statement of exactly what a function must do, so that document must contain all
the details required.

Statement Formats

We’ve introduced three new function-related statements in this section; the format of
these are given in FIG-8.6.

 Ë Although a mini-spec
may have a description
written in structured
English, this does not
mean that the program
must employ that logic to
implement the routine.

FUNCTION NAME : RandomString
PARAMETERS
 In : ilength : integer
 Out : sresult : string

PRE-CONDITION : ilength = -1 or 1 <= ilength <= 50

DESCRIPTION : IF ilength = -1 THEN
 sresult is a string of random capital letters of a
 random length between 1 and 50
 ELSE
 sresult is a string of random capital letters
 exactly ilength characters long
 ENDIF

Activity 8.14

Modify the code for RandomString() in your StringFunction project so that it
matches the mini-spec requirements given above. If ilength is not within the
specified range, an empty string should be returned.

Test and save the project.

FIG-8.6

function
exitfunction
endfunction

exitfunction value[]

endfunction value[]

function parameter[]name ()

,

206 Hands On AGK BASIC: User-Defined Functions

where:

 name is the name of the function. The name chosen must conform to
 the same rules used when creating variable names.

 parameter is the name of any value passed to the function. Names should
 be appropriate for the nature of the value being passed.

 value is the value returned by the function. This can be specified
 using a variable, constant or expression.

Summary
± A function is a named section of code.

± Functions should be relatively short and perform only a single task.

± Functions in AGK BASIC begin with the term function and end with the term
endfunction.

± A function must be given a unique name.

± A function name should reflect the purpose of the function and must conform
to the same rules as a variable name.

± A function can include zero or more in parameters.

± The parameter(s) listed in a function’s code are known as the formal
parameters.

± A function can return a single value.

± Any variables used within a function are local to that function.

± Local variables may have the same name as variables in the main program
without causing an error.

± Before being coded, the details of a function should be documented in a mini-
spec.

± Where a parameter’s value must fall within a given range, this should be stated
as a pre-condition in a function’s mini-spec.

± Any pre-condition is tested by an if statement at the start of the function.

± When a pre-condition is not fulfilled, a function should exit without executing
the main part of its code.

± Exiting a function before all of its code has been executed is achieved using
the exitfunction statement.

± Where a pre-condition is not met and the function is designed to return a value,
some error-indicating value should be returned.

± A function is called by giving the function name, parentheses and, where
required, a list of parameter values.

± The parameters given when calling a function are known as the actual
parameters.

± The value returned by a function can be assigned to a variable, displayed, used
in an expression or used as the parameter to another function call.

Hands On AGK BASIC: User-Defined Functions 207

 BASIC Subroutines

Introduction
Using functions is the best way to create modular software in AGK BASIC, but the
language does offer another way to achieve a similar effect, and that is to use
subroutines. Although we’ve used the term subroutine earlier to mean any modular
section of code, in AGK BASIC the word has a more specific meaning as we’ll see
below.

Creating a Subroutine
The original version of the BASIC language (invented in 1964) had no provision for
true functions as described earlier in this chapter. Instead it made use of two
statements, gosub and return which allowed a section of code to be executed and
then a return made to the point of call. In this respect it was similar to a true function,
but there was no way to pass parameter values or make use of local variables.

Although of limited usefulness, the gosub and return statements have been retained
in AGK BASIC and so a description of how these statements are used is included
here.

In order to compare true functions with the subroutine approach of gosub, we will
recode the DrawLine routine using this older approach.

The start of a subroutine is marked with a label giving the name of the subroutine.
This will be the name given in the mini-spec.

A label is just a valid name followed by a colon, for example:

 DrawLine:

This is followed by the code

DrawLine:
 for c = 1 to 10
 Print(“*”)
 next c
 Print(“ “)

and finally, the return statement:

DrawLine:
 for c = 1 to 10
 Print(“*”)
 next c
 Print(“ “)
 return

To execute the code, we use the gosub statement giving the name of the label we used
to start the code:

 gosub DrawLine

A complete program implementing this example is shown in FIG-8.7.

208 Hands On AGK BASIC: User-Defined Functions

It is perhaps worth pointing out that no modern language offers this simplistic method
of implementing modular programming because of the restrictions it imposes.
Although you may see some examples of the gosub statement in action, these will be
in very simple programs. So...

 avoid using gosub - stick to proper functions!

FIG-8.7

Using Subroutines

rem *** Using GOSUB ***
gosub DrawLine
Sync()
do
loop
end

DrawLine:
 for c = 1 to 10
 PrintC(“*”)
 next c
 Print(“ “)
 return

Activity 8.15

Start a new project called TestGosub.

Edit main.agc to match the code in FIG-8.7.

Test and save your project.

Hands On AGK BASIC: User-Defined Functions 209

A Library of Functions

Introduction
Most functions will be designed for a specific project and will only ever be used in
that project, but a more general-purpose routine can be re-used in different programs.

We have already experienced this when we used the three Button functions back in
earlier chapters to allow us to enter integer values.

Creating a Library
If we identify one or more routines that might be useful later, then we need to copy
these routines into a new agc file which contains nothing but the code for these
selected functions.

If you are building a library of reusable routines, the best approach is to create a
separate agc file for each category. For example, we might keep all the math functions
in one file and all the string-handling functions in another. Other functions which fall
into an existing category can be added to the appropriate file later.

FIG-8.8 shows you how to place the RandomString() function in a separate file.

FIG-8.8

Creating a Library Although the new Library file will be independant of any project, when it is first

created it will be in the same folder as the function being transferred.
To add the new file, select File|New|Empty file from the main menu.

After requesting a new file we need to
confirm that it is to be added to the
current project.

Next we have to give the file a name.
In this case, it has been called
StringLibrary to remind us of its content
and purpose.

Select

Select
name: StringLibrary

210 Hands On AGK BASIC: User-Defined Functions

Since the point of creating this library file is to make use of the functions it contains
in other projects, it makes sense to remove the file from the current project’s folder
and store it in a more generalised one (see FIG-8.9).

FIG-8.8
(continued)

Creating a Library

FIG-8.9

Moving the Library File

The new file is now listed in the
Projects Panel and has been assigned
a tabbed page in the edit window.

Now we copy and paste the function’s
code to the new file before selecting the
File|Save Everything from the main
menu.

New
file added

New
tabbed page

Function’s
code copied to

new file

From Windows Explorer we need to
create a folder for our library. Within
the HandsOnAGK directory we create
a new folder named Library.

Now we can copy the StringLibrary file
from the StringFunctions project folder
to our new Library folder.

StringLibrary.agc

Copy

Activity 8.16

Open your StringFunction project.

Create a new file called StringLibrary.

Copy the code for the function RandomString() from main.agc into the new
file.

Save all the files within the project then close the project.

Open Windows Explorer and create a new subfolder called Library within the
HandsOnAGK folder.

Copy the file StringLibrary from the StringFunction folder to the Library
folder.

Hands On AGK BASIC: User-Defined Functions 211

Creating Modular Software

Introduction
Now that we know the basic techniques required to design and implement functions
in AGK BASIC, we’re ready to rewrite the SpotTheDifference project using functions.
We’ll start by repeating the structured English description of the game:

 1 Load resources
 2 Set up game screen
 3 Play game
 4 End game

This is a good guide for identifying the routines needed within the program. The
mini-spec for each identified routine is shown below.

FUNCTION NAME : LoadResources
PARAMETERS
 In : None

PRE-CONDITION : None

DESCRIPTION : The images
 Button.bmp, Credits.jpg, End.jpg
 Main.jpg, Ring.png, Fail.jpg
 sound file
 Click.wav
 and music file
 Backgroundmusic.wav
 are loaded and assigned ID numbers.

FUNCTION NAME : SetUpGameScreen
PARAMETERS
 In : None

PRE-CONDITION : None

DESCRIPTION : Start music playing.
 The image main.jpg is displayed. The rings are
 positioned at each difference in the right-hand
 picture and then hidden.

FUNCTION NAME : PlayGame
PARAMETERS
 In : None
 Out : timetaken : integer

PRE-CONDITION : None

DESCRIPTION : The user selects areas within the right-hand
 picture. If the area is within a hidden ring, the ring
 is displayed. The game ends when all six rings
 are displayed or when 7 areas have been selected.
 All resources used by this routine are deleted when
 play is complete. The routine returns the number
 of seconds taken to complete the game.

212 Hands On AGK BASIC: User-Defined Functions

Now we’re ready to start turning our design into a program.

There are various ways to tackle this. If we had several people working on the
program, we could give each a separate routine to work on at the same time. It would
then just be a matter of bringing together the separate routines to give us the final
program. On the other hand, if only one person is working on the coding, the routines
are coded one after another, usually starting with the main logic.

Top-Down Programming
When we code our routines one at a time, starting with the main logic, this is known
as top-down programming. The name is used because we start with the main part
of the program (the top) and then work our way through the routines called by that
main part. We’ll see how it’s done below.

Step 1

We start by turning the outline logic given in the structured English into AGK BASIC
code. An important point to note is that the program code must match that logic
exactly. If we find we have to deviate from this logic, then we must go back and
modify the details given in the structured English.

Actually, the code for the main section of the program becomes little more than a set
of calls to the other routines:

 LoadResources()
 SetUpGameScreen()
 time = PlayGame()
 EndGame(time)

Notice that the main code really doesn’t do any of the detailed work, it leaves that to
the routines. The main section only has to call up each of the routines in the correct
order and save any values returned by one function to pass it on to another function.

Activity 8.17

Start a new project called SpotTheDifference2.

Compile the default code and copy the required files into the media folder.
Modify main.agc so that it contains the four lines given above.

Edit startup.agc setting width to 1024 and height to 768.

FUNCTION NAME : EndGame
PARAMETERS
 In : timetaken : integer

PRE-CONDITION : None

DESCRIPTION : Sets the aspect ratio to portrait mode.
 If the player has selected all six differences, then
 the End screen is displayed along with the time
 taken to find all the differences. If all differences
 were not found, the Fail screen is displayed.
 Both screens have a button which when pressed
 displays the Credits screen for 5 seconds before
 returning to the previous screen.

Hands On AGK BASIC: User-Defined Functions 213

Step 2

To get the main logic to run, we must write code for the routines that are called. And
yet, if we do that, it would appear that the whole program will need to be completed
before the program can be executed for the first time.

The way round this problem is to write almost empty routines with the required
names as shown below:

 function LoadResources
 Print(“LoadResources”)
 endfunction

 function SetUpGameScreen()
 Print(“SetUpGameScreen”)
 endfunction

 function PlayGame()
 Print(“PlayGame”)
 endfunction 10

 function EndGame(timetaken)
 Print(“EndGame”)
 endfunction

Take a moment to look at this code. Each function displays its own name, takes any
necessary parameters and returns a value where necessary. We need to make sure that
the names, parameter names and return types match with those given in the mini-
specs.

These empty routines are known as test stubs and are written so that we can test the
main logic without having the final code for any of the routines which that logic has
to call.

By running the program, we can see that the functions are executed in the correct
order.

Step 3

Now we can begin to remove the stubs in our project and replace them with the final
version of each routine. As each new routine is added the program is tested to make
sure that the new routine, and the program as a whole, are working correctly.

The code for the first routine, LoadResources(), is given below:

Activity 8.18

In SpotTheDifference2, add an end statement after the existing four lines of
code. This will separate the main logic from the code for the functions.

Add the four test stubs given above to your program.

Add a Sync() statement and do..loop structure immediately before end so that
the messages displayed by the function will appear on the screen.

Run and save your program.

214 Hands On AGK BASIC: User-Defined Functions

rem *** Load resources ***
function LoadResources()
 rem *** Load images ***
 main = LoadImage(“Main.jpg”)
		 finish	=			 LoadImage(“End.jpg”)
 credits = LoadImage(“Credits.jpg”)
 ring = LoadImage(“Ring.png”,0)
 button = LoadImage(“Button.bmp”,1)
 fail = LoadImage(“Fail.jpg”)
 rem *** Load sounds ***
 ringsound = LoadSound(“Click.wav”)
 rem *** Load music ***
 backgroundmusic = LoadMusic(“Background.wav”)
endfunction

The second routine, SetUpGameScreen(), is coded as:

rem *** Set up main section of the game ***
function SetUpGameScreen()
 rem *** Play music ***
 PlayMusic(backgroundmusic)
 rem *** Show main screen ***
 CreateSprite(1,main)
 SetSpriteSize(1,100,100)
 rem *** Load rings at image differences ***
 CreateSprite(2,ring)
 SetSpriteSize(2,-1,10)
 SetSpritePosition(2,91,86)
 CloneSprite(3,2)
 SetSpritePosition(3,51.5,22)
 CloneSprite(4,2)
 SetSpritePosition(4,49,68)
 CloneSprite(5,2)
 SetSpritePosition(5,73,66)
 CloneSprite(6,2)
 SetSpritePosition(6,88.5,66)
 CloneSprite(7,2)
 SetSpritePosition(7,55.75,62.5)
 rem *** Hide rings ***
 for c = 2 to 7
 SetSpriteDepth(c,9)
 SetSpriteVisible(c,0)
 next c
 rem *** Update screen ***
 Sync()
 endfunction

Activity 8.19

Remove the LoadResources() test stub from your program and substitute the
complete function as shown above.

Run the program again. Although no new output is produced, there will be an
error message if any of the files cannot be found. Save your project.

Activity 8.20

Add the complete version of SetUpGameScreen() to your project.

Run the program again. What problem occurs? Save your project.

Hands On AGK BASIC: User-Defined Functions 215

Global Variables

The problem with SetUpGameScreen() is that it needs to make use of the IDs which
were assigned to various resources by the LoadResources() function.

The LoadResources() function assigned the resource IDs to variables such as
backgroundmusic, main and ring. But these variables are local to that routine, so
when we mention variables of the same name in SetUpGameScreen() the program
doesn’t realise that we are trying to refer to the same variables as those in the earlier
routine. Instead, we get a new set of variables that are local to SetUpGameScreen()
and these new variables do not contain the values we need.

If only one value had been needed to be shared between the routines, we might have
made use of a return value from the first routine and a parameter to the second (note
that this is exactly how the timetaken is passed between PlayGame() and EndGame()).

However, since so many ID values need to be shared between LoadResources() and
the other routines, we have no choice but to store these values in global variables.

Global variables are exactly the opposite from local variables. Whereas local
variables exist only within the routine in which they are used, global variables exist
throughout the program and can be referred to anywhere within the program.

To declare a global variable, we need to start with the keyword global and then give
the variable name. In this program, we want the variables that contain the IDs of the
various resources to be global - that way we can refer to them in any of the functions.
So the code needed is:

rem	***	Define	global	variables	***
rem *** IDs for images ***
global	main,	finish,	credits,	ring,	button,	fail
rem *** IDs for sound ***
global ringsound
rem *** IDs for music ***
global backgroundmusic

This code is placed right at the start of the main logic, before the function calls.

Now the term main in LoadResources() and main in SetUpGameScreen() refer to the
same global variable.

The third function, PlayGame() is coded as:

rem *** Play game ***
function PlayGame()
 rem *** Start timer ***
 start = GetSeconds()
 CreateText(1,str(timetaken))
 SetTextColor(1,0,0,0,255)
 SetTextPosition(1,88,6)
 rem *** Set count of differences found ***

Activity 8.21

Add the global declarations to your code and run the program again.

Does the program run correctly this time? Save your project.

216 Hands On AGK BASIC: User-Defined Functions

 found = 0
 rem *** Number of clicks so far is zero ***
 rem *** Get user clicks until all 6 differences found ***
 repeat
 rem *** Check for clicked(pressed)
 pressed = GetPointerPressed()
 rem *** IF pressed, ***
 if pressed = 1
 rem *** Add 1 to clicks ***
 inc presscount
 rem *** Check for sprite hit ***
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF clicked over hidden ring THEN
 if hit > 1 and hit <=7 and GetSpriteVisible(hit)=0
 rem *** Show ring ***
 SetSpriteVisible(hit,1)
 rem *** Play sound effect ***
 PlaySound(ringsound)
 rem *** Add 1 to differences found ***
 found = found + 1
 endif
 endif
 rem *** Update time so far ***
 timetaken = GetSeconds() - start
 SetTextString(1,Str(timetaken))
 Sync()
 until found = 6 or presscount = 7
 rem *** Delete existing sprites ***
 for c = 1 to 7
 DeleteSprite(c)
 next c
 rem *** Delete sound ***
 DeleteSound(ringsound)
 rem *** Delete text ***
 DeleteText(1)
 endfunction timetaken

The final function, EndGame() is coded as:

rem *** Finish game ***
function EndGame(timetaken)
		 rem	***	Wait	before	finishing	***
 Sleep(1000)
 rem *** Reset aspect ratio ***
 SetDisplayAspect(768.0/1024.0)
 rem *** IF all differences found ***
 if found = 6
 rem *** Show End screen... ***
		 	 CreateSprite(1,finish)
 SetSpriteSize(1,100,100)
 rem *** ...and total time taken ***
 CreateText(1,str(timetaken))
 SetTextColor(1,0,0,0,255)
 SetTextPosition(1,36,31)

Activity 8.22

Add the third function to your project and check that it operates correctly.

Save your project.

Hands On AGK BASIC: User-Defined Functions 217

 Sync()
 else
 rem *** Show Fail screen... ***
 CreateSprite(1,fail)
 SetSpriteSize(1,100,100)
 endif
 rem *** ... with button... ***
 CreateSprite(2,button)
 SetSpriteSize(2,15,-1)
 SetSpritePosition(2,80,90)
 rem *** Allow for Credits button press ***
 do
 pressed = GetPointerPressed()
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF Credit button pressed THEN ***
 if hit =2
 rem *** Show credits for 5 secs ***
 CreateSprite(3,credits)
 SetSpriteSize(3,100,100)
 SetSpriteDepth(3,8)
 Sync()
 Sleep(5000)
 rem *** Remove Credits screen ***
 DeleteSprite(3)
 endif
 endif
 Sync()
 loop
 endfunction

Activity 8.23

Add the final function to your project and remove the Sync(), do and loop lines
from the main section.

Test the completed project. Does it operate correctly?

The problem is that a variable whose value is determined in PlayGame() is
required in EndGame(). What variable is this? To solve this problem, make the
variable required in EndGame() a global variable.

Retest your project. Does it operate correctly? Save your project.

Activity 8.24

Now that the app is working correctly on your PC, it’s time to try running it on
another platform.

Make sure the app player or viewer is running on your device.

Press AGK’s Compile and Broadcast button. The app should now start
playing on your device. Does the app run correctly on the device?

218 Hands On AGK BASIC: User-Defined Functions

The final problem we have to fix is to set the correct aspect ratio for the main game
screen. Although we set the dimensions of the app window in setup.agc, when the
app is running on your device, that setting has no relevance, so we need to add
another SetDisplayAspect() statement to the SetUpGameScreen() function.

Global Variables and Mini-Specs

As a general rule, we should try to avoid the use of global variables. Global variables
make functions less independent of each other since those functions share access to
the global variables. Global variables can also make finding bugs in a program more
difficult since almost any of the routines could be assigning invalid values to those
variables.

However, there are times when global variables will be necessary (as is the case with
the resource IDs if we load all the resources in a single function).

When a program does contain global variables, then those global variables should be
listed and described as part of the documentation along with the mini-specs.

Notice that the descriptions given give the purpose, name and type of any global
variables.

Any routine that accesses global variables should include details of this. When a
routine makes use of the current contents of a global variable, but does not change
those contents, then the routine is said to read the variable. If a routine changes the
contents of a global variable then this is known as a write.

Details of global variables read or written are added to a mini-spec after the parameter

Activity 8.25

Modify the SetUpGameScreen() function so that it starts with the lines

 rem *** Set screen aspect ***
 SetDisplayAspect(1024.0/768)

Save the updated project.

Press the Compile and Broadcast button and check that the project now runs
correctly.

GLOBAL VARIABLES in SpotTheDifference

Image IDs
 main, finish, credits, ring, button, fail : INTEGER

Sound IDs
 ringsound : INTEGER

Music IDs
 backgroundmusic : INTEGER

Number of differences found in image
 found : INTEGER

Hands On AGK BASIC: User-Defined Functions 219

details. So our updated mini-spec for LoadResources is:

Bottom-Up Programming
Top-down programming is particularly suited to a single programmer working alone,
but if you’re working as part of a team of programmers, then you’re likely to get
landed with having to code a specific routine which, when completed, will be handed
over to the team leader. He will then add your routine to the main program.

So let’s assume we’ve just been landed with the job of writing the EndScreen function.
How do we go about doing this task without having the other parts of the program?

Well, we need to start by getting hold of the mini-spec for the routine and turning it
into a coded function.

Although we might be tempted to think our job is done when we have coded the
function, we really need to check that our routine is operating correctly. It won’t do
your reputation as a programmer any good if you hand over code which contains
obvious faults.

To test a function we start by making sure that what we’ve written conforms to the
requirements of the mini-spec. Once we’re happy with that, then the code itself must
be tested. Since a function only executes when called by another piece of code, we
need to write a main program which will call up the function we want to test. This
main program, known as a test driver, needs to perform five main tasks:

± Set up any resources required by the function

± Supply a value for any parameters required by the function

± Execute the function

± Display the value of any parameters passed to the function

Activity 8.26

Update the other mini-specs for the SpotTheDifference2 project to give details
of any global variables referenced in each of the routines.

FUNCTION NAME : LoadResources
PARAMETERS
 In : None

GLOBALS
 Read : None
 Written : button, credit, finish, main, ring, fail, ringsound,
 backgroundmusic

PRE-CONDITION : None

DESCRIPTION : The images
 Button.bmp, Credits.jpg, End.jpg
 Main.jpg, Ring.png, Fail.jpg
 sound file
 Click.wav
 and music file
 Backgroundmusic.wav
 are loaded and assigned ID numbers.

220 Hands On AGK BASIC: User-Defined Functions

± Display any value returned by the function

Sometimes testing a function on its own is going to be difficult since it is so dependent
on the existence of other functions. In the case of EndScreen() we need to make sure
the appropriate images have been loaded and assign a value to the global variable
found. The test driver for EndScreen() is shown in FIG-8.10.

FIG-8.10

EndGame() Test Driver

rem *** EndGame Test Driver ***

rem *** Set up required resources ***
rem *** Global variables required ***
global	finish,	credits,	button,	fail
global found
rem *** Images required ***
finish	=			 LoadImage(“End.jpg”)
credits = LoadImage(“Credits.jpg”)
button = LoadImage(“Button.bmp”,1)
fail = LoadImage(“Fail.jpg”)

rem *** Set found ***
found = 6
rem *** Call function under test ***
EndGame(10)
end

rem *** Finish game ***
function EndGame(timetaken)
 rem *** Set screen aspect ***
 SetDisplayAspect(768/1024.0)
 rem *** IF all differences found ***
 if found = 6
 rem *** Show End screen... ***
	 	 	 CreateSprite(1,finish)
 SetSpriteSize(1,100,100)
 rem *** ...and total time taken ***
 CreateText(1,str(timetaken))
 SetTextColor(1,0,0,0,255)
 SetTextPosition(1,36,31)
 Sync()
 else
 rem *** Show Fail screen... ***
 CreateSprite(1,fail)
 SetSpriteSize(1,100,100)
 endif
 rem *** ... with button... ***
 CreateSprite(2,button)
 SetSpriteSize(2,15,-1)
 SetSpritePosition(2,80,90)
 rem *** Allow for Credits button press ***
 do
 pressed = GetPointerPressed()
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF Credit button pressed THEN ***
 if hit =2
 rem *** Show credits for 5 secs ***
 CreateSprite(3,credits)
 SetSpriteSize(3,100,100)
 SetSpriteDepth(3,8)

Hands On AGK BASIC: User-Defined Functions 221

The coding shown here will test the routine working on the assumption that all 6
differences were found and that the total time taken was 10 seconds. To create a
complete set of tests, we need to try various other times to ensure they are displayed
correctly and also to set found to a value less than 6 which will check that the Fail
screen is displayed correctly. Also, when the End and Fail screens are showing, we
should press the Credits button to check that the Credits screen appears correctly.

While various programmers worked on creating the various routines of a project, the
project leader would create the code for the main program, making use of a set of test
stubs for the functions called. As each function became available from the rest of the
team he would replace each test stub with the actual function code and test the
program as each new routine was added.

This approach to program construction is known as bottom-up programming.

Structure Diagrams
As we begin to develop more complex programs containing several routines, it can
be useful to retain an overview of the program’s structure showing which routine is
called by which, and the values that pass between them. This is done using a structure
diagram.

A structure diagram contains one rectangle for each routine in a program, including
a rectangle representing the main program code (this is given the name of the project).
Each rectangle contains the name of the routine it represents. The collection of
rectangles for the SpotTheDifference2 project is shown in FIG-8.11.

The rectangles are now set in a series of levels, with SpotTheDifference (the renamed

FIG-8.10
(continued)

EndGame() Test Driver

FIG-8.11

Function Rectangles

In the design, the
program is referred to as
SpotTheDifference (the
2 being removed).

SpotTheDifference LoadResources SetUpGameScreen PlayGame EndGame

 Sync()
 Sleep(5000)
 rem *** Remove Credits screen ***
 DeleteSprite(3)
 endif
 endif
 Sync()
 loop
 endfunction

Activity 8.27

Start a new project called EndScreenTestDriver.

Create the project’s media folder and copy the relevant resources to the folder.

Change main.agc to match the code in FIG-8.10 and run the code.

Make changes to the code so that other times are used and that the Fail screen is
displayed rather than the End screen.

222 Hands On AGK BASIC: User-Defined Functions

main logic) at the top. On the second level are routines called by SpotTheDifference.

The new layout is shown in FIG-8.12.

Finally, we add any parameters passed between the routines. In this case PlayGame
returns the time taken to find all the differences and EndGame takes that same value
as an In parameter. Parameters are represented by labelled, directed circles (see
FIG-8.13).

The circle with arrowed line symbol in the diagram is used to show the direction in
which data is passed, with In parameters pointing towards a routine and Out
parameters pointing away from the routine.

Summary
± Good programming technique requires program code to be partitioned into

routines.

± Each routine should perform a single task.

± A routine’s name should reflect the purpose of that routine.

± Mini-specs should be produced when designing a routine.

± A mini-spec should include the name of the routine, its parameters, restrictions
of the range of values a parameter may take and a detailed description of the
routine’s purpose.

± A routine should be made as flexible as possible so that it can be used in
situations which differ slightly from the original requirement.

± The term global can be used to create a variable which can be accessed
anywhere within a program.

± Top-down programming begins by coding the main routine.

± Top-down programming uses stubs in place of completed routines.

FIG-8.12

A Structure Diagram
Showing Call Structure

SpotTheDifference

LoadResources SetUpGameScreen PlayGame EndGame

FIG-8.13

A Structure Diagram
Showing Parameters

Note that global
variables are not
represented in structure
diagrams.

SpotTheDifference

LoadResources SetUpGameScreen PlayGame EndGame

timetaken

timetaken

Hands On AGK BASIC: User-Defined Functions 223

± Bottom-up programming starts by coding individual routines.

± Bottom-up programming uses test drivers to check that completed routines are
operating correctly.

± A structure diagram shows every routine in a program, how they are called,
and the values that pass between them.

224 Hands On AGK BASIC: User-Defined Functions

Solutions
Activity 8.1

We could include the size, font and colour to be used for the
asterisks.

Activity 8.2
No solution required.

Activity 8.3
Code for modified version of UsingFunctions:

rem *** main program ***
DrawLine()
DrawLine()
Sync()
do
loop
end

rem *** Draw a line function ***
function DrawLine()
 Print(“**********”)
endfunction

Activity 8.4
The program’s output is

 6
 3

The first of these is the value of the variable v defined within
the Test() function; the second is the value held in the main
program’s v.

Activity 8.5
Code for the updated version of UsingFunctions:

rem *** main program ***
DrawLine()
DrawLine()
Sync()
do
loop
end

rem *** Draw a line function ***
function DrawLine()
 for c = 1 to 10
 PrintC(“*”)
 next c
 Print(“ “)

endfunction

Activity 8.6
Code for the updated version of UsingFunctions:

rem *** main program ***
DrawLine(5)
DrawLine(12)
Sync()
do
loop
end

rem *** Draw a line function ***
function DrawLine(ilength)
 for c = 1 to ilength
 PrintC(“*”)
 next c
 Print(“ “)
endfunction

Activity 8.7
Code for the updated version of UsingFunctions:

rem *** main program ***

rem *** Generate random number ***
num = Random(1,10)
rem *** Call function ***
DrawLine(num)
DrawLine(num*3-2)
Sync()
do
loop
end

rem *** Draw a line function ***
function DrawLine(ilength)
 for c = 1 to ilength
 PrintC(“*”)
 next c
 Print(“ “)

endfunction

Activity 8.8
Code for the updated version of UsingFunctions:

rem *** main program ***

rem *** Call function ***
DrawLine(10,”#”)
Sync()
do
loop
end

rem *** Draw a line function ***
function DrawLine(ilength, schar$)
 for c = 1 to ilength
 PrintC(schar$)
 next c
 Print(“ “)
endfunction

Activity 8.9
Code for the updated version of UsingFunctions:

rem *** main program ***

rem *** Call function ***
DrawLine(101,”+”)
Sync()
do
loop
end

rem *** Draw a line function ***
function DrawLine(ilength, schar$)
 if ilength < 1 or ilength > 100
 exitfunction
 endif
 for c = 1 to ilength
 PrintC(schar$)
 next c
 Print(“ “)
endfunction

Activity 8.10
Code for TestFact:

rem *** main program ***
rem *** Generate random number ***
num = Random(1,10)
rem *** Find factorial of number generated ***
answer = Factorial(num)
rem *** Display results ***
PrintC(“Factorial of “)
PrintC(num)
PrintC(“ is “)
Print(answer)
Sync()
do
loop
end

Hands On AGK BASIC: User-Defined Functions 225

rem *** Factorial Function ***
function Factorial(ival)
 iresult = 1
 for c = 2 to ival
 iresult = iresult * c
 next c
endfunction iresult

Activity 8.11
Code for the updated version of TestFact:

rem *** main program ***

answer = Factorial(16)
rem *** Display results ***
PrintC(“Factorial of 16 is “)
Print(answer)
Sync()
do
loop
end

rem *** Factorial Function ***
function Factorial(ival)
 if ival < 1 or ival > 15
 exitfunction 0
 endif
 iresult = 1
 for c = 2 to ival
 iresult = iresult * c
 next c
endfunction iresult

Activity 8.12
Code for the updated version of TestFact:

rem *** main program ***
rem *** Generate random number ***
num = Random(10,20)
answer = Factorial(num)
if answer = 0
 rem *** Display error message ***
 PrintC(num)
 Print(“ Factorial too high to calculate”)
else
 rem *** Display results ***
 PrintC(“Factorial of “)
 PrintC(num)
 PrintC(“ is “)
 Print(answer)
endif
Sync()
do
loop
end

rem *** Factorial Function ***
function Factorial(ival)
 if ival < 1 or ival > 15
 exitfunction 0
 endif
 iresult = 1
 for c = 2 to ival
 iresult = iresult * c
 next c
endfunction iresult

Activity 8.13

Activity 8.14
Code for the updated version of StringFunction:

rem *** Main program ***
rem *** Generate string ***
text1$ = RandomString(-1)
text2$ = RandomString(10)
text3$ = RandomString(-5)
rem *** Display strings ***
Print(“Random length:” + text1$)
Print(“Length 10 :” + text2$)
Print(“Invalid :” + text3$+”XXX”)
Sync()
do
loop

rem *** Generate a random-length string of random
letters ***
function RandomString(ilength)
 rem *** IF invalid length, return empty string

 if ilength <>-1 and (ilength <1 or ilength >50)
 exitfunction “”
 endif
 rem *** Determine length of string ***
 if ilength = -1
 rem *** Generate length for string ***
 size = Random(1,50)
 else
 size = ilength
 endif
 rem *** start with empty string ***
 sresult$ = ””
 rem *** FOR size times ***
 for c = 1 to size
 rem *** Add new character to end of string

 sresult$ = sresult$ + Chr(Random(65,90))
 next c
 rem *** return the string generated ***
endfunction sresult$

Notice that the third Print statement in the main section adds
XXX to the display. This is used to prove that the returned
string is empty rather than filled with space characters. For an
empty string, the final colon and XXX will be joined (:XXX);
if the string contained spaces there would be a gap between
the colon and the X’s (: XXX).

Activity 8.15
No solution required.

Activity 8.16
No solution required.

Activity 8.17
Code for SpotTheDifference2:

LoadResources()
SetUpGameScreen()
time = PlayGame()
EndGame(time)

Changes to setup.agc:
width=1024
height=768

Activity 8.18
Code for the updated version of SpotTheDifference2:

LoadResources()
SetUpGameScreen()
time = PlayGame()
EndGame(time)
Sync()
do
loop
end

FUNCTION NAME : RandomString
PARAMETERS
 In : None
 Out : sresult : string
PRE-CONDITION : None
DESCRIPTION : Creates a string of random
 capital letters between 1 and
 50 characters in length.

226 Hands On AGK BASIC: User-Defined Functions

function LoadResources
 Print(“LoadResources”)
endfunction

function SetUpGameScreen()
 Print(“SetUpGameScreen”)
endfunction

function PlayGame()
 Print(“PlayGame”)
endfunction 10

function EndGame(timetaken)
 Print(“EndGame”)
endfunction

You should see the names of the four functions appear when
the program is run.

Activity 8.19
Code for the updated version of SpotTheDifference2:

LoadResources()
SetUpGameScreen()
time = PlayGame()
EndGame(time)
Sync()
do
loop
end

rem *** Load resources ***
function LoadResources()
 rem *** Load images ***
 main = LoadImage(“Main.jpg”)
	 finish	=			LoadImage(“End.jpg”)
 credits = LoadImage(“Credits.jpg”)
 ring = LoadImage(“Ring.png”,0)
 button = LoadImage(“Button.bmp”,1)
 fail = LoadImage(“Fail.jpg”)
 rem *** Load sounds ***
 ringsound = LoadSound(“Click.wav”)
 rem *** Load music ***
 backgroundmusic = LoadMusic(“Background.wav”)
endfunction

function SetUpGameScreen()
 Print(“SetUpGameScreen”)
endfunction

function PlayGame()
 Print(“PlayGame”)
endfunction 10

function EndGame(timetaken)
 Print(“EndGame”)

endfunction

Activity 8.20
Code for the updated version of SpotTheDifference2:

LoadResources()
SetUpGameScreen()
time = PlayGame()
EndGame(time)
Sync()
do
loop
end

rem *** Load resources ***
function LoadResources()
 rem *** Load images ***
 main = LoadImage(“Main.jpg”)
	 finish	=			LoadImage(“End.jpg”)
 credits = LoadImage(“Credits.jpg”)
 ring = LoadImage(“Ring.png”,0)
 button = LoadImage(“Button.bmp”,1)
 fail = LoadImage(“Fail.jpg”)
 rem *** Load sounds ***
 ringsound = LoadSound(“Click.wav”)
 rem *** Load music ***

 backgroundmusic = LoadMusic(“Background.wav”)
endfunction

rem *** Set up main section of the game ***
function SetUpGameScreen()
 rem *** Play music ***
 PlayMusic(backgroundmusic)
 rem *** Show main screen ***
 CreateSprite(1,main)
 SetSpriteSize(1,100,100)
 rem *** Load rings at image differences ***
 CreateSprite(2,ring)
 SetSpriteSize(2,-1,10)
 SetSpritePosition(2,91,86)
 CloneSprite(3,2)
 SetSpritePosition(3,51.5,22)
 CloneSprite(4,2)
 SetSpritePosition(4,49,68)
 CloneSprite(5,2)
 SetSpritePosition(5,73,66)
 CloneSprite(6,2)
 SetSpritePosition(6,88.5,66)
 CloneSprite(7,2)
 SetSpritePosition(7,55.75,62.5)
 rem *** Hide rings ***
 for c = 2 to 7
 SetSpriteDepth(c,9)
 SetSpriteVisible(c,0)
 next c
 rem *** Update screen ***
 Sync()
endfunction

function PlayGame()
 Print(“PlayGame”)
endfunction 10

function EndGame(timetaken)
 Print(“EndGame”)
endfunction

The new function should begin by starting the background
music. However, it fails when attempting to do this because it
does not recognise the ID given for the music resource.

Activity 8.21
Code for the updated version of SpotTheDifference2:

rem	***	Define	global	variables	***
rem *** IDs for images ***
global	main,	finish,	credits,ring,	button,	fail
rem *** IDs for sound ***
global ringsound
rem *** IDs for music ***
global backgroundmusic

LoadResources()
SetUpGameScreen()
time = PlayGame()
EndGame(time)
Sync()
do
loop
end

rem *** Load resources ***
function LoadResources()
 rem *** Load images ***
 main = LoadImage(“Main.jpg”)
	 finish	=			LoadImage(“End.jpg”)
 credits = LoadImage(“Credits.jpg”)
 ring = LoadImage(“Ring.png”,0)
 button = LoadImage(“Button.bmp”,1)
 fail = LoadImage(“Fail.jpg”)
 rem *** Load sounds ***
 ringsound = LoadSound(“Click.wav”)
 rem *** Load music ***
 backgroundmusic = LoadMusic(“Background.wav”)
endfunction

rem *** Set up main section of the game ***
function SetUpGameScreen()
 rem *** Play music ***
 PlayMusic(backgroundmusic)
 rem *** Show main screen ***
 CreateSprite(1,main)
 SetSpriteSize(1,100,100)
 rem *** Load rings at image differences ***

Hands On AGK BASIC: User-Defined Functions 227

 CreateSprite(2,ring)
 SetSpriteSize(2,-1,10)
 SetSpritePosition(2,91,86)
 CloneSprite(3,2)
 SetSpritePosition(3,51.5,22)
 CloneSprite(4,2)
 SetSpritePosition(4,49,68)
 CloneSprite(5,2)
 SetSpritePosition(5,73,66)
 CloneSprite(6,2)
 SetSpritePosition(6,88.5,66)
 CloneSprite(7,2)
 SetSpritePosition(7,55.75,62.5)
 rem *** Hide rings ***
 for c = 2 to 7
 SetSpriteDepth(c,9)
 SetSpriteVisible(c,0)
 next c
 rem *** Update screen ***
 Sync()
endfunction

function PlayGame()
 Print(“PlayGame”)
endfunction 10

function EndGame(timetaken)
 Print(“EndGame”)
endfunction

The program operates correctly now, getting as far as
showing the main game screen.

Activity 8.22
Code for the updated version of SpotTheDifference2:

rem	***	Define	global	variables	***
rem *** IDs for images ***
global	main,	finish,	credits,ring,	button,	fail
rem *** IDs for sound ***
global ringsound
rem *** IDs for music ***
global backgroundmusic

LoadResources()
SetUpGameScreen()
time = PlayGame()
EndGame(time)
Sync()
do
loop
end

rem *** Load resources ***
function LoadResources()
 rem *** Load images ***
 main = LoadImage(“Main.jpg”)
	 finish	=			LoadImage(“End.jpg”)
 credits = LoadImage(“Credits.jpg”)
 ring = LoadImage(“Ring.png”,0)
 button = LoadImage(“Button.bmp”,1)
 fail = LoadImage(“Fail.jpg”)
 rem *** Load sounds ***
 ringsound = LoadSound(“Click.wav”)
 rem *** Load music ***
 backgroundmusic = LoadMusic(“Background.wav”)
endfunction

rem *** Set up main section of the game ***
function SetUpGameScreen()
 rem *** Play music ***
 PlayMusic(backgroundmusic)
 rem *** Show main screen ***
 CreateSprite(1,main)
 SetSpriteSize(1,100,100)
 rem *** Load rings at image differences ***
 CreateSprite(2,ring)
 SetSpriteSize(2,-1,10)
 SetSpritePosition(2,91,86)
 CloneSprite(3,2)
 SetSpritePosition(3,51.5,22)
 CloneSprite(4,2)
 SetSpritePosition(4,49,68)
 CloneSprite(5,2)
 SetSpritePosition(5,73,66)
 CloneSprite(6,2)
 SetSpritePosition(6,88.5,66)
 CloneSprite(7,2)

 SetSpritePosition(7,55.75,62.5)
 rem *** Hide rings ***
 for c = 2 to 7
 SetSpriteDepth(c,9)
 SetSpriteVisible(c,0)
 next c
 rem *** Update screen ***
 Sync()
endfunction

rem *** Play game ***
function PlayGame()
 rem *** Start timer ***
 start = GetSeconds()
 CreateText(1,str(timetaken))
 SetTextColor(1,0,0,0,255)
 SetTextPosition(1,88,6)
 rem *** Set count of differences found ***
 found = 0
 rem *** Number of clicks so far is zero ***
 rem *** Get user clicks until all 6 differences
 found ***
 repeat
 rem *** Check for clicked(pressed)
 pressed = GetPointerPressed()
 rem *** IF pressed, ***
 if pressed = 1
 rem *** Add 1 to clicks ***
 inc presscount
 rem *** Check for sprite hit ***
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF clicked over hidden ring THEN
 if hit > 1 and hit <=7 and
 GetSpriteVisible(hit) = 0
 rem *** Show ring ***
 SetSpriteVisible(hit,1)
 rem *** Play sound effect ***
 PlaySound(ringsound)
 rem *** Add 1 to differences found ***
 found = found + 1
 endif
 endif
 rem *** Update time so far ***
 timetaken = GetSeconds() - start
 SetTextString(1,Str(timetaken))
 Sync()
 until found = 6 or presscount = 7
 rem *** Delete existing sprites ***
 for c = 1 to 7
 DeleteSprite(c)
 next c
 rem *** Delete sound ***
 DeleteSound(ringsound)
 rem *** Delete text ***
 DeleteText(1)
endfunction timetaken

function EndGame(timetaken)
 Print(“EndGame”)
endfunction

The program now allows the player to click on the six
differences.

Activity 8.23
Code for the updated version of SpotTheDifference2:

rem	***	Define	global	variables	***
rem *** IDs for images ***
global	main,	finish,	credits,ring,	button,	fail
rem *** IDs for sound ***
global ringsound
rem *** IDs for music ***
global backgroundmusic

LoadResources()
SetUpGameScreen()
time = PlayGame()
EndGame(time)
end

rem *** Load resources ***
function LoadResources()
 rem *** Load images ***
 main = LoadImage(“Main.jpg”)

228 Hands On AGK BASIC: User-Defined Functions

	 finish	=			LoadImage(“End.jpg”)
 credits = LoadImage(“Credits.jpg”)
 ring = LoadImage(“Ring.png”,0)
 button = LoadImage(“Button.bmp”,1)
 fail = LoadImage(“Fail.jpg”)
 rem *** Load sounds ***
 ringsound = LoadSound(“Click.wav”)
 rem *** Load music ***
 backgroundmusic = LoadMusic(“Background.wav”)
endfunction

rem *** Set up main section of the game ***
function SetUpGameScreen()
 rem *** Play music ***
 PlayMusic(backgroundmusic)
 rem *** Show main screen ***
 CreateSprite(1,main)
 SetSpriteSize(1,100,100)
 rem *** Load rings at image differences ***
 CreateSprite(2,ring)
 SetSpriteSize(2,-1,10)
 SetSpritePosition(2,91,86)
 CloneSprite(3,2)
 SetSpritePosition(3,51.5,22)
 CloneSprite(4,2)
 SetSpritePosition(4,49,68)
 CloneSprite(5,2)
 SetSpritePosition(5,73,66)
 CloneSprite(6,2)
 SetSpritePosition(6,88.5,66)
 CloneSprite(7,2)
 SetSpritePosition(7,55.75,62.5)
 rem *** Hide rings ***
 for c = 2 to 7
 SetSpriteDepth(c,9)
 SetSpriteVisible(c,0)
 next c
 rem *** Update screen ***
 Sync()
endfunction

rem *** Play game ***
function PlayGame()
 rem *** Reset aspect ratio ***
 SetDisplayAspect(768/1024.0)
 rem *** Start timer ***
 start = GetSeconds()
 CreateText(1,str(timetaken))
 SetTextColor(1,0,0,0,255)
 SetTextPosition(1,88,6)
 rem *** Set count of differences found ***
 found = 0
 rem *** Number of clicks so far is zero ***
 rem *** Get user clicks until all 6 differences
	 found	***
 repeat
 rem *** Check for clicked(pressed)
 pressed = GetPointerPressed()
 rem *** IF pressed, ***
 if pressed = 1
 rem *** Add 1 to clicks ***
 inc presscount
 rem *** Check for sprite hit ***
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF clicked over hidden ring THEN
 if hit > 1 and hit <=7 and
	 	 	 GetSpriteVisible(hit)	=	0
 rem *** Show ring ***
 SetSpriteVisible(hit,1)
 rem *** Play sound effect ***
 PlaySound(ringsound)
 rem *** Add 1 to differences found ***
 found = found + 1
 endif
 endif
 rem *** Update time so far ***
 timetaken = GetSeconds() - start
 SetTextString(1,Str(timetaken))
 Sync()
 until found = 6 or presscount = 7
 rem *** Delete existing sprites ***
 for c = 1 to 7
 DeleteSprite(c)
 next c
 rem *** Delete sound ***
 DeleteSound(ringsound)
 rem *** Delete text ***
 DeleteText(1)

endfunction timetaken

rem *** Finish game ***
function EndGame(timetaken)
	 	 rem	***	Wait	before	finishing	***
 Sleep(1000)
 rem *** Reset aspect ratio ***
 SetDisplayAspect(768.0/1024.0)
 rem *** IF all differences found ***
 if found = 6
 rem *** Show End screen... ***
	 	 	 CreateSprite(1,finish)
 SetSpriteSize(1,100,100)
 rem *** ...and total time taken ***
 CreateText(1,str(timetaken))
 SetTextColor(1,0,0,0,255)
 SetTextPosition(1,36,31)
 Sync()
 else
 rem *** Show Fail screen... ***
 CreateSprite(1,fail)
 SetSpriteSize(1,100,100)
 endif
 rem *** ... with button... ***
 CreateSprite(2,button)
 SetSpriteSize(2,15,-1)
 SetSpritePosition(2,80,90)
 rem *** Allow for Credits button press ***
 do
 pressed = GetPointerPressed()
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF Credit button pressed THEN ***
 if hit =2
 rem *** Show credits for 5 secs ***
 CreateSprite(3,credits)
 SetSpriteSize(3,100,100)
 SetSpriteDepth(3,8)
 Sync()
 Sleep(5000)
 rem *** Remove Credits screen ***
 DeleteSprite(3)
 endif
 endif
 Sync()
 loop
 endfunction

Even when we find all 6 differences the game shows the Fail
screen.

The variable required is found which contains the count of
how many differences were found by the player.

We need to add the code
rem *** Differences found ***
global found

The program works correctly after these lines have been
added.

Activity 8.24
Although the app runs, it is not in landscape mode for the
main screen.

Activity 8.25

The modified version of SetUpGameScreen():

rem *** Set up main section of the game ***
function SetUpGameScreen()
 rem *** Set screen aspect ***
 SetDisplayAspect(1024.0/768)
 rem *** Play music ***
 PlayMusic(backgroundmusic)
 rem *** Show main screen ***
 CreateSprite(1,main)
 SetSpriteSize(1,100,100)
 rem *** Load rings at image differences ***
 CreateSprite(2,ring)
 SetSpriteSize(2,-1,10)

Hands On AGK BASIC: User-Defined Functions 229

 SetSpritePosition(2,91,86)
 CloneSprite(3,2)
 SetSpritePosition(3,51.5,22)
 CloneSprite(4,2)
 SetSpritePosition(4,49,68)
 CloneSprite(5,2)
 SetSpritePosition(5,73,66)
 CloneSprite(6,2)
 SetSpritePosition(6,88.5,66)
 CloneSprite(7,2)
 SetSpritePosition(7,55.75,62.5)
 rem *** Hide rings ***
 for c = 2 to 7
 SetSpriteDepth(c,9)
 SetSpriteVisible(c,0)
 next c
 rem *** Update screen ***
 Sync()
endfunction

The game should now play correctly on your device.

Activity 8.26

Activity 8.27
To check that the Fail screen appears correctly, modify the
line

 found = 6

in the main section of the program to read
 found = 5

FUNCTION NAME : SetUpGameScreen
PARAMETERS
 In : None
 Out : None
GLOBALS
 Read : backgroundmusic, main, ring
 Written : None
PRE-CONDITION : None
DESCRIPTION : Sets the aspect ratio of the
 screen to landscape, starts
 the background music
 playing, displays the main
 game screen, positions the
 rings over the image
 differences and hides the
 rings.

FUNCTION NAME : PlayGame
PARAMETERS
 In : None
 Out : timetaken : integer
GLOBALS
 Read : ringsound
 Written : found
PRE-CONDITION : None
DESCRIPTION : Allows the player to click on
 the screen up to 7 times.
 Keeps a count of how many
 have been found. Stops when
 all 6 found or when 7 clicks
 made.

FUNCTION NAME : EndGame
PARAMETERS
 In : timetaken : integer
 Out : None
GLOBALS
 Read : found, finish, fail
 Written : None
PRE-CONDITION : None
DESCRIPTION : The display returns to portrait
 layout. If all 6 differences
 found, the routine displays the
 Finish screen and the time
 taken in seconds. If all 6 are
 not found, the fail screen is
 displayed.
 If the Credits button is
 pressed, the Credits screen
 shows for 5 seconds.

230 Hands On AGK BASIC: User-Defined Functions

Hands On AGK BASIC: String and Math Functions 231

String and Math Functions

In this Chapter:

T Standard String-Handling Functions

T Adding New String-Handling Functions

T Updating the StringLibrary File

T Understanding Cartesian Coordinates

T Math Functions

T Using sin() and cos() to Calculate Coordinates

232 Hands On AGK BASIC: String and Math Functions

String Functions

Introduction
Unlike numeric variables which hold only a single value, strings can hold a whole
collection of characters, perhaps several words or even sentences. For example, it’s
quite valid to store a line of text in a string variable with a statement such as:

 poem$ = “Mary had a little lamb”

Because a string can contain so many characters, there are several operations that
programmers find themselves needing to do with strings. For example, we might
want to find out how many characters are in a string, convert a string to uppercase,
or extract part of a string.

AGK BASIC contains a number of string-handling functions as part of the core
language. These functions are listed and explained in the first part of this chapter.

String-Handling Functions
Len()

The Len()function returns the number of characters in a string. The string to be
examined is given in parentheses. For example, the expression

 Len(“Hello”)

would return the value 5 since there are 5 characters in the word Hello.

Spaces and any other non-alphabetic symbols within a string also count as characters,
so the line

 Len(“Hello, world?”)

would return the value 13, since it will include the comma, space and question mark
in the count.

The Len() function has the format shown in FIG-9.1.

where :

 string is a string constant, string variable, or string expression.

As with any function that returns a value, this value can be displayed, assigned to a
variable, or used in an expression. Hence each of the following lines are valid:

 Print(Len(“Hello”)) ‘displays 5
 result = Len(“Hello”) ‘sets result equal to 5
 ans = Len(“Hello”) *3 ‘sets ans to 15 (5 x 3)
 if Len(“Hello”) > 3 ‘condition is true since 5 > 3

Of course, it’s much more likely that you’ll use a string variable as an argument
rather than a string constant.

FIG-9.1

Len() Len (string)integer

Hands On AGK BASIC: String and Math Functions 233

Notice that in order to use the RandomString() function, it is necessary to add a

 #include “StringLibrary.agc”

command at the start of the program.

Upper()

The Upper() function takes a string argument and returns the uppercase version of
that string. For example, the line

 Print(Upper(“Hello”))

would display the word HELLO.

Any characters in the string that are not letters are returned unchanged by this
statement. Hence,

 Print(Upper(“Abc123”))

would display ABC123.

Activity 9.1

In this Activity we are going to make use of our StringLibrary.agc file which we
placed in the Library folder in the last chapter.

Start a new project called TestLen. Compile the default code.

Using Windows Explorer, make a copy of the StringLibrary.agc file found at
HandsOnAGK/Library and paste it into the TestLen folder.

Modify the contents of main.agc to read:

 rem *** Test Len() Function ***
 rem *** Include Library function ***
 #include “StringLibrary.agc”

 rem *** Generate string ***
 text$ = RandomString(-1)
 rem *** Print string and its length ***
 Print(text$)
 Print(Len(text$))
 Sync()
 do
 loop

Test and save your program.

Activity 9.2

What would be the value of b$ after the following lines are executed?

 a$ = “1-by-1”
 b$ = Upper(a$)

234 Hands On AGK BASIC: String and Math Functions

The Upper()statement has the format shown in FIG-9.2.

where:

 string is any string value.

Lower()

The Lower()function takes a string argument and returns the lowercase version of
that string. Any non-alphabetic characters in the string are returned unchanged.

 Print(Lower(“Hello”))

would display the word hello.

This statement has the format shown in FIG-9.3.

where:

 string is any string value.

Left()

It’s possible to extract the left-hand section of a string using the Left() function. This
time you need to include two parameters: the first is the string itself, and the second
is the number of characters you want to extract. For example,

 Print(Left(“abcdef”,2))

would display ab on the screen, Left() having returned the left two characters from
the string abcdef.

If the number given is larger than the number of characters in the string as in

 ans$ = Left(“abcdef”,10)

then the complete string is returned (i.e. abcdef)

Should a zero, or negative value be given as in

 result$ = Left(“abcdef”,0)

then the returned string contains no characters. That is, result$ will hold an empty
string.

The Left() function has the format shown in FIG-9.4.

where:

 string is any string value.

FIG-9.2

Upper() Upper (string)string

FIG-9.3

Lower() Lower (string)string

FIG-9.4

Left()

Left (string)string inum

Hands On AGK BASIC: String and Math Functions 235

 inum is a positive integer value giving the number of characters to be
 copied. It should be in the range 0 to the number of characters in
 the string.

Right()

If we want to extract the right-hand part of a string we can use the Right() function.
For example, the statement

 Print(Right(“abcdef”,2))

would display ef on the screen.

The statement has the format shown in FIG-9.5.

where:

 string is any string value.

 inum is a positive integer value giving the number of characters to be
 copied. It should be in the range 0 to the number of characters in
 the string.

Mid()

This statement extracts a substring from the specified string. The position of the first
character and the number of characters to be extracted is given as the second and third
arguments to the function. For example, the statement

 letter$ = Mid(“abcdef”,4,2)

would place the value de in letter$ (extracts 2 characters starting at the 4th character
in the string). We can use this statement to access each character in a string. For
example, the code snippet

 text$ = RandomString(-1)
 for c = 1 to Len(text$)
 Print(Mid(text$,c,1))
 next c
 Sync()

will display each character of the string stored in text$ on a separate line.

FIG-9.5

Right()

Right (string)string inum

Activity 9.3

Create a new project, Letters, which makes use of the code above to display
a generated string and then displays the individual characters of the string.
Remember to copy the StringLibrary.agc file into the project folder and add a
#include instruction to your code.

Modify the program so that the characters are displayed in reverse order on a
single line.

Change the program so that, rather than display the characters, it counts how
many E’s are in the string.

236 Hands On AGK BASIC: String and Math Functions

The format for the Mid() statement is given in FIG-9.6.

where:

 string is any string value.

 ipost is a positive integer giving the position of the first character to
 be extracted. Range 1 to length of string.

 inum is a positive integer giving the number of characters to be
 copied.

Asc()

This function returns an integer value representing the ASCII value of the first
character in the string supplied. A typical statement such as

 Print(Asc(“ABC”))

would display the value 65 since that is the ASCII code for a capital A. Using this
function on an empty string as in the line

 result = Asc(“”)

returns the value zero.

The format for this statement is given in FIG-9.7.

where:

 string is any string value, but only the first character is used by the
 function.

Chr()

The Chr() function complements the Asc() function by returning the character
whose ASCII code matches the specified value. For example, the line

 Print(Chr(65))

would display a capital letter A since the ASCII code for a capital A is 65.

The value given should lie between 0 and 127. However, only characters with an
ASCII code of 32 to 126 are displayable; other values are used for various control
purposes and attempting to display such values has no visible effect in AGK BASIC.

We could display all the letters of the alphabet in uppercase using the lines:

 for c = 1 to 26
 Print(Chr(64+c))
 next c
 Sync()

FIG-9.6

Mid() Mid (string)string ipost inum

ASCII character codes
are given in Appendix
A at the end of the
book.

FIG-9.7

Asc() Asc (string)integer

ASCII 32 is the space
character. So although
it is displayable,
there’s not much to
see!

Hands On AGK BASIC: String and Math Functions 237

The format for this statement is given in FIG-9.8.

where:

 ivalue is an integer value. This value must be between 0 and 127, but
 is more likely to be between 32 and 126, these being the ASCII
 range of values for all displayable characters.

Str()

The Str() function takes a numeric argument and returns a string containing the
same digits as the argument. For example, the line

 result$ = Str(123)

will store the string 123 in the variable result$

When converting a real value, the number of decimal places required can be specified,
as in the line

 value$ = Str(12.326,2)

which will store 12.33 in value$. Note that the last digit is rounded.

Perhaps the most useful application of this function is to simplify output involving
several values. For example, in past programs we have had to write code such as:

PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)

Using the Str() function we can now rewrite this as:

Print(“My number was : “ + Str(dice))
Print(“Your guess was : “ + Str(guess))

This statement has the format shown in FIG-9.9.

where:

FIG-9.8

Chr()

Chr (ivalue)string

Activity 9.4

Create a new project called ASCIITable.

Code the program so that it displays the numbers 32 to 126 and, beside each
number, the corresponding ASCII character.

Get the program to pause after every 25 characters, waiting for 5 seconds
before continuing.

Test and save your program.

The + operator is used
to join two strings.

FIG-9.9

Str() Str (value)string iplaces

238 Hands On AGK BASIC: String and Math Functions

 value is any numeric value.

 iplaces is an integer value giving the number of decimal places to be
 stored.

Val()

This function takes a string argument and returns the integer equivalent. The string
should contain only numeric characters. For example, executing the line

 result = Val(“123”)

will store the value 123 in the variable result.

If the string contains a real value, only the integral part will be converted. So the line

 ans# = Val(“123.45”)

gives ans# a value of 123.0 when displayed.

If the string contains a mixture of numeric and non-numeric characters, the value
returned is constructed from all numeric characters preceding the first non-numeric
character. For example, the call

 Val(“12ABC3”)

returns the value 12.

If the string starts with a non-numeric character (other than a sign or decimal point)
then the function returns zero.

The string may hold a value which represents a number in a different number base.
But when the value is not a base 10 number, we need to add a second parameter
giving the number’s base. So for example, we could convert a string representing a
hexadecimal number using the line:

 num = Val(“FE”,16)

 which would store the value 254 (the decimal equivalent of FE16) in num.

Although the most obvious number bases for a computer system are 2 (binary), 16
(hexadecimal) and 8 (octal), you can have any integer base you wish. For example,
the statement

 v = Val(“210”,3)

Activity 9.5

Start a new project called CountZero and write a program to generate a random
number between 1000 and 65000 which displays the number generated and a
count of how many zeros are in that number.

(HINT: Convert the number to a string then count the number of zeros in that
string.)

Test and save your project.

Hands On AGK BASIC: String and Math Functions 239

states that 210 is a base 3 number and therefore v will be set to 21 (2*9+1*3+0*1).

The Val() function has the format shown in FIG-9.10.

where:

 string is a string containing only numeric characters, a decimal point,
 or a sign (+ or -).

 ibase is an positive integer value giving the number base.

ValFloat()

To convert a string to a real number, use ValFloat() (see FIG-9.11).

where:

 string is a string containing only numeric characters, a decimal point,
 or a sign (+ or -).

Space()

Although it is easy enough to create a string full of spaces with a line such as

 text$ = “ ”

if you want an exact number of spaces in your string, then it’s easier to use the
Space() function which returns a string containing a specified number of spaces.

 text$ = Space(23)

assigns a string containing 23 spaces to the variable text$. The format for this
statement is shown in FIG-9.12.

where:

 ivalue is a positive integer which specifies the number of spaces in the
 string returned by the function.

Bin()

As you know, the computer uses the binary number system when storing programs
and data. If you’d like to see what a specific integer value looks like in binary, this
function will do the job for you. It returns a string showing the binary representation
of a specified integer value. For example, the instruction

 binary$ = Bin(65)

would assign the string 1000001 (the binary equivalent of 65) to the variable binary$.

FIG-9.10

Val() Val (string)integer ibase

FIG-9.11

ValFloat()

ValFloat (string)float

FIG-9.12

Space() Space (ivalue)string

240 Hands On AGK BASIC: String and Math Functions

If a negative value is used, the string returned is in 2’s complement form. This means
that the instruction

 Print(Bin(-65))

would display the string 11111111111111111111111110111111. The format for the
Bin()function is shown in FIG-9.13.

where:

 ivalue is an integer value.

Hex()

Another widely used number system is hexadecimal which uses the letters A to F to
represent values 10 to 15. The Hex() function returns a string containing the
hexadecimal equivalent of a specified integer value. For example,

 hexadecimal$ = Hex(65)

assigns the string 41 to the variable hexadecimal$.

For negative values, the hexadecimal string returned is the equivalent of the 2’s
complement form. Therefore,

 Print(Hex(-15))

displays the string FFFFFFF1.

The format of this function is shown in FIG-9.14.

where:

 ivalue is an integer value.

CountStringTokens()

The string red,green,blue,yellow contains the names of four colours, each name
being separated by a comma. AGK refers to each of the terms in the string as tokens
(similar to the idea of tokens within a line of program code) and the character used
to separate those tokens (in this case, a comma) as a delimiter.

It doesn’t matter what characters make up a token, nor which character is used as a
delimiter. In fact, you can use several different delimiters in the same string.

FIG-9.13

Bin()

Bin (ivalue)string

FIG-9.14

Hex() Hex (ivalue)string

Activity 9.6

Create a new project, Conversions.

Use the Button functions to read in an integer value and then display the
equivalent binary and hexadecimal value. Test and save your project.

The three Buttons files
can be found in the
TestButtons project.

Hands On AGK BASIC: String and Math Functions 241

The function CountStringTokens() can be used to find out how many tokens are in
a specified string. The statement has the format shown in FIG-9.15.

where

 string is a string containing the characters to be processed.

 sdelimits is a string giving the delimiters to be assumed when identifying
 the tokens.

For example, the statement

 Print(CountStringTokens(“red,green,blue,yellow,white”,”,”))

will display the value 5.

The line

 Print(CountStringTokens(“1/2:3|4”,”/:|”))

will display the value 4. In this case any of the characters / : or | are taken as delimiters.

GetStringToken()

To extract the identified tokens from a string we can use the GetStringToken()
statement (see FIG-9.16).

where

 string is a string containing the characters to be processed.

 sdelimits is a string giving the delimiters to be assumed when identifying
 the tokens.

 indx is an integer giving the number of the token to be returned (the
 first token is at position 1).

For example, the line

 Print(GetStringToken(“red/green/blue/yellow”,”/”,3))

would display the term blue (the third token in the string).

The program in FIG-9.17 displays the number of tokens in a string and then lists them
separately.

FIG-9.15

CountStringTokens() CountStringTokens ()string sdelimitsinteger

FIG-9.16

GetStringToken() GetStringToken ()string sdelimits indxstring

FIG-9.17

Using the StringToken
Functions

rem *** Using Tokens ***

rem *** Set string and delimiters ***
quote$ = “It is a truth universally acknowledged, that a single
man in possession of a good fortune, must be in want of a wife”
delimiters$=” ,” //Space and comma

242 Hands On AGK BASIC: String and Math Functions

Creating Your Own String Functions
There are several more operations which would be useful to have when manipulating
strings, and, although AGK BASIC does not contain commands to perform these
operations, we can easily write them ourselves. Some of these are described below.

Pos()

The Pos() function returns the position of a specified character in a specified string.
For example, the line

 place = Pos(“abcd”,”c”)

would assign the value 3 to place, since c occurs at position 3 in the string abcd.

If the character being searched for occurs more than once in the string, then it is the
position of the first occurrence that is returned. Hence, the call

 Pos(“abcdc”,”c”)

would return the value 3, not 5. If the character being searched for does not occur
within the string, then a value of 0 is returned. The mini-spec for this function is:

FIG-9.17
(continued)

Using the StringToken
Functions

rem *** Get and display token count ***
tokens = CountStringTokens(quote$,delimiters$)
Print(tokens)

rem *** Display each token ***
for c = 1 to tokens
 Print(GetStringToken(quote$,delimiters$,c))
next c
Sync()
do
loop

Activity 9.7

Start a new project called Tokens and implement the code given in FIG-9.17.

Test your code. Test the program again with a quote and delimiters with options
of your own. Save your project.

FUNCTION NAME : Pos

PARAMETERS
 In : s : string
 f : character
 Out : result : integer

PRE-CONDITION : None

DESCRIPTION : result is set to the position at which f first occurs in
 s.
 If f does not occur in s, then result is set to zero.

Hands On AGK BASIC: String and Math Functions 243

The code for this function is shown in FIG-9.18.

Because AGK BASIC allows only string variables and not single character ones (as
some other languages offer), we cannot be sure that when the function Pos() is called,
the second argument, f$, contains only a single character. For example, the line

 result = Pos(“abcdef”,”ei”)

would be valid, even though there is more than one character in the second parameter.
But by including the line

	first$	=	Mid(f$,1,1)

in the code for Pos(), we extract the first character from f$. It is this first character
that we then search for in s$.

Pos() is another function that could prove useful in later projects, so it will be worth
adding its code to the StringLibrary.agc file in the Library folder.

The only thing we have to watch out for here is that we paste the code into the
original StringLibrary.agc file held in the Library folder. FIG-9.19 shows how to

FIG-9.18

The Pos() Function’s
Code

rem *** Find Position of character in string ***

function Pos(s$, f$)
 rem *** result stays at 0 if no match found ***
 result = 0
 rem *** Make sure we’re looking for a single character ***
	 first$	=	Mid(f$,1,1)
 rem *** FOR each character in s$ DO ***
 for c = 1 to Len(s$)
 rem *** IF that character matches what we’re after THEN ***
	 	 if	Mid(s$,c,1)	=	first$
 rem *** Set result to this position and exit loop ***
 result = c
 exit
 endif
 next c
endfunction result

Activity 9.8

Start a new project called FunctionTester.

Copy the file StringLibrary.agc from the Library folder into the new project’s
folder.

In main.agc, add the code for function Pos() as given in FIG-9.18.

In the main part of the program, create a random string 30 characters in length
and use a call to Pos() to display the first occurrence of a capital D within the
random string. The generated string should also be displayed so you can check
that the result from Pos() is correct.

Check that Pos() also works when the character searched for cannot be found.

Save your project.

244 Hands On AGK BASIC: String and Math Functions

update the original StringLibrary.agc file.

Occurs()
The Occurs() function returns how often a specified character appears within a

FIG-9.19

Adding a New Function
to StringLibrary.agc

In the Projects Panel, right-click on the
project name and select Add files from
the pop-up menu.

Next, select StringLibrary.agc from the
Library folder.

The file is now included in the Sources
section of the project.

From main.agc, we copy the code for
Pos().

Double clicking on StringLibrary in the
Projects Panel will open the file in
the edit area and we can paste the
code for Pos() to the file.

Finally, selecting File|Save everything
from the main menu will save the
updated StringLibrary file.

Add files...

StringLibrary.agc

Activity 9.9

Update the contents of the StringLibrary.agc file by adding the Pos() function
as described in FIG-9.19.

Hands On AGK BASIC: String and Math Functions 245

specified string. Hence, the expression

 Occurs(“abcdc”,”c”)

would return 2 since c occurs twice within abcdc. The mini-spec for the routine is:

The code for this function is shown in FIG-9.20.

Insert()

The Insert() function returns a string created by inserting one string into another,
starting at a specified position. For example, the line

 Print(Insert(“abcdef ”,”xy”, 4))

would display the string abcxydef having inserted the string xy into string abcdef
starting at position 4.

If an attempt is made to insert the second string at an invalid position, then the

FUNCTION NAME : Occurs
PARAMETERS
 In : s : string
 f : character
 Out : result : integer

PRE-CONDITION : None

DESCRIPTION : result is set to the number of times f occurs in s.

FIG-9.20

The Occurs()
Function’s Code

rem *** Return how often f$ occurs in s$ ***
function Occurs(s$,f$)
 rem *** None found so far ***
 result = 0
 rem *** Make sure only one character ***
	 first$	=	Mid(f$,0,1)
 rem *** FOR each character in s$ Do ***
 for c = 1 to Len(s$)
 rem *** if it matches req’d character, add 1 to result ***
	 	 if	Mid(s$,c,1)	=	first$
 result = result + 1
 endif
 next c
endfunction result

Activity 9.10

Add the code for Occurs() to main.agc in FunctionTester.

In the main part of the program, create a random string 30 characters in length
and use a call to Occurs() to display how often a capital S appears within the
random string. The generated string should also be displayed so you can check
that the result from Occurs() is correct.

Save your project. Add the code for Occurs() to StringLibrary.agc in the
Library folder.

246 Hands On AGK BASIC: String and Math Functions

returned string is an exact match of the first string.

The function’s mini-spec is:

The code for this routine is given in FIG-9.21.

Notice that the main logic in the function involves splitting the first string into two
parts and inserting the second string in between these parts.

Delete()

The Delete() function returns a string created by deleting a specified section of an
original string. For example, the line

FUNCTION NAME : Insert
PARAMETERS
 In : s : string
 f : string
 p : integer
 Out : result : string

PRE-CONDITION : None

DESCRIPTION : result is created by inserting f into s at position p.
 Normally, p should be in the range 1 to Len(s)+1.
 If p is outside this range result is set equal to s.

FIG-9.21

The Insert() Function’s
Code

rem *** Returns string with f$ inserted at position p into s$ ***

function Insert(s$,f$,p)
 rem *** If invalid position, result is original string ***
 if p < 1 or p > Len(s$)+1
 result$ = s$
 else
 rem *** split s$ into two parts & insert f$ in between ***
 result$ = Left(s$,p-l)
 result$ = result$ + f$
 result$ = result$+ Right(s$,Len(s$)-(p-1))
 endif
endfunction result$

Activity 9.11

Add the code for Insert() to main.agc in FunctionTester.

In the main part of the program, call Insert() to add XX to ABCDEFGHI
starting at position 2.

Test and save your project.

Also check that the function performs as specified if the insert position given is
invalid.

Add the code for Insert() to StringLibrary.agc in the Library folder.

Hands On AGK BASIC: String and Math Functions 247

 temp$ = Delete(“abcdefghi”,2,4)

would set temp$ to afghi this being created by removing 4 characters, starting at
position 2, from the original string abcdefghi.

If the start position is invalid, a copy of the original string is returned. If the number
of characters to be deleted is too large, then as many characters as possible are
removed.

The function’s mini-spec is:

Notice how the mini-spec makes use of other string-handling functions to describe
how the value of result is determined. Although more difficult to understand than
plain English, this approach can often lead to a briefer description and will always be
unambiguous.

The code for this routine is given in FIG-9.22.

FUNCTION NAME : Delete
PARAMETERS
 In : s : string
 st : integer
 num : integer
 Out : sresult : string

PRE-CONDITION : None

DESCRIPTION : sresult is equal to s with the num characters deleted
 starting from position st.

 If st is outside the range 1 to Len(s), sresult is equal
 to s.

 If num > Len(Right(s,Len(s)-st+1)), sresult is set to
 Left(s,st-1).

FIG-9.22

The Delete() Function’s
Code

rem *** Returns string created by deleting num chars ***
rem *** from s$ starting at position st ***

function Delete(s$, st, num)
 rem *** if invalid position, result is original string ***
 if st < 1 or st > Len(s$)
 result$ = s$
 else
 rem *** Set result to the part of s$ to the left of ***
 rem *** the section to be deleted ***
 result$ = Left(s$, st-1)
 rem *** IF not deleting to the end of s$, ***
 rem *** add right section ***
 if st+num-1 <= Len(s$)
 result$ = result$+Right(s$,Len(s$)-(st+num-1))
 endif
 endif
endfunction result$

248 Hands On AGK BASIC: String and Math Functions

Replace()

The Replace() function is designed to return a string constructed by replacing a single
character at a specified position in an original string. Therefore the line

 ans$ = Replace$(“abcdef”,”x”,4)

sets ans$ equal to abcxef having replaced the fourth character in abcdef with an x.

If an invalid position is specified, then the original string is returned.

Summary
± The Len() function returns the number of characters in a specified string.

± The Upper() function returns the uppercase equivalent of a specified string.

± The Lower() function returns the lowercase equivalent of a specified string.

± The Left() function returns a left-hand sub-string from a specified string.

± The Right() function returns a right-hand sub-string from a specified string.

± The Mid() function returns a specified number of characters from a given
position in a specified string.

± The Asc() function returns the ASCII code of a specified character.

± The Chr() function returns the character whose ASCII code matches a
specified value.

± The Str() function returns the string equivalent of a specified number.

± The Val() function returns the numeric equivalent of a specified string.

Activity 9.12

Add the code for Delete() to main.agc in FunctionTester.

In the main part of the program, call Delete() to delete from position 3 the next
5 characters. Use ABCDEFGHI as the string.

Test and save your project.

Also check that the function performs as specified if the start position given is
invalid and when more characters than available are to be deleted.

Add the code for Delete() to StringLibrary.agc in the Library folder.

Activity 9.13

Create a mini-spec for the Replace() function.

Using the FunctionTester project, write code for the Replace() function and
then test your coding.

Add the code for Replace() to StringLibrary.agc in the Library folder.

Hands On AGK BASIC: String and Math Functions 249

± The Space() function returns a string containing a specified number of spaces.

± The Bin() function returns a string representing the binary equivalent of a
specified integer.

± The Hex() function returns a string representing the hexadecimal equivalent of
a specified integer.

± Use CountStringTokens() to count the number of tokens in a string.

± Use GetStringToken() to extract a specific token from a string.

250 Hands On AGK BASIC: String and Math Functions

Math Functions

Introduction
A second important group of standard programming functions is the math functions.
All of the math functions not previously covered are given here.

Coordinates
In 2D coordinate geometry objects are positioned by specifying x,y Cartesian
coordinates (see FIG-9.23).

From FIG-9.22 we can see that the origin is the position where the two axes cross and
that the axes split the area into four quadrants:

± quadrant 1: both x and y values are positive

± quadrant 2: x values are negative and y values positive

± quadrant 3: both x and y values are negative

± quadrant 4: x values are positive and y values negative

However, on a computer screen, the y axis has been turned upside down so that
positive y values are at the bottom while negative y values are at the top (see FIG-
9.24). Also, the top-left point on the screen is taken as the origin so a screen displays
only quadrant 1 points.

This modification changes the position of the four quadrants. We’ll be using this
inverted coordinate system, since that’s the one we need when creating games.

FIG-9.23

Cartesian Coordinates

x-axis

y-axis

+y

-y

+x-x
(7,4)

(-2,9)

(17,-5)(-4,-6)

Quadrant 1Quadrant 2

Quadrant 3 Quadrant 4

The origin
(0,0)

FIG-9.24

Screen Coordinates

The area shown as the
screen is not to scale.

x-axis

y-axis

-y

+y

+x-x
(7,-4)

(-2,-9)

(17,5)(-4,6)

Quadrant 1Quadrant 2

Quadrant 3 Quadrant 4

Screen

Hands On AGK BASIC: String and Math Functions 251

Trigonometric Functions
Cos()

If we draw a line starting at the origin which is exactly one unit in length at an angle
of 30o to the x-axis, then we create the setup shown in FIG-9.25.

We know that one end of the line has the coordinates (0,0), but what are the coordinates
of the other end? We’ll start by examining the x-coordinate. From FIG-9.26 we can
see that the x-coordinate of the end point changes as we rotate the line to 70o from
the x-axis and finally to 90o.

FIG-9.25

Measuring Angles

-y

+y

+x-x
1

1

-1

-1

30o
1 unit

FIG-9.26

X-Coordinate
Determined by Angle

Before the line is rotated, the second
end’s x-coordinate is 1.

As the line is rotated that x-coordinate
becomes less than 1...

... and the further it rotates, the smaller
the x-coordinate becomes ...

...until, at 90o, it is zero.

-y

+y

+x-x
1

1

(0,0) (1,0)= 1

-y

+y

+x-x
1

1

(0,0)

x < 1

-y

+y

+x-x
1

1

(0,0)

Reducing
towards zero

-y

+y

+x-x
1

1

(0,0)

x-coord = 0

252 Hands On AGK BASIC: String and Math Functions

Although it is easy enough to work out the x-coordinate when the line lies along one
of the axes, things are a bit more difficult when some other angle of rotation is
involved. Luckily for us, someone worked all the x-coordinates for every possible
angle several hundred years ago and called it the cosine of the angle (often shortened
to cos).

So, if we draw a line starting at the origin which is 1 unit in length and rotate it by an
angle of theta (θ), then the x-coordinate for the other end of that line is given by the
expression

	 cosine(θ)	or cos(θ)

If we rotate our line by more than 90o it moves into quadrant 2 and the x-coordinate
will become negative. As we pass 180o and move into quadrant 3, the x-coordinate
remains negative, but after 270o, the x-coordinate is once again positive.

Activity 9.14

What would be the x-coordinate of the line if it was rotated to

 a) 0o b) 90o

Activity 9.16

By using the cosine function in Calculator, determine the x-coordinates of the
lines shown below (all lines start at the origin and are 1 unit in length).

-y

+y

+x-x

50

168

213

304

o

o

o

o

A

B

C

D

Activity 9.15

Load up Microsoft’s Calculator program.

Choose View|Scientific. Make sure it is using decimal and degrees.

By calculating the cosine of the following angles (to 3 decimal places)

 a) 0o b) 90o c) 30o d) 70o

write down the x-coordinate of the lines of 1 unit which have been rotated by
the angles given above.

Hands On AGK BASIC: String and Math Functions 253

AGK BASIC performs this calculation using the Cos() function which has the format
shown in FIG-9.27.

where:

 angle is a real number specifying the angle (in degrees) through which
 the line has been rotated. This is measured in a clockwise
 direction starting from the positive x-axis.

The real value returned by the function gives the x-coordinate of one end of the
rotated line (the other end being at the origin).

The angle through which the line has been rotated may also be measured in a counter-
clockwise direction, but is then specified as a negative value. This means that the
expressions Cos(304)and Cos(-56)both return the same value (see FIG-9.28).

 Sin()

To determine the y-coordinate of our one unit line, we use the Sin() function which
has the format shown in FIG-9.29.

where:

 angle is a real number specifying the angle (in degrees) through which
 the line has been rotated. This is measured in a clockwise
 direction starting from the positive x-axis.

The real value returned by the function gives the y-coordinate of one end of the
rotated line (the other end being at the origin).

FIG-9.27

Cos()

Cos (angle)real

FIG-9.28

Clockwise and Counter-
Clockwise Angles

-y

+y

+x-x

304o

-56o

FIG-9.29

Sin() Sin (angle)real

Activity 9.17

Using Calculator, write down the y-coordinates of the four lines shown in
Activity 9.16.

254 Hands On AGK BASIC: String and Math Functions

Dealing with Longer Lines

It’s all very well to calculate the end point of a line which is one unit in length, but
what about lines that are 2, 4 or 7.5 units long?

Actually, the calculation required is quite simple: if the line is twice as long, the
coordinates of its end point are twice the value of those for a one unit line. If the line
is four times longer, then the coordinate values are four times as large.

All of this can be simplified to:

	 x-coordinate	=	length	of	line	*	cos(θ)
	 y-coordinate	=	length	of	line	*	sin(θ)

Offset Lines

If a line whose fixed end is not positioned at the origin is rotated, calculating the
coordinates of the moving end is done by calculating the x and y coordinates as
before but then adding the x and y offset values to the results (see FIG-9.30).

Using Cos() and Sin()

School may teach you the sine and cosine functions for no obvious practical reason,
but when it comes to games programming, these are important operations. Using the
Sin() and Cos() functions allows us to perform many operations on the screen
graphics. For example, to rotate a sprite about a point on the screen. The program
code in FIG-9.31 demonstrates how this is done by rotating a spot-shaped image

Activity 9.18

If a line is drawn from the origin and is 3.7 units in length, what are the
coordinates of its end point after it has been rotated to an angle of 191.5o ?

FIG-9.30

Offset Lines

9

8

60o
5

(9,8)

((5cos(60)+9),(5sin(60)+8))

x-axis

y-axis

+x

+y
Length
of line

x-o�setangle

Activity 9.19

Calculate the actual coordinates of the rotating end of the line shown in FIG-
9.29.

Hands On AGK BASIC: String and Math Functions 255

about the centre of the screen.

Tan()

The last of the traditional trigonometric functions is tangent or tan. Tangent measures
the gradient (or steepness) of a line. Gradient of a line with one end fixed at the origin
is just the y-coordinate of the other end of the line divided by the x-coordinate (see
FIG-9.32).

So a line parallel to the x-axis has a gradient of zero, a line at 45o to the x-axis has a
gradient of 1 and a line at 90o has an infinite gradient. The Tan() function takes the
angle of the line and returns its gradient.

FIG-9.31

Rotating a Sprite

Activity 9.20

Start a new project called Rotation.

Compile the default code in order to create the media subfolder.

From the files you download with this book, copy the file Spot.png from the
AGKDownloads/Chapter9 folder into this project’s media folder.

Change main.agc to match the code shown in FIG-9.31.

Test and save your project.

rem *** Load image ***
LoadImage(1,”Spot.png”)
rem *** Create sprite ***
CreateSprite(1,1)
rem *** Size sprite ***
SetSpriteSize(1,5,-1)
rem *** Position sprite offset from screen centre ***
SetSpritePosition(1,70,50)
angle = 0
do
 angle = (angle+1) mod 360
 SetSpritePosition(1,20*cos(angle)+50,20*sin(angle)+50)
 Sync()
loop

FIG-9.32

Gradients

x-axis

y-axis

+x

+y

5

11

line A

The gradient of
line A is
 5/11
= 0.45

256 Hands On AGK BASIC: String and Math Functions

AGK’s Tan() function has the format shown in FIG-9.33.

where:

 angle is a real number specifying the angle (in degrees) through which
 the line has been rotated. This is measured in a clockwise
 direction starting from the positive x-axis.

Degrees and Radians

No one knows with certainty why a full circular rotation is divided into 360 units
known as degrees (or degrees of arc, to give them their full title). One theory is that
ancient Persian civilizations used a calendar of 360 days (indicating a full rotation of
the Earth about the Sun).

An alternative unit of measurement is the radian. FIG-9.34 explains how this
measurement is derived.

AGK BASIC has a set of functions equivalent to Cos(), Sin() and Tan() called
CosRad(), SinRad() and TanRad() which take an angle given in radians rather than
degrees. The syntax for all three of these functions is shown in FIG-9.35.

FIG-9.33

Tan()

Tan (angle)real

FIG-9.34

Radians

The distance from the centre of a circle
to any point on its circumfrence is
known as the radius of the circle.

If we measure round the circumference
a distance exactly equal to the radius...

...and join the two ends of this back to
the centre of the circle...

...then we have created an angle which
is exactly one radian.

radius

One
radius in
length

An angle
of 1 radian

FIG-9.35

CosRad()
SinRad()
TanRad()

Hands On AGK BASIC: String and Math Functions 257

where:

 angle is a real number specifying the angle (in radians) through which
 the line has been rotated.

ACos(), ASin() and ATan()

If you already know the x or y coordinates of the end point of a line or the gradient
of a line, but want to know the angle, then we can make use of the ACos(), ASin()
or ATan() functions respectively. For example, looking back at FIG-9.31 we can see
the gradient of the line is 5/11 but we don’t know the angle the line makes to the
x-axis. We can find out using the line

 angle = ATan(5/11)

In Activity 9.16 we discovered the coordinates of point A (which was rotated by 50o)
to be (0.643,0.766). Using the x-coordinate only, the line

 angle = ACos(0.643)

will give a result of (approximately) 50. And using the y-coordinate only

 angle ASin(0.766)

will also give the same result.

The syntax of the three statements are given in FIG-9.36.

where:

 value is a real number.

The value returned represents an angle given in degrees.

ACosRad(), ASinRad(), ATanRad()

If you need the angles to be returned in radians rather than degrees, you can make use
of the ACosRad(), ASinRad() and ATanRad() functions which are shown in FIG-9.37.

TanRad (angle)real

SinRad (angle)real

CosRad (angle)real

The mathematical
names for these
functions arccosine,
arcsine and
arctangent.

FIG-9.36

ACos()
ASin()
ATan()

(value)

(value)

ACos (value)real

ASinreal

ATanreal

FIG-9.37

ACosRad()
ASinRad()
ATanRad()

ATanRad (value)real

ASinRad (value)real

ACosRad (value)real

AGK’s Tan() function has the format shown in FIG-9.33.

where:

 angle is a real number specifying the angle (in degrees) through which
 the line has been rotated. This is measured in a clockwise
 direction starting from the positive x-axis.

Degrees and Radians

No one knows with certainty why a full circular rotation is divided into 360 units
known as degrees (or degrees of arc, to give them their full title). One theory is that
ancient Persian civilizations used a calendar of 360 days (indicating a full rotation of
the Earth about the Sun).

An alternative unit of measurement is the radian. FIG-9.34 explains how this
measurement is derived.

AGK BASIC has a set of functions equivalent to Cos(), Sin() and Tan() called
CosRad(), SinRad() and TanRad() which take an angle given in radians rather than
degrees. The syntax for all three of these functions is shown in FIG-9.35.

FIG-9.33

Tan()

Tan (angle)real

FIG-9.34

Radians

The distance from the centre of a circle
to any point on its circumfrence is
known as the radius of the circle.

If we measure round the circumference
a distance exactly equal to the radius...

...and join the two ends of this back to
the centre of the circle...

...then we have created an angle which
is exactly one radian.

radius

One
radius in
length

An angle
of 1 radian

FIG-9.35

CosRad()
SinRad()
TanRad()

258 Hands On AGK BASIC: String and Math Functions

where:

 value is a real number.

The value returned represents an angle given in radians.

ATanFull() and ATanFullRad()

The main problem with ATan() is that it cannot guarantee that the angle returned is
the the correct one. Every gradient can be reproduced at exactly two angles. For
example, a line at 30o and one at 210o have the same gradient (See FIG-9.38).

The only way to differentiate between the two lines is to specify the end points of the
line rather than the gradient value. This is the option offered by the ATanFull() and
ATanFullRad()functions. The first returns the angle of the line in degrees, the second,
in radians. The functions have the format shown in FIG-9.39.

where:

 xcoord is a real number giving the x-coordinate of the line whose angle
 is to be found.

 ycoord is a real number giving the y-coordinate of the line whose angle
 is to be found.

The angle returned is the angle that the specified line (whose second end is assumed
to be at the origin), makes with the line from the origin to (0,1) - that is a line along
the negative y-axis. Note that this is exactly 90o more than how all other angles are
determined.

FIG-9.38

Angles and Gradients

-y

+y

+x-x
1

1

-1

-1

30o210o

Both lines
have the same

gradient

FIG-9.39

AtanFull()
ATanFullRad() ATanFullRad (x-coord)real

ATanFull (real

y-coord,
x-coord)y-coord,

Hands On AGK BASIC: String and Math Functions 259

Other Math Functions
Sqrt()

If we started by knowing the end points of a line, could we work out the length of
that line? Well, if we take a second look at what’s going on when we calculate the
value of a sine or cosine (see FIG-9.40), we can see how this calculation can be done.

From the diagram, we can see that the end point coordinates actually represent the
lengths of two sides of a right-angled triangle, so the length of the third side (the line
we’ve drawn and the hypotenuse of the triangle) is given as:

Calculating the square of a value can be done with a line such as

 xcoord * xcoord

or

 xcoord^2

To calculate the square root, we might use

 length = (xcoord^2 + ycoord^2)^ 0.5

However, AGK BASIC provides a Sqrt() function which performs the same
operation as ^0.5. The statement’s format is shown in FIG-9.41.

where:

 value is the real value whose square root is to be found. This cannot
 be a negative value.

So, the length of our line could be calculated as

 length = Sqrt(xcoord^2 + ycoord^2)

Abs()

There are occasions when we want the value of a number without worrying about
whether this is a positive or negative number.

In Chapter 4 we displayed the difference between a randomly generated number in
the range 1 to 6 and the player’s guess at what that number might be. This difference
was calculated as:

FIG-9.40

End Points and Line
Length

-y

+x-x

?

?

(1.72, 1.01)

1.72

1.01

length of line = xcoord + ycoord2 2

FIG-9.41

Sqrt()

Sqrt (value)real

260 Hands On AGK BASIC: String and Math Functions

 diff = dice - guess

However, sometimes that difference would be a negative value when the guess was
larger than the dice value. By using the Abs() function, which always returns the
positive form of the argument, this problem can be eliminated:

 diff = Abs(dice-guess)

The format for the Abs() statement is given in FIG-9.42.

where:

 value is a real value.

The absolute value of value will be returned by the statement.

Ceil()

Returns the next integer value greater than or equal to the argument. Hence,

 Ceil(12.1)

returns 13 while

 Ceil(15.0)

returns 15.

But remember, when using a negative argument as in

 Ceil(-14.9)

the function returns -14 (which is greater than -14.9) and not -15 (which is less than
-14.9).

The Ceil() function has the format shown in FIG-9.43.

where:

 value is the real number whose value is raised to determine the return
 value.

Floor()

Complementing the Ceil() function is the Floor() function which returns the largest
integer smaller than or equal to the function’s parameter. This means that

 Floor(12.1)

returns 12

 Floor(15.0)

FIG-9.42

Abs()

Abs (value)real

FIG-9.43

Ceil()

Ceil (value)integer

Hands On AGK BASIC: String and Math Functions 261

returns 15, and

 Floor(-14.9)

returns -15.

The Floor() function has the format shown in FIG-9.44.

where:

 value is the real number whose value is lowered to determine the return
 value.

Trunc()

Trunc()is perhaps the simplest of the numeric functions since it returns the integral
part of the real number argument, eliminating the fraction. So

 Trunc(12.9)

returns 12 and

 Trunc(-15.1)

returns -15.

The format for this statement is given in FIG-9.45.

where:

 value is the real number whose value is to be truncated.

Round()

Whereas the Trunc() function returns an integer by deleting the fraction part of the
parameter, Round() returns an integer by rounding the parameter to the nearest
integer. Hence,

 Round(15.1)

returns 15 and

 Round(15.6)

returns 16.

Rounding up happens for fractions of over 0.5 for positive value (.0 to 0.5 rounds
down).

Where the absolute value of a negative number’s fraction is over 0.5, the value is
rounded down:

 Round(-64.6) returns -65

FIG-9.44

Floor() Floor (value)integer

FIG-9.45

Trunc()

Trunc (value)integer

262 Hands On AGK BASIC: String and Math Functions

The format for Round() is given in FIG-9.46.

where:

 value is a real number whose value is to be rounded to the nearest
 integer.

Fmod()

Whereas the mod operator returns the integer remainder when two integer values are
divided, the Fmod() function returns the complete remainder (integral and fraction)
when two real numbers are divided. Hence,

 Fmod(7.0, 5.0)

returns 2.0 since 5.0 divides into 7.0 once with a remainder of 2.

 Fmod(16.9, 5.1)

returns 1.6 since 5.1 divides into 16.9 3 times with a remainder of 1.6.

The syntax for the Fmod() function is shown in FIG-9.47.

where:

 num is a real value giving the numerator of the operation.

 dem is a real value giving the denominator.

Summary
± Cartesian coordinates use a horizontal x-axis and vertical y-axis to measure

positions in a 2D space.

± These axes meet in the middle of that space at a point called the origin.

± All distances in the x and y directions are measured from the origin.

± By convention, points to the right of the origin on the x-axis are assigned
positive values; points to the left, negative values.

± Points above the origin on the y-axis are assigned positive values; points below
the origin, negative values.

± The axes divide 2D space into four quadrants.

FIG-9.46

Round() Round (value)integer

FIG-9.47

Fmod() Fmod (num)real dem

Activity 9.21

Give the value returned by each of the following function calls:

a) Sqrt(64) b) Abs(-9) c) Ceil(-9.1)
d) Floor(14.0) e) Trunc(12.95) f) Round(-16.9)
g) Fmod(-12.6,3.2)

Hands On AGK BASIC: String and Math Functions 263

± Any point in 2D space can be uniquely defined by specifying its position
perpendicular to the x and y axes.

± A point’s position in 2D space is known as the coordinates of the point and are
given in the form

 (distance	along	the	x-axis,	distance	along	the	y-axis)	

 normally this description is shortened to

 (x,y)

± On a computer, the positive section of the y-axis points down.

± A computer screen represents only part of quadrant 1 in 2D space.

± The Cos() function returns the cosine of a specific angle given in degrees.

±The Sin() function returns the sine of a specific angle given in degrees.

± The Cos() and Sin() values for the same angle give the end coordinates of a
line one unit in length whose other end is at the origin.

± For a line a units in length coming from the origin and at an angle of θo to the
x-axis, the end coordinates are (a*cos(θ),a*sin(θ)).

± For a line of length a whose start point is at position (m,n) and lies at θo to the
x-axis, the other end’s coordinates are given as (a*cos(θ)+m, a*sin(θ)+n).

± The Tan() function returns the tangent of a specified angle given in degrees.

± Radians are an alternative way of measuring angles.

± One radian is the angle created when two radii of a circle are drawn in such
a way that the distance along the arc of the circle’s circumference from one
radius to the other is exactly equal to the radius.

± The CosRad()function returns the cosine of a specific angle given in radians.

± The SinRad()function returns the sine of a specific angle given in radians.

± The TanRad()function returns the tangent of a specified angle given in radians.

± The Acos() function returns the angle of a line drawn from the origin with
a specified end x-coordinate. The angle is given in degrees in the range 0o to
180o.

± The Asin() function returns the angle of a line drawn from the origin with a
specified end y-coordinate. The angle is given in degrees in the range -90o to
+90o.

± The Atan() function returns the angle of a line with a specified gradient. The
angle will lie in the range -90o to +90o.

± The AcosRad() function returns the angle of a line drawn from the origin with
a specified end x-coordinate. The angle is given in radians (0 to 2π)

± The AsinRad() function returns the angle of a line drawn from the origin with
a specified end y-coordinate. The angle is given in radians (-π to π).

± The AtanRad() function returns the angle of a line with a specified gradient.
The angle is given in radians (-π to π).

264 Hands On AGK BASIC: String and Math Functions

± The ATanFull() function returns the angle of a line (with specified end points)
to the negative part of the y-axis. The result is in degrees (0o to 360o).

± The ATanFullRad() function returns the angle of a line (with specified end
points) to the negative part of the y-axis. The result is in radians (0 to 2π).

± The Sqrt() function returns the square root of the function argument.

± The Abs() function returns the absolute value of the function argument.

± The Trunc() function returns an integer value calculated as the truncated value
of the parameter.

± The Round() function returns an integer value calculated as the rounded value
of the parameter.

± The Fmod() function returns the remainder produced by the division of two
real values.

Hands On AGK BASIC: String and Math Functions 265

Solutions
Activity 9.1

The program should display the random string that was
generated and its length.

Activity 9.2
b$ would be set to 1-BY-1.

Activity 9.3
The original version of Letters:

#include “StringLibrary.agc”

text$ = RandomString(-1)
Print(“Original string is: “+text$)
for c = 1 to Len(text$)
 Print(Mid(text$,c,1))
next c
Sync()
do
loop

This will begin by displaying the original string, then each
letter of that string on separate lines.

To display the letters in reverse order, the for loop needs to
decrement from Len(text$) down to 1. So the new code is:

#include “StringLibrary.agc”

text$ = RandomString(-1)
for c = Len(text$) to 1 step -1
 Print(Mid(text$,c,1))
next c
Sync()
do
loop

The final version counts the number of E’s in the string:
#include “StringLibrary.agc”

text$ = RandomString(-1)
count = 0
for c = Len(text$) to 1 step -1
 if Mid(text$,c,1) = “E”
 inc count
 endif
next c
Print(“Original string is: “+text$)
PrintC(“It contains “)
PrintC(count)
Print(“ E’s”)
Sync()
do
loop

Activity 9.4
The code for ASCIITable:
for c = 32 to 126
 rem *** Display number ***
 PrintC(c)
 PrintC(“ is the ASCII code for “)
 rem *** Display character ***
 Print(Chr(c))
 rem *** If 25th update screen and wait 5 secs

 if (c-31) mod 25 = 0
 Sync()
 Sleep(5000)
 endif
next c
Sync()
do
loop

Activity 9.5
Code for CountZero:

rem *** Generate random number ***
num = Random(1000,65000)
rem *** Convert to a string ***
num$= str(num)
rem *** Start count at zero ***
count = 0
rem *** Check each character ***
for c = 1 to Len(num$)
 rem *** If it’s a 0, increment count ***
 if Mid(num$,c,1) = “0”
 inc count
 endif
next c
rem *** Display details ***
Print(“Original number “+num$)
Print(“Contains “+str(count)+” zeros”)
Sync()
do
loop

Activity 9.6
Create a new project called Conversions.
Compile the default code.
Copy the file Buttons.png and Buttons subimages.txt to the
media folder (you’ll find a copy in TestButtons).
Copy Buttons.agc into the the Conversions folder.

In the setup.agc file, change height to 1024 and width to 768.

Code main.agc as:

#include “Buttons.agc”

SetUpButtons()
rem *** Get value from buttons ***
num = GetButtonEntry()
rem *** Display number in dec, binary and hex ***
Print(“Number (base 10 : “+Str(num))
Print(“Number (base 2) : “+Bin(num))
Print(“Number (base 16) : “+Hex(num))
Sync()
do
loop

Activity 9.7
No solution required.

Activity 9.8
Create a new project called FunctionTester.
Copy StringLibrary.agc into the FunctionTester folder.

The code for FunctionTester is:
rem *** Test Pos Function ***
#include “StringLibrary.agc”
text$ = RandomString(30)
post = Pos(text$,”D”)
Print(“String is “+text$)
Print(“D at position “+Str(post))
Sync()
do
loop

rem *** Find Position of character in string ***
function Pos(s$, f$)
 rem *** result stays at 0 if no match found ***
 result = 0
 rem *** Make sure we’re looking for a single
 character ***
	 first$	=	Mid(f$,0,1)
 rem *** FOR each character in s$ DO ***
 for c = 1 to Len(s$)
 rem *** IF that character matches what we’re
 after THEN ***
	 	 if	Mid(s$,c,1)	=	first$
 rem *** Set result to this position and exit
 loop ***

266 Hands On AGK BASIC: String and Math Functions

 result = c
 exit
 endif
 next c
endfunction result

Changing the character searched for to a lowercase letter
will guarantee that the letter is not found. The program will
display zero for the position found. A better option would be
to check for zero being returned with code such as:

#include “StringLibrary.agc”
text$ = RandomString(30)
post = Pos(text$,”D”)
if post <> 0
 Print(“String is “+text$)
 Print(“D at position “+Str(post))
else
 Print(“D not found in text”)
endif
Sync()
do
loop

Activity 9.9
In the Projects Panel, right-click the project name and select
Add files from the pop-up menu.
Select StringLibray.agc from the listed files. That file will
then be listed in the Sources part of the project.
Double-click on the StringLibrary.agc file in the Projects
Panel. This will open a tab for the file’s source code in the
edit area.
Copy the code for function Pos() from main.agc and paste it
into StringLibrary.agc after the existing function.

Select Files|Save everything

Activity 9.10
Updated code for FunctionTester:

rem *** Test Pos Function ***
#include “StringLibrary.agc”

text$ = RandomString(30)
count = Occurs(text$,”S”)
Print(“String is “+text$)
Print(“S occurs “+Str(count)+” times”)
Sync()
do
loop

rem *** Return how often f$ occurs in s$ ***
function Occurs(s$,f$)
 rem *** None found so far ***
 result = 0
 rem *** Make sure only one character ***
	 first$	=	Mid(f$,0,1)
 rem *** FOR each character in s$ Do ***
 for c = 1 to Len(s$)
 rem *** if it matches req’d character, add 1 to
 result ***
	 	 if	Mid(s$,c,1)	=	first$
 result = result + 1
 endif
 next c
endfunction result

rem *** Find Position of character in string ***
function Pos(s$, f$)
 rem *** result stays at 0 if no match found ***
 result = 0
 rem *** Make sure we’re looking for a single
character ***
	 first$	=	Mid(f$,1,1)
 rem *** FOR each character in s$ DO ***
 for c = 1 to Len(s$)
 rem *** IF that character matches what we’re
after THEN ***
	 	 if	Mid(s$,c,1)	=	first$

 rem *** Set result to this position and exit
loop ***
 result = c
 exit
 endif
 next c
endfunction result

rem *** Return how often f$ occurs in s$ ***
function Occurs(s$,f$)
 rem *** None found so far ***
 result = 0
 rem *** Make sure only one character ***
	 first$	=	Mid(f$,0,1)
 rem *** FOR each character in s$ Do ***
 for c = 1 to Len(s$)
 rem *** if it matches req’d character, add 1 to
 result ***
	 	 if	Mid(s$,c,1)	=	first$
 result = result + 1
 endif
 next c
endfunction result

The code for Occurs() should be copied from main.agc and
pasted into StringLibrary.agc.

Activity 9.11
Code for FunctionTester (previous functions are not shown):

text$ = “ABCDEFGHI”
text$ = Insert(text$,”XX”,2)
Print(“String is “+text$)
Sync()
do
loop

rem *** Inserts f$ at position p in s$ ***
function Insert(s$,f$,p)
 rem *** If invalid position, result is original
 string ***
 if p < 1 or p > Len(s$)+1
 result$ = s$
 else
 rem *** split s$ into two parts & insert f$
 in between ***
 result$ = Left(s$,p-l)
 result$ = result$ + f$
 result$ = result$+ Right(s$,Len(s$)-(p-1))
 endif
endfunction result$

Changing the line
text$ = Insert(text$,”XX”,2)

to
text$ = Insert(text$,”XX”,12)

will return the original text since the insert position given is
invalid.

Copy and paste the code for the routine into StringLibrary.
agc.

Activity 9.12
Code for FunctionTester (previous functions are not shown):

text$ = “ABCDEFGHI”
text$ = Delete(text$,3,5)
Print(“String is “+text$)
Sync()
do
loop

rem *** Delete num characters from s$ starting at
position st ***
function Delete(s$, st, num)
 rem *** if invalid position, result is original
 string ***
 if st < 1 or st > Len(s$)
 result$ = s$
 else

Hands On AGK BASIC: String and Math Functions 267

 rem *** Set result to the part of s$ to the
 left of ***
 rem *** the section to be deleted ***
 result$ = Left(s$, st-1)
 rem *** IF not deleting to the end of s$, ***
 rem *** add right section ***
 if st+num-1 <= Len(s$)
 result$ = result$+Right(s$,Len(s$)-
 (st+num-1))
 endif
 endif
endfunction result$

Changing
 text$ = Delete(text$,3,5)

to
 text$ = Delete(text$,13,5)

will return the original string since the delete position is
invalid.

When the number of characters to be deleted is greater than
the number available, all characters after the start position are
deleted. Hence,

 text$ = Delete(text$,3,15)

returns
 AB

Copy the functions code and paste it into StringLibrary.agc.

Activity 9.13

Code for FunctionTester (previous functions are not shown):
text$ = “ABCDEFGHI”
text$ = Replace(text$,”X”,3)
Print(“String is “+text$)
Sync()
do
loop

rem *** Replace the pth character in s$ with rs$ ***
function Replace(s$, rs$, p)
 rem *** If invalid position ***
 rem *** return original string ***
 if p < 1 or p > Len(s$)
 exitfunction s$
 endif
 rem *** If rs$ more than one character use left-
 most character ***
 rs$ = Left(rs$,1)
 rem *** Calculate result ***
 result$ = Left(s$,p-1)+rs$+Right(s$,Len(s$)-p)
endfunction result$

A line such as
text$ = Replace(text$,”X”,13)

will return the original string since the position specified is
invalid.

Copy and paste the code into StringLibrary.agc.

Activity 9.14
At 0o the x-coord is 1
At 90o the x-coord is 0

Activity 9.15
 cos(0) = x-coord = 1
 cos(90) = x-coord = 0
 cos(30) = x-coord = 0.866
 cos(70) = x-coord = 0.342

Activity 9.16
 cos(50) = x-coord = 0.643
 cos(168) = x-coord = -0.978
 cos(213) = x-coord = -0.839
 cos(304) = x-coord = 0.559

Activity 9.17
 sin(50) = y-coord = 0.766
 sin(168) = y-coord = 0.208
 sin(213) = y-coord = -0.545
 sin(304) = y-coord = -0.829

Activity 9.18
x coord = 3.7cos(191.5) = -3.626
y coord = 3.7sin(191.5) = -0.738

Activity 9.19
x coord = 5cos(60)+9 = 11.5
y coord = 5sin(60)+8= 12.330

Activity 9.20
No solution required.

Activity 9.21
a) 8 b) 9 c) -9
d) 14 e) 12 f) -17
g) -3.0

FUNCTION NAME : Replace
PARAMETERS
 In : s : string
 sr : character
 p : integer
 Out : result : string
PRE-CONDITION : 1 <= p <= Len(s)
DESCRIPTION : result is equal to s except that
 the pth character of result is
 sr.

268 Hands On AGK BASIC: String and Math Functions

Hands On AGK BASIC: Arrays 269

In this Chapter:

T The Limitations of Standard Variables

T The Concept of Arrays

T Declaring Arrays

T Initialising Arrays

T Accessing Array Elements

T Array Subscripting

T Arrays and Counting

T Arrays and Non-Repeating Values

T	Arrays	and	Shuffling

T Arrays and Sorting

T Arrays and Searching

T Multi-dimensional Arrays

T Arrays as Function Parameters

Arrays

270 Hands On AGK BASIC: Arrays

Arrays

Problems with Simple Variables
There are certain tasks which are very difficult or long-winded when we try to do
them using the normal variables we’ve been dealing with up to now. For example,
it’s common for a video game to retain the top five scores but, from what we know
at the moment, we’d have to set up one variable for each score to be saved.

When a player finishes a game, the program then has to decide if the player’s score
should be recorded in the top five and, if so, at what position. If the new score is good
enough to be recorded as a highest score, then the list must be updated. The whole
process is shown in FIG-10.1.

Notice that what had been the third and fourth highest scores, have now moved down
one position and that the score of 1220 has been lost from the top five.

We need to develop an algorithm which can perform the above task for all possible
values which might be placed within the top five scores. One possible structured
English solution could use the lines:

 IF
 newscore > score1:
 score5 = score4
 score4 = score3

FIG-10.1

Using Regular
Variables

If the top five game scores are held
in 5 separate variables...

...and a new player gains a score that
should be added to this list...

...then the program code needs to
find at which point the new score
should be added...

...and then adjust the list accordingly.

2250 2000 1890 1500 1220

score1 score2 score3 score4 score5

2250 2000 1930 1890 1500

score1 score2 score3 score4 score5

1930

newscore

2250 2000 1890 1500 1220

score1 score2 score3 score4 score5

1930

newscore

Insertion
point

New score
inserted

Hands On AGK BASIC: Arrays 271

 score3 = score2
 score2 = score1
 score1 = newscore
 newscore > score2:
 score5 = score4
 score4 = score3
 score3 = score2
 score2 = newscore
 newscore > score3:
 score5 = score4
 score4 = score3
 score3 = newscore
 newscore > score4:
 score5 = score4
 score4 = newscore
 newscore > score5:
 score5 = newscore
 ENDIF

The algorithm is a bit long-winded, but just about acceptable. Now imagine that we
had the top ten scores to retain. What would the algorithm look like then? It’s going
to be long - very long. Luckily, there is a better way to achieve what we’re after -
arrays.

One Dimensional Arrays
Array Concepts

An array is a named data variable capable of storing several values at the same time.
It is a collection of elements or cells. Each of these elements holds a single value -
just like the regular variables we have used in our previous programs.

Each cell within an array is numbered. The first cell is numbered cell zero, the next
cell 1, etc. Exactly how many cells an array contains is determined when the array is
first set up.

FIG-10.2 shows how we might visualise a 6 element array called scores.

The individual cells within the array are identified by a combination of the array
name and the cell’s number which is known as the subscript. The subscript is
enclosed within square brackets. For example, the second cell within the array shown

Activity 10.1

Assuming the following values

score1 = 2250 score2 = 2000 score3 = 1890 score4 = 1500
score5 = 1220

newscore = 1900

work your way through the algorithm given above to check that the expected
result is obtained.

FIG-10.2

Visualising Arrays 1 2

scores

430 5

272 Hands On AGK BASIC: Arrays

above is identified using the term

 scores[1]

Declaring an Array

Whereas we are free to introduce a standard variable at any point in a program, we
need to tell the compiler in advance that we intend to use an array. This is known as
an array declaration. An array declaration begins with the keyword dim followed
by the name we wish to assign to the array. The only additional piece of information
required is the subscript for the final element of the array - this determines how many
elements the array is to contain. So, to set up the scores array as shown in FIG-10.2,
we would use the declaration

 dim scores[5]

This creates a 6 cell array with the cells numbered 0 to 5.

Arrays can be declared to hold values of any of the types we can use for regular
variables: integer, real or string. For example,

 dim averages#[10] rem *** 11 element real array ***
 dim names$[19] rem *** 20 element string array ***

Every cell within the array can then hold a single value of the specified type. It is not
possible to create an array with cells of differing types.

Initialising Arrays

When an array is first set up, every cell in the array contains the value zero (or an
empty string when using string arrays). But it is possible to specify a different starting
value for each cell when declaring the array by extending the array declaration. For
example, the line

 dim numbers[3] = [12, 0, -6, 8]

will create the array setup shown in FIG-10.3.

If there are too many values specified within the braces, the surplus values are
ignored; if there are too few values supplied, then the cells which have not specifically
been assigned a value are set to zero.

Accessing Array Elements

We cannot perform operations on an array as if it were a single entity. For example,
it would be invalid to try to display all the values held in an array with a statement
such as

 Print(numbers)

Instead, we must deal with the individual elements within the array. So, to display the
value in the first element in the array numbers, we would write

FIG-10.3

Array Initialisation 1 2

numbers

30
12 0 -6 8

Hands On AGK BASIC: Arrays 273

 Print(numbers[0])

To assign a value to the next element we could use a statement such as

 numbers[1] = 4

and we could check if the last element contained a value of less than zero with the
line

 if (numbers[3] < 0)

In fact, we can use an array element in any statement where we might use a simple
variable of the same type. Some more examples are shown in FIG-10.4.

You must ensure that the subscript you supply is a valid one; the compiler will not
check that the subscript value is within a range compatible with the size of the array
created. Hence, code such as

 dim list[6]
 list[7]= 21; rem *** Subscript too high ***

will be compiled but when the program is running it will halt when the assignment
statement is reached and display a message of the form

Subscript out of bounds at line 2

FIG-10.4

Accessing Array
Elements

The array, list, is set up with a
declaraction statement. Since no
initilal values are specified, the
content of each cell is zero.

We can assign a value to an array
element by specifying the array name
and, enclosed in brackets, the
element’s subscript.

The contents of one or more cells
can be used to determine the value
given to another cell.

To display the contents of an array
element we use the usual Print()
statement.

list
0 1 65432

0 000 00 0

dim list[6]

The
statement creates

a 7 cell array

list
0 1 65432

0 0016 00 2

list[3] = 16
list[1] = 2

list
0 1 65432

0 18016 00 2

list[5] = list[1] + list[3]

list
0 1 65432

0 18016 00 2

Print(list[5])
Sync()

18

274 Hands On AGK BASIC: Arrays

What Makes Arrays Powerful

If what we’ve seen up to now was all that could be achieved by arrays, they would
be of little more use than simple variables. For example, if we were to simulate the
throwing of four dice using four integer variables, we could use the lines:

 dice1 = Random(1,6)
 dice2 = Random(1,6)
 dice3 = Random(1,6)
 dice4 = Random(1,6)

Using an array would require the lines:

 dim dice[4]
 dice[1] = Random(1,6)
 dice[2] = Random(1,6)
 dice[3] = Random(1,6)
 dice[4] = Random(1,6)

Both segments are equally long winded.

What adds power to the array is the fact that the subscript need not be given as a fixed
value. Instead, we are free to use a variable. The value of that variable then determines
the value of the subscript and hence which element within the array is to be accessed
(see FIG-10.5).

 Ë dice[0] is unused.

FIG-10.5

Variable Subscripts

We start by declaring our array and
also a simple variable.

We can then use that variable as the
subscript when accessing a cell within
the array

list
0 1 65432

0 000 00 0

dim list[6]
c = 2

c
2

list
0 1 65432

0 000 00 0

list[] = 12c

The value in the variable c then
determines which cell is to be
accessed.

c
2

interpreted as

value in c
used as
subscript

list[] = 12c

list[] = 122

So the final effect of executing the line
is to assign the value 12 to cell 2.

c

list
0 1 65432

000 00 0 12

2

list[c] = 12

Hands On AGK BASIC: Arrays 275

If the contents of the variable c are changed, then it follows that the array element
being accessed will also change.

We need to take only one further step to realise how we can use arrays to create
shorter code for our earlier problem of reading in four values.

With the code

 for c = 0 to 6

the variable c will, as the loop repeats itself, take on first the value 0, then 1, 2, etc.
and finally 6.

So, returning to our dice code, if we use a variable it conjunction with array access,
we can assign our four values using the code

 dim dice[4]
 for c = 1 to 4
 dice[c] = Random(1,6)
 next c

As c changes value each time the loop iterates, so the term dice[c] in the assignment
statement will reference a different element of the array dice.

Array Element Zero

Every array always has an element zero - as we have already seen. But there are times
when the clarity of an algorithm is better served by ignoring this element. For
example, we used elements dice[1] to dice[4] to store our dice throws, ignoring
dice[0]. If we want to store information based on the months of the year, we would
probably set up the appropriate array

 dim months[12]

and use months[1] to months[12] since this corresponds to the months of the year.

Of course, there is no reason why we could not use elements dice[0] to dice[3] and
months[0] to months[11] for our data, but doing that detracts slightly from how we
might normally think. And that means we are more likely to make mistakes in our
program logic and hence, in these cases, using element zero is probably best avoided.

The only downside of ignoring element zero is that we end up making our arrays one
element larger than they need to be. This seems like a small price to pay given the
memory available on modern devices.

Array Subscript Options

We’ve already seen that an array subscript can be given in the form of a constant as

Activity 10.2

Start a new project called Arrays01, and, using the code given above, create a
complete program which stores the values obtained by four dice throws in the
array dice (ignore element zero).

By adding a second for loop to your code, get the program to display the
contents of the array. Test and save your project.

276 Hands On AGK BASIC: Arrays

in dice[1] or as a variable (dice[c]), but it can also be given in the form of an
arithmetic expression. For example, in the code

 dim values[20]
 p = 3
 values[p*2] = 42

will store the value 42 in values[6] - which is the seventh cell within the array.

We can even use the contents of one cell as the subscript. So, in the code

 dim values[20]
 values[0] = 9
 values[values[0]] = 4

will result in the value 4 being stored in values[9].

Using Arrays
We’ve already seen a simple example of how we might make use of an array, but
arrays can be used in many more ways. Some examples of how arrays can be used to
help create an efficient solution to a problem are shown in this section.

Problem: Multiple Counts

One of the tests used to make sure that a dice is not bias is to check that, for a large
number of throws, each number should appear approximately the same number of
times.

Solution:

We can use an array to keep count of how often each number occurs. Cell 1 will hold
a count of how often the number 1 is thrown, cell 2 the number of times 2 is thrown,
etc (see FIG-10.6).

Activity 10.3

State the contents of each cell in the array numbers after the following code
has been executed.

dim numbers[8]
for p = 0 to 8
 numbers[p] = p*2
next p
numbers[numbers[2]-1] = 23

A dice is said to be bias
if each number does not
have the same likelihood
of being thrown.

Since the diagram shows
only a small number of
throws, the distribution of
each number can vary more
widely.

FIG-10.6

Counts Concept

Dice
Throws

counts array 3 1 4 2 1 2

0 1 2 3 4 5 6

0

subscript

Hands On AGK BASIC: Arrays 277

 The structured English for our solution could be written as

 FOR 1000 times DO
 Throw dice
 Add 1 to appropriate count
 ENDFOR
 Display all 6 counts

The code for the program is given in FIG-10.7.

Problem: Generating Random Non-Repeating Values

Many countries run lottery systems. The simplest of these require you to choose 6
unique numbers in the range 1 to 49. Of course, we can easily get the computer to
generate and display six numbers in this range, but we also need to make sure that
none of the six numbers are the same.

Solution:

To ensure that there are no duplicate values from the second number onwards, we

Activity 10.4

Start a new project DiceCount.

Modify main.agc to match the code given in FIG-10.7. Test and save your
project.

Some games make use of a 10 sided dice. Modify your program so that it will
generate numbers in the range 1 to 10 and count how often each value occurs.

As you see, modifying the code for a 10-sided dice requires changes in several
lines. To avoid this we could set the number of sides as a named constant.

Modify your code to use a named constant called SIDES for the number of
sides on the dice.

Now change the code to deal with a 20 sided dice. How many lines of code
need to be modified to handle this?

FIG-10.7

Keeping Multiple
Counts

dim counts[6]
rem *** Throw the dice 1000 times ***
for c = 1 to 1000
 rem *** Throw dice ***
 dicethrow = Random(1,6)
 rem *** Add to appropriate count ***
 inc counts[dicethrow]
next c

rem *** Display each count ***
for c = 1 to 6
 Print(Str(c)+“ occurred “+Str(counts[c])+“ times”)
next c
Sync()
do
loop

278 Hands On AGK BASIC: Arrays

need to check that the generated number has not already been selected. One way to
do this is to set up an array containing a cell for each number that might be generated.
Initially all the cells contain zero, but when a number is selected the corresponding
cell’s value is set to 1. When a number is generated, it can only be added to the list
of selected values if its corresponding cell contains a zero at that point (see FIG-
10.8).

 The structured English for our solution would be:

 Set all cells to 0
 Generate a random number in the range 1 to 49
 Set the corresponding cell to 1
 Display the value
 FOR 5 times DO
 REPEAT
 Generate a random number
 UNTIL the corresponding cell is zero
 Set the corresponding cell to 1
 Display the number
 ENDFOR

FIG-10.8

Unrepeated Random
Values: Concept

0 1 2 3 4 5 44 45 46 47 48 49

numbers array

0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 44 45 46 47 48 49

0 0 0 0 0 0 0 1 0 0 0 0

0 1 2 3 4 5 44 45 46 47 48 49

0 0 0 0 0 0

0 1 2 3 4 5

0 0 0 0 1 0

0 1 0 0 0 0

44 45 46 47 48 49

0 1 0 0 0 0

The array contains an element
for each number that can be
generated (1 to 49). Initially,
every cell contains zero.

When a value is generated, the
corresponding cell is set to 1.

If 45 is generated,
numbers[45] is set
to 1.

Other generated values are
only accepted if the
corresponding cell in numbers
contains a zero.

If 4 is generated, it is
accepted because
numbers[4] contains
zero.

Once accepted, the matching
cell is set to 1.

numbers[4] set
to 1.

Hands On AGK BASIC: Arrays 279

The program for this is shown in FIG-10.9.

Problem: Shuffling
Many applications require items to be re-arranged in a random order. For example,
your MP3 player probably offers a shuffle option which will play music tracks in a
random order and shuffling is mandatory for almost every card game.

Solution:

If we start by storing a set of values in an array (these may represent music track
numbers or playing card values), then we can create a shuffle effect by taking the
values at two randomly selected positions within the array and swapping them over
(see FIG-10.10).

FIG-10.9

Unrepeated Random
Values: Code

#constant HIGHEST = 49

dim lottery[HIGHEST]

rem ***Generate number ***
number = Random(1,HIGHEST)

rem *** Set corresponding cell ***
lottery[number] = 1

rem *** Display value ***
Print(number)
rem *** FOR 5 times DO ***
for c = 1 to 5
 rem *** Generate an unselected number ***
 repeat
 rem ***Generate number ***
 number = Random(1,HIGHEST)
 until lottery[number] = 0
 rem *** Set corresponding cell ***
 lottery[number] = 1
 rem *** Display value ***
 Print(number)
next c
Sync()
do
loop

Activity 10.5

Start a new project, Lottery. Modify main.agc to match the code in FIG-10.9
and test the program.

There is really no need to treat the first number any differently from the
remaining five. Modify the code so that all 6 numbers are generated within the
for loop.

The code displays the numbers as they are generated rather than in ascending
order. Modify the code so that the six numbers are displayed in ascending
order.

(HINT: You will need to remove the existing Print()statements from the
code.)

280 Hands On AGK BASIC: Arrays

If we continue to do this many more times, the items will have been effectively
shuffled.

The structured English is:

 Set up all values within an array
 FOR 200 times DO
	 	 Generate	a	first	random	subscript
 Generate a second random subscript
 Swap the values held at the subscript positions
 ENDFOR

 The code for shuffling an array of 20 values is given in FIG-10.11.

FIG-10.11

Shuffling: Code

dim list[20]

rem *** Set up values in array ***
for c = 1 to 20
 list[c] = c
next c
rem *** Shuffle ***
for c = 1 to 200
 rem *** Generate two subscript values ***
 sub1 = Random(1,20)
 sub2 = Random(1,20)
 rem *** Swap values at these positions ***
 temp = list[sub1]
 list[sub1] = list[sub2]
 list[sub2] = temp
next c
rem *** Display shuffled items ***
for c = 1 to 20
 PrintC(Str(list[c])+“ “)
next c
Sync()
do
loop

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 10 4 5 6 7 8 9 3 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

shu�e array
The array is set
up to contain the
values to be
shu�ed

Two positions
are chosen at
random...

Selected
position

Selected
position

...and the values
at those positions
exchanged.

Values exchanged

FIG-10.10

Shuffling: Concept

Hands On AGK BASIC: Arrays 281

Problem: Handling an Array that is not Full

There are times when we will set up an array with space enough to hold a specific
number of values, but initially not all the cells will contain meaningful data. For
example, a game which remembers the top 5 scores, will contain no top scores when
first played. In these situations, we may want to access only the elements of the array
in which data has already been placed and so we need to know which cells contain
data.

Solution:

One way to handle this problem is to use element zero in the array to keep a count of
how many cells in the array contain data (see FIG-10.12).

 The main steps involved in this setup are shown in FIG-10.13.

FIG-10.12

A Data Count

Data
No

meaningful data

0 1 2 3 4 5 6

3 8 4 7 0 0 0

Cell 0 contains a
count of how many
cells contain data.

FIG-10.13

Using a Data Count

Initially, the array elements all contain
zero. This ensures that the count
held in element zero is correctly set.

To add a value to the list, we begin
by incrementing the count in element
zero.

dim list[6]

list
0 1 65432

0 000 00 0

inc list[0]

list
0 1 65432

0 000 01 0

count
incremented

Activity 10.6

Start a new project, Shuffle, and implement the code in FIG-10.11. After testing,
modify the program so that the contents of list are displayed before and after the
shuffle.

To simulate a card pack, we would need a 52 element list. The numbers 0 to 12
could represent ace to king of hearts; 13 to 25 diamonds; 26 to 38 spades; and
39 to 51 clubs. Modify the program to shuffle a deck of cards and display the
first six “cards” in the list.

It would be better if we could display the value and suit of a card rather than
just a number. For example, displaying 2 of diamonds rather than 14. Modify
your program to do this. For the moment, Ace, Jack, Queen and King can be
displayed as 1, 11, 12, and 13 of the appropriate suit. (HINT: Use the division
and modulo operators (/ and mod) to determine the suit and value of a card.

A final improvement would be to display the names Ace, Jack, Queen and King
as appropriate. Test and save your project.

282 Hands On AGK BASIC: Arrays

The only check that is required when adding a new value is that the array must not
already be full.

The logic required to insert a value into the list can be written in structured English
as:

 Get value to be added
 IF the list is not full THEN
 Add 1 to the count in element zero
 Insert the new value at the end of the existing data
 ELSE
 Display message “List is full”
 ENDIF

A menu-driven program demonstrating how values are added to an array using the
technique described above is given in FIG-10.14. Note that the program allows four
options: add a value, display how many values are held, display the values held, and
quit. FIG-10.14

Implementing a Data
Count

Notice that the count in element zero
is also equal to the cell number where
the new value is to be added.

This allows the new value to be added
using list[0] as the subscript in the
assignment statement.

list
0 1 65432

0 000 01 0

New value
added here list[list[0]] = 23

list
0 1 65432

0 000 01 23

#include “Buttons.agc”

#constant SIZE 5
dim list[SIZE]

//*** Repeat until quit selected ***
SetUpButtons()
repeat
 //*** Display menu ***
 Print(“1 - Enter value”)
 Print(“2 - Display number of values held”)
 Print(“3 - Display all values held”)
 Print(“4 - QUIT”)
 //*** Get option ***
 Print(“Enter option required(1-4)”)
 Sync()
 Sleep(4000)
 option = GetButtonEntry()
 while (option < 1 or option > 4)
 Print(“Invalid option. Re-enter.”)
 Sync()
 Sleep(2000)
 option = GetButtonEntry()
 endwhile

FIG-10.13
(continued)

Using a Data Count

Hands On AGK BASIC: Arrays 283

Keeping a count of the number of entries in an array is only one way of handling the
problem of keeping tabs on just how many elements within an array contain
meaningful data. A second approach is to use a “marker” value in the cell following
the last value held in the array. For example, we might follow the actual data by a
value of, say, -99 (see FIG-10.15).

 //*** Execute option ***
 select option
 case 1: //*** Add a new value to the list ***
 Print(“Enter value to be added : “)
 Sync()
 Sleep(2000)
 value = GetButtonEntry()
 if list[0] < SIZE
 inc list[0]
 list[list[0]] = value
 else
 Print(“List is full”)
 endif
 Sync()
 Sleep(2000)
 endcase
 case 2: //*** Display the number of items in the list ***
 Print(“The list contains “+Str(list[0])+” entries”)
 Sync()
 Sleep(2000)
 endcase
 case 3: //*** Display the contents of the list ***
 if (list[0] = 0)
 Print(“The list is empty”)
 else
 Print(“Values held are”)
 for c = 1 to list[0]
 PrintC(Str(list[c])+” “)
 next c
 endif
 Sync()
 Sleep(2000)
 endcase
 case 4: //*** Quit program ***
 Print(“Quitting program in 2 seconds”)
 Sync()
 endcase
 endselect
until option = 4
Sleep(2000)
end

Activity 10.7

Start a new project called DataCount and implement the code given in FIG-
10.14.

Remember to copy the three files needed to use the Buttons functions.

Test and save your project.

FIG-10.14
(continued)

Implementing a Data
Count

284 Hands On AGK BASIC: Arrays

The marker value, often known as the sentinel, must be chosen with care. Obviously,
we cannot use a value which can occur within the actual data, since such an occurrence
would be assumed to be the terminating value. For example, we could safely choose
the value -1 as a terminating value if we were sure that all the actual data values were
positive.

The main characteristics of this approach are shown in FIG-10.16.

The complex part of this operation is locating the sentinel value within the array.
After several values have been added, there is no easy way of knowing the sentinel’s
position. To find its location, we must search through the contents of the array.

Searching a list of values for some specific entry is one of the commonest requirements
in a software application. There are many ways of searching a list. For the moment,

FIG-10.16

Using a Sentinel
Value

Initially, the sentinel value is placed in
the first element of the array.

Inserting a new value requires us to
first find the location of the sentinel
value...

list
0 1 65432

? ??? ?-99 ?

sentinel
value

list
0 1 65432

? ??? ?-99 ?

sentinel
located

...then insert the new value at that
point...

...and finally reinsert the sentinel value.

list
0 1 65432

? ??? ?26 ?

new
value added

list
0 1 65432

? ??? ?26 -99

sentinel
value added

list

Terminating
value

Data
No

meaningful data

0 1 2 3 4 5 6

8 4 7 -99 0 0 0

FIG-10.15

A Sentinel Value

Hands On AGK BASIC: Arrays 285

we will content ourselves by examining only one of these.

If we are looking for the value -99 in a list of values, we can compare -99 with each
value in the list and stop when we find a match. This can be achieved by the code:

 post = 0
 while list[post] <> -99
 inc post
 endwhile

Once the insert position has been found, we need to insert the new value and place
-99 to its new position. Assuming we are using the version of the while loop given
above, this would be achieved using the lines

 list[post] = value
 list[post+1] = -99;

We can determine if the list is empty using the expression

 if list[0] = -99

and if it is full using

 list[SIZE] = -99

To count the number of entries in the list, we are forced to search for the sentinel. Its
position in the list will be equal to the number of entries. For example, initially -99
is in cell 0 and there are zero entries in the list; when -99 is stored in cell 3 there will
be three entries in the list (occupying cells 0, 1 and 2).

Problem: Inserting a Value into an Array

In the previous problem, new values were inserted at the end of the existing data.
However, there are many circumstances when the new value will be required to be
positioned elsewhere within that data. As we will see, inserting a new value within
existing data causes new problems.

Solution:

When we want to add a value between existing values (just as we might add a
character into a misspelled word when using a word processor) then we need to
create space at the insertion point by moving other values out of the way.

FIG-10.17 shows the steps involved. for a count-based array.

Activity 10.8

Using the program you created in Activity 10.7 as a guide, create a new project
called SentinelData which makes use of a sentinel-based list.

The program should retain the same four options: allowing a value to be added
to the data, displaying the number of values already stored, displaying the
actual contents of the array, and a quit option.

Test and save your project.

286 Hands On AGK BASIC: Arrays

When a new item is being added we need to acquire not only its value, but also the
cell number into which it is to be placed. This can be done using the code:

If we start with an empty array, there
is only one position into which a new
value can be inserted: cell 1.

Once the first value has been added,
there are two possible positions where
the second item may be placed.

When the new value has to be placed
in front of existing values, those values
need to be moved to the right ...

... to make space for the
new value. The count in cell 0 is also
incremented.

list
0 1 65432

? ??? ?0 ?

This is
the only cell which

can be given a
value

list
0 1 65432

? ??? ?1 24

New
value can
go here

list
0 1 65432

24 ??? ?1

Value moved

list
0 1 65432

24 ??? ?2 9

New value

Count
incremented

Activity 10.9

Assuming an array is in the state shown in the diagram below

in which cells may a new value be positioned?

Assuming the value 77 is to be placed in cell 3, show, with the aid of diagrams,
the state of the array after:

 a) Existing values have been moved to make space for the new
 value.

 b) The new value has been inserted.

list
0 1 65432

13 ?3324 ?4 9

FIG-10.17

Adding a Value to an
Array

The value 24 is actually
copied into list[2], so
list[1] is not empty
(as suggested by the
diagram), but still
contains the value 24.
This will be overwritten
when the new value is
inserted.

Hands On AGK BASIC: Arrays 287

 Print(“Enter new value”)
 Sync()
 Sleep(1000)
 value = GetButtonEntry()
 Print(“Enter its position”)
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 while (post < 1 or post > list[0]+1)
 Print(“Invalid position. Must be in the range 1 to “
 +Str(list[post]+1))
 Print(“Re-enter position”)
 Sync()
 Sleep(1500)
 post = GetButtonEntry()
 endwhile

 Notice that the code includes a check to insure that the insert position is valid.

To free space for the new value, we need to move all those values between post and
list[0] up one position within the array. This is done using the following code:

 for current = list[0] to post step -1
 new = current + 1
 list[new] = list[current]
 next current

As you can see, it is necessary to move the value at the end of the list first, otherwise
you would overwrite the next value (see FIG-10.18).

All that remains now is to add the new value and increment the count held in list[0]:

 list[post] = value
 inc list[0]

Problem: Recording the Top Scores

We started this chapter by looking at what was involved in maintaining a record of
the top five scores in a video game. We have now learnt enough about arrays and the
techniques employed when using them to tackle that earlier problem. But there are a

FIG-10.18

Moving Data

list
0 1 65432

13 ?3324 ?4 9

If the contents of cell 1 were
copied to cell 2, the original
contents of that cell (13) would
be lost.

Activity 10.10

Modify your DataCount project so that, when new data is entered, the program
requests an insert position for the data and places the new data at the specified
position.

Test and save your project.

288 Hands On AGK BASIC: Arrays

couple of new problems to handle:

± When a top score is achieved, the point at which it is inserted in a list is
determined by the existing values in that list.

± Once five scores have been recorded within the list, any new score that is
added will mean that the lowest score will be eliminated from the list.

Solution:

To insert a new top score, we need to search down the list to find the first entry with
a value which is less than the one we wish to add.

 post = 1
 while list[post] >= newscore
 inc post
 endwhile

This will give us the insert position as long as the newscore is greater than at least
one of the existing top scores. However, there would be a problem if this was not the
case : the while loop would fail to terminate! We could try adding a second condition
to the loop so that it terminates if we arrive at the end of the array:

 post = 1
 while list[post] >= newscore and post <= SIZE
 inc post

Unfortunately, this leaves us with another problem: when post is incremented for the
last time, it will be set to 6, then, as we loop back and test the first condition

 list[post] >= newscore

we will be trying to access scores[6] - a cell which does not exist.

One way to solve this problem is to make the array one cell larger than we need:

 dim list[SIZE++1]

which would mean that the array does contain a cell identified as scores[6] although
we will never make use of that cell (we only need the top 5 scores).

A second option is to re-organise the conditions within the while statement:

 while post <= SIZE and list[post] >= newscore

AGK BASIC implements short-circuit evaluation. When two conditions are
ANDed together and the first is evaluated to false, the second condition is not tested.
This means we won’t attempt to access a non-existent element of list.

Now we have a situation exactly as before with a value and a position at which it is
to be inserted. The only other change we need to make is to allow the lowest value in
scores[5] to be eliminated when the lower values are shifted to make space for the
new value. This can be done by making the first shift from cell 4 to cell 5 (the last
cell) thereby overwriting the value previously held in cell 5.

The code for this is:

 for current = 4 to post step -1
 new = current + 1

Hands On AGK BASIC: Arrays 289

 list[new] = list[current]
next current

A more flexible solution would be to initialise current to SIZE rather than 4. This
would allow the number of high scores to be changed without having to alter any
code other than the definition of SIZE. This gives us the new line:

 for current = SIZE to post step -1

When we first begin to store the highest scores, scores will not be full and so we must
increment the count held in list[0], but once we have 5 high scores, the count should
remain fixed. This requirement can be handled by the lines

 if list[0] < SIZE
 inc list[0]
 endif

The complete code for inserting a new high score is:

 rem *** Get new score ***
 Print(“Enter new score”)
 Sync()
 Sleep(1000)
 newscore = GetButtonEntry()
 rem *** Find insertion point ***
 post = 1
 while(post <= SIZE and list[post] >= newscore)
 inc post
 endwhile
 rem *** Create space for new score ***
 for current = SIZE to post step -1
 new = current + 1
 list[new] = list[current];
 next current
 rem *** Add new new score ***
 list[post] = newscore;
 rem *** Increment count ***
 if list[0] < SIZE
 inc list[0]
 endif

With a few modifications we can make use of the program FIG-10.14 to test our code.

Activity 10.11

Start a new project called, TopScores. Compile the default code and copy the
files required by the Button functions into the appropriate folders in the new
project. Copy all the code from the latest version of DataCount to TopScore’s
main.agc.

In TopScores, modify case 1 in the select statement to match the code given
above. (There is no requirement to check if the array is full.) Add an extra
element to array list.

Test your program using the following data for the high scores:
 23000, 11000, 17000, 46000, 9000
Display the list to make sure it is in descending order.

Add a new score 31000, and check that the score of 9000 is removed from the
list.

290 Hands On AGK BASIC: Arrays

Problem: Deleting a Value

Some situations require an item of data to be deleted from an existing list. Sometimes
we need to find and delete a specific value; other times way may want to delete the
entry at a specific position in the list irrespective of its value.

Solution:

To delete a value from a list, we must first locate that value and then eliminate it from
the list. FIG-10.19 shows the stages involved.

Notice that list[6] retains a copy of the final value in the list, but this will have no
effect on our code since, by reducing the count, the content of list[6] is no longer
regarded as part of the valid data.

If we want to delete the value held at position post, then the logic required to move
the other data items is:

 rem *** Delete entry by moving subsequent entries to left ***
 for current = post+1 to list[0]
 list[current-1] = list[current]
 next current
 rem *** Reduce count ***
 dec list[0]

FIG-10.19

Deleting Data

We begin by locating the value to be
deleted. In this case it is the value in
list[3].

The value is deleted by overwriting it
with the value to the right.

list
0 1 65432

24 915 26 19

Entry to
be deleted

list
0 1 65432

24 911 26 19

Value to
be deleted is
overwritten

1

The remaining values are also moved
one position to the left.

Since we have now reduced the
number of values held, we must also
reduce the count in list[0].

list
0 1 65432

24 291 26 19

9 2

list
0 1 65432

24 291 25 19

Count
reduced

Data
count

Hands On AGK BASIC: Arrays 291

When we accept a value for post, we must ensure that we are attempting to delete
from a position that contains data, so the following code is required:

 rem *** Get position ***
 Print(“Enter position of item to be deleted”)
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 while post < 1 or post > list[0]
 Print(”The position is invalid. Re-enter.”)
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 endwhile

When we want to delete a specific value from the list, we must first locate that value.
This requires logic very like that required for locating the sentinel in a list. However,
whereas we knew the sentinel would always appear in a sentinel-terminated list, we
cannot make the same guarantees for user-selected values (see FIG-10.20).

Our new logic must allow for both possibilities.

Activity 10.12

In DataCount, change the displayed menu so that the last two options are

 4 - Delete from position
 5 - QUIT

Make use of the code given above to add a new case 4: option in the select
statement which deletes the data from a specified position in the list.

Change case 5 : to be the quit option.

Change the condition in the until line to be option = 5.

Test your new code by first setting up 5 values in the list and then deleting the
last item of data, the third item of data and the first item of data. Display the
contents of the list after each delete.

 Save this updated version of DataCount.

FIG-10.20

Searching

When the value required exists, then
we search through the data until that
value is encountered.

When the required value does not
exist, the search must stop when we
reach the end of the data.

list
0 1 65432

24 291 ?5 19

9
value

value
compared with each cell

until match found

match

list
0 1 65432

24 291 ?5 19

8
value

no
match

292 Hands On AGK BASIC: Arrays

What we require can be described in structured English as:

 Get value to be deleted
 Start at beginning of list
 WHILE not arrived at end of data AND value to be deleted not found DO
 Move to next entry in the list
 ENDWHILE

This translates into AGK BASIC as:

 //*** Enter value to be deleted ***
 Print(“Enter value to be deleted”)
 Sync()
 Sleep(1000)
 value = GetButtonEntry()

 //*** Search for value in list ***
 post = 1
 while (post <= list[0] and list[post] <> value)
 inc post
 endwhile

Once the while loop has been completed, we need to check if the match was found.
If it was, the cell we stopped at will contain a value matching the required value and
this can be checked with the code:

 if list[post] = value

Having found a match, the contents of the array can then be re-arranged to delete the
specified entry and the count decremented.

Problem: Converting Numbers to Text

A common requirement in a program handling dates is to display a day or a month in
text rather than as a number. For example, sometimes we want to display the word
September rather than number 9 when showing a date.

Solution:

To perform this task we can set up an array containing the months of the year in text
form with the text for each month in the appropriate cell; so, cell 1 would contain the
word January, cell 2 February, etc.

In the code given below, we have a string array, local to a function, which contains

Activity 10.13

Modify Datacount so that the value to be deleted - not its position - is entered.
If the value to be deleted cannot be found, an appropriate message should be
displayed.

Test Data: list 3, 6, 9, 12
 Values to delete : 6, 12, 2

Display the list content after each deletion.

Save your project.

Hands On AGK BASIC: Arrays 293

the names of the months of the year, When supplied with the month of the year as a
parameter, the function returns the corresponding string.

Print(MonthOfYear(8))
Sync()
do
loop

function MonthOfYear(v)
 if v < 1 or v > 12
 exitfunction “”
 endif
 dim month$[12] =[“”,”January”,”February”,”March”,”April”,
 ”May”,”June”,”July”,”August”,”September”,”October”,
 ”November”,”December”]
 result$ = month$[v]
endfunction result$

Dynamic Arrays
Sometimes it is not possible to know how large an array should be at the time we are
writing a program. For example, let’s say we need an array to hold the score achieved
by each player in a multi-player game.

The number of elements needed in the array depends on the number of people who
are actually playing on any specific occasion. To handle this situation, AGK BASIC
allows the size of an array to be set using a variable. A snippet of the code required
is shown below:

rem *** Find out how many people are playing ***
Print(“Enter the number of players”)
Sync()
Sleep(1000)
noofplayers = GetButtonEntry()
rem *** Set up an array of that size ***
dim scores[noofplayers]

Activity 10.14

Start a new project called UsingStringArrays, and implement the code given
above.

Test and save the project.

Activity 10.15

In project Shuffle we made use of two select statements to display the card
suit and the card values.

Modify Shuffle so that it makes use of string arrays to perform these tasks.

Test and save the project.

294 Hands On AGK BASIC: Arrays

The undim Statement
If a program creates a particularly large array with thousands of elements, or has very
many arrays, then it will occupy significant amounts of memory. This in turn may
slow down the speed at which your program runs. To avoid this, it is possible to
delete arrays which are no longer required using the undim statement which has the
format shown in FIG-10.21.

where:

 arrayname is the name of the array to be deleted. The array must
 have been created earlier using a dim statement.

For example, if, at the start of a program we had created an array with the line

 dim list[20]

then we could destroy that array later in our code using the line

 undim list[]

Multi-dimensional Arrays
Could we represent the game of chess using an array? The problem here is that the
chess board has rows and columns, while the arrays we have encountered up to now
are just one long list of values. Luckily AGK BASIC allows us to create arrays which
have both rows and columns. These are called two-dimensional arrays.

To do this we need to start by declaring our array using an extended form of the dim
statement in which the number of rows and columns are specified. For example, if
we wanted to keep the 6 best scores for 5 different players, we could set up a 5 row
by 6 columns array called scores using the line

 dim scores[4,5]

This would create the structure shown in FIG-10.22.

FIG-10.21

The undim Statement

undim [arrayname]

FIG-10.22

The scores 2D Array

This time we will
make use of the row
zero and column zero
in the array.

0 1 2 3 4 5
0

1

2

3

4

scores

scores[1][4]

scores[3][0]

scores[4][5]

Activity 10.16

Start a new project called DynamicArray. The program should create an
array of between 5 and 12 cells (this number to be chosen at random). Place a
random value (between 1 and 20) in each cell and finally, display the contents
of the array.

Hands On AGK BASIC: Arrays 295

To access an individual element within a two-dimensional array, we must specify the
array name and the row and column numbers. The row and column values are
separated by a comma. For example, we could store the value 23 in the top-left cell
of the array marks, using the code:

 marks[0,0] = 23

Unfortunately, there is no option to initialise multi-dimensional arrays.

We saw earlier how we could use a for loop to access each element of a one-
dimensional array in turn. That same technique can be used to access a two dimensional
array. The only difference this time is that we need to employ two for loops.

Returning to our scores array, we could store a random value in each cell using the
following code:

 for row = 0 to 4
 for col = 0 to 5
 scores[row,col] = Random(1,20)
 next col
 next row

3-Dimensional Arrays and Higher
There are situations where we may need an array with even more dimensions. For
example, if our players played with three levels of difficulty, then we would need an
array which had three dimensions (5 players, 6 scores, 3 levels). We would define
such an array with the statement:

Activity 10.18

Start a new project called Using2DArrays. In main.agc, create the array scores
with 5 rows and 6 columns.

Make use of the code given above to store a random value in the range 1 to 20
in each cell of the array.

Add more code to display the contents of each cell in the array. Display values
from the same row on one line.

Test and save your program.

Activity 10.17

Write the declarations necessary for the array structures pictured below (assume
all hold integer values; use any name you wish).

a) b)

c)

296 Hands On AGK BASIC: Arrays

 dim scores[4,5,2]

AGK BASIC allows for arrays of up to 8 dimensions.

Arrays and Functions
Arrays cannot be used as function parameters nor as return values. If you want to
make use of a non-local array within a function, then you must declare the array as a
global variable as in the line

 global dim numbers[20]

Summary
± Arrays can be used to hold a collection of values.

± Every value in an array must be of the same type.

± Arrays are created using the dim statement.

± The number of elements in an array can be specified as a constant, variable, or
expression.

± Using a variable or expression to set the array’s size allows that size to be
varied each time the program is run.

± Numeric arrays are created with the value zero in every element.

± String arrays are created with empty strings in every element.

± The space allocated to an array can be freed using the undim statement.

± An array element is accessed by giving the array named followed by the
element’s subscript value enclosed in square brackets.

± The first element in an array has a subscript value of zero.

± The subscript can be a constant, variable or expression.

± Arrays can have up to eight dimensions.

± An array cannot be passed as a parameter to a function.

± A function cannot return an array as a result.

Hands On AGK BASIC: Arrays 297

Solutions
Activity 10.1

The condition newcore > score3 is true, so the lines executed
will be

 score5 = score4

 score4 = score3

 score3 = newscore

Activity 10.2
The code for Array01:

rem *** Using Arrays ***

rem *** Declare array ***
dim dice[4]
rem *** Store values in array ***
for c = 1 to 4
 dice[c] = Random(1,6)
next c
rem *** Display the values held ***
for c = 1 to 4
 Print(dice[c])
next c
Sync()
do

loop

Activity 10.3
The for loop will result in the following values being stored
in numbers:

0,2,4,6,8,10,12,14,16

The final statement uses the contents of numbers[2] - which is
4 - minus 1 (which gives a result of 3) as the subscript in the
expression

 numbers[numbers[2]-1] = 23

so the line can be interpreted as

 numbers[3] = 23

so the final contents of the array are

0,2,4,23,8,10,12,14,16

Activity 10.4
Modified code for DiceCount:

rem *** Dice throw counter ***
rem ** Declare array ***
dim counts[10]
rem *** Throw the dice 1000 times ***
for c = 1 to 1000
 rem *** Throw dice ***
 dicethrow = Random(1,10)
 rem *** Add to appropriate count ***
 inc counts[dicethrow]
next c
rem *** Display each count ***
for c = 1 to 10
 Print(Str(c)+” occurred “+Str(counts[c])+” times”)
next c
Sync()
do
loop

DiceCount with a constant:
rem *** Dice throw counter ***
#constant SIDES 10
rem ** Declare array ***
dim counts[SIDES]

rem *** Throw the dice 1000 times ***
for c = 1 to 1000
 rem *** Throw dice ***
 dicethrow = Random(1,SIDES)
 rem *** Add to appropriate count ***
 inc counts[dicethrow]
next c

rem *** Display each count ***
for c = 1 to SIDES
 Print(Str(c)+” occurred “+Str(counts[c])+” times”)
next c
Sync()
do
loop

The only change required to deal with a 20-sided dice is:
#constant SIDES 20

Activity 10.5
Modified code for Lottery:

#constant HIGHEST = 49

dim lottery[HIGHEST]

rem *** FOR 6 times DO ***
for c = 1 to 6
 rem *** Generate an unselected number ***
 repeat
 rem ***Generate number ***
 number = Random(1,HIGHEST)
 until lottery[number] = 0
 rem *** Set corresponding cell ***
 lottery[number] = 1
 rem *** Display value ***
 Print(number)
next c
Sync()
do
loop

Modified code for Lottery (numbers in ascending order):

#constant HIGHEST = 49

dim lottery[HIGHEST]

rem *** FOR 6 times DO ***
for c = 1 to 6
 rem *** Generate an unselected number ***
 repeat
 rem ***Generate number ***
 number = Random(1,HIGHEST)
 until lottery[number] = 0
 rem *** Set corresponding cell ***
 lottery[number] = 1
next c
rem *** Display subscript of cells containing 1 ***
for c = 1 to HIGHEST
 if lottery[c] = 1
 Print(c)
 endif
next c
Sync()
do
loop

Activity 10.6
Modified code for Shuffle:

dim list[20]

rem *** Set up values in array ***
for c = 1 to 20
 list[c] = c
next c
Print(“Original Order”)
rem *** Display contents ***
for c = 1 to 20
 PrintC(Str(list[c])+” “)
next c
Print(“”)

298 Hands On AGK BASIC: Arrays

rem *** Shuffle ***
for c = 1 to 200
 rem *** Generate two subscript values ***
 sub1 = Random(1,20)
 sub2 = Random(1,20)
 rem *** Swap values at these positions ***
 temp = list[sub1]
 list[sub1] = list[sub2]
 list[sub2] = temp
next c
rem *** Display shuffled items ***
Print(“Shuffled order”)
for c = 1 to 20
 PrintC(Str(list[c])+” “)
next c
Sync()
do
loop

Card version of Shuffle:
#constant SIZE 52
dim list[SIZE]

rem *** Set up values in array ***
for c = 1 to SIZE
 list[c] = c-1
next c
Print(“”)
rem *** Shuffle ***
for c = 1 to SIZE *20
 rem *** Generate two subscript values ***
 sub1 = Random(1,SIZE)
 sub2 = Random(1,SIZE)
 rem *** Swap values at these positions ***
 temp = list[sub1]
 list[sub1] = list[sub2]
 list[sub2] = temp
next c
rem *** Display shuffled items ***
Print(“First six cards”)
for c = 1 to 6
 PrintC(Str(list[c])+” “)
next c
Sync()
do
loop

Notice that the value stored in list[c] is c-1 (so that we are
storing 0 to 51 rather than 1 to 52).

Named suits version of Shuffle:
#constant SIZE 52
dim list[SIZE]
rem *** Set up values in array ***
for c = 1 to SIZE
 list[c] = c-1
next c
Print(“”)
rem *** Shuffle ***
for c = 1 to SIZE *20
 rem *** Generate two subscript values ***
 sub1 = Random(1,SIZE)
 sub2 = Random(1,SIZE)
 rem *** Swap values at these positions ***
 temp = list[sub1]
 list[sub1] = list[sub2]
 list[sub2] = temp
next c
rem *** Display shuffled items ***
Print(“First six cards”)
for c = 1 to 6
 PrintC(Str(list[c] mod 13+1) +” of “)
 select list[c] / 13
 case 0:
 Print(“Hearts”)
 endcase
 case 1:
 Print(“Diamonds”)
 endcase
 case 2:
 Print(“Spades”)
 endcase
 case 3:
 Print(“Clubs”)
 endcase
 endselect

next c
Sync()
do
loop

When the value of the card is displayed in the statement
 PrintC(Str(list[c] mod 13 + 1)+ “ of “)

the expression list[c] mod 13 makes sure we have a value
in the range 0 to 12. Since this is one less than the actual
value of the card, we add 1 to the value (with the term +1).

The expression list[c] /13 in the select statement
determines the suit. Hearts cards have values between 0 and
12, so any of these values will give an answer of 0 when
divided by 12 (remember integer division is performed); 13
to 25 is the diamonds (division by 12 gives a result of 1); etc.
So the select’s expression will give a result between 1 and 4
giving the suit of the card.

The named cards version of Shuffle:
#constant SIZE 52
dim list[SIZE]

rem *** Set up values in array ***
for c = 1 to SIZE
 list[c] = c-1
next c
Print(“”)
rem *** Shuffle ***
for c = 1 to SIZE *20
 rem *** Generate two subscript values ***
 sub1 = Random(1,SIZE)
 sub2 = Random(1,SIZE)
 rem *** Swap values at these positions ***
 temp = list[sub1]
 list[sub1] = list[sub2]
 list[sub2] = temp
next c
rem *** Display shuffled items ***
Print(“First six cards”)
for c = 1 to 6
 select list[c] mod 13+1
 case 1:
 PrintC(“Ace”)
 endcase
 case 11:
 PrintC(“Jack”)
 endcase
 case 12:
 PrintC(“Queen”)
 endcase
 case 13:
 PrintC(“King”)
 endcase
 case default
 PrintC(List[c] mod 13+1)
 endcase
 endselect
 PrintC(“ of “)
 select list[c] / 13
 case 0:
 Print(“Hearts”)
 endcase
 case 1:
 Print(“Diamonds”)
 endcase
 case 2:
 Print(“Spades”)
 endcase
 case 3:
 Print(“Clubs”)
 endcase
 endselect
next c
Sync()
do
loop

The new select statement displays the appropriate term for
cards with values 1, 11, 12, or 13, all other cards have their
numeric value displayed.

Hands On AGK BASIC: Arrays 299

Activity 10.7
No solution required.

Activity 10.8
Code for SentinelData:

#include “Buttons.agc”

#constant SIZE 5
dim list[SIZE]

rem *** Add sentinel value ***
list[0] = -99
//*** Repeat until quit selected ***
SetUpButtons()
repeat
 //*** Display menu ***
 Print(“1 - Enter value”)
 Print(“2 - Display number of values held”)
 Print(“3 - Display all values held”)
 Print(“4 - QUIT”)
 //*** Get option ***
 Print(“Enter option required(1-4)”)
 Sync()
 Sleep(4000)
 option = GetButtonEntry()
 while (option < 1 or option > 4)
 Print(“Invalid option. Re-enter.”)
 Sync()
 Sleep(2000)
 option = GetButtonEntry()
 endwhile
 //*** Execute option ***
 select option
 case 1: //*** Add a new value to the list ***
 Print(“Enter value to be added : “)
 Sync()
 Sleep(2000)
 value = GetButtonEntry()
 rem *** IF list not full ***
 if list[SIZE] <> -99
 rem *** Search for sentinel ***
 post = 0
 while list[post] <> -99
 inc post
 endwhile
 rem *** Insert new value... ***
 list[post] = value
 rem ***...followed by sentinel ***
 list[post+1] = -99
 else
 Print(“List is full”)
 endif
 Sync()
 Sleep(2000)
 endcase
 case 2: //*** Display the number of items in
 the list ***
 rem *** Search for sentinel ***
 post = 0
 while list[post] <> -99
 inc post
 endwhile
 Print(“The list contains “+Str(post)
 +” entries”)
 Sync()
 Sleep(2000)
 endcase
 case 3: //*** Display the contents of the
 list ***
 if (list[0] = -99)
 Print(“The list is empty”)
 else
 Print(“Values held are”)
 post = 0
 while list[post] <> -99
 PrintC(Str(list[post])+” “)
 inc post
 endwhile
 endif
 Sync()
 Sleep(2000)
 endcase
 case 4: //*** Quit program ***
 Print(“Quitting program in 2 seconds”)
 Sync()
 endcase

 endselect
until option = 4
Sleep(2000)

end

Activity 10.9
A new value could be placed in cells 1, 2, 3, 4, or 5.

Activity 10.10
Modified version of DataCount:

#include “Buttons.agc”

#constant SIZE 5
dim list[SIZE]

//*** Repeat until quit selected ***
SetUpButtons()
repeat
 //*** Display menu ***
 Print(“1 - Enter value”)
 Print(“2 - Display number of values held”)
 Print(“3 - Display all values held”)
 Print(“4 - QUIT”)
 //*** Get option ***
 Print(“Enter option required(1-4)”)
 Sync()
 Sleep(4000)
 option = GetButtonEntry()
 while (option < 1 or option > 4)
 Print(“Invalid option. Re-enter.”)
 Sync()
 Sleep(2000)
 option = GetButtonEntry()
 endwhile
 //*** Execute option ***
 select option
 case 1: //*** Add a new value to the list ***
 Print(“Enter value to be added : “)
 Sync()
 Sleep(2000)
 value = GetButtonEntry()
 if list[0] < SIZE
 rem *** Get insert position ***
 Print(“Enter position”)
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 while post < 1 or post > list[0]+1
 Print(“Position must be between
 1 and “+Str(list[0]+1))
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 endwhile
 rem *** Make space for new value ***
 for c = list[0] to post step -1
 list[c+1] = list[c]
 next c
 rem *** Increment count ***
 inc list[0]
 rem *** Insert new value ***
 list[post] = value

list
0 1 65432

13 3324 ?4 9

Values 24
and 33 are moved
to make space for

the new value

list
0 1 65432

13 332477 ?5 9

New value
added

Count
incremented

a)

b)

300 Hands On AGK BASIC: Arrays

 else
 Print(“List is full”)
 endif
 Sync()
 Sleep(2000)
 endcase
 case 2: //*** Display the number of items in
 the list ***
 Print(“The list contains “+Str(list[0])
 +” entries”)
 Sync()
 Sleep(2000)
 endcase
 case 3: //*** Display the contents of the
 list ***
 if (list[0] = 0)
 Print(“The list is empty”)
 else
 Print(“Values held are”)
 for c = 1 to list[0]
 PrintC(Str(list[c])+” “)
 next c
 endif
 Sync()
 Sleep(2000)
 endcase
 case 4: //*** Quit program ***
 Print(“Quitting program in 2 seconds”)
 Sync()
 endcase
 endselect
until option = 4
Sleep(2000)
end

Activity 10.11
Code for TopScores:

#include “Buttons.agc”

#constant SIZE 5

dim list[SIZE+1]

//*** Repeat until quit selected ***
SetUpButtons()
repeat
 //*** Display menu ***
 Print(“1 - Enter value”)
 Print(“2 - Display number of values held”)
 Print(“3 - Display all values held”)
 Print(“4 - QUIT”)
 //*** Get option ***
 Print(“Enter option required(1-4)”)
 Sync()
 Sleep(4000)
 option = GetButtonEntry()
 while (option < 1 or option > 4)
 Print(“Invalid option. Re-enter.”)
 Sync()
 Sleep(2000)
 option = GetButtonEntry()
 endwhile
 //*** Execute option ***
 select option
 case 1: //*** Add a new value to the list ***

 rem *** Get new score ***
 Print(“Enter new score”)
 Sync()
 Sleep(1000)
 newscore = GetButtonEntry()
 rem *** Find insertion point ***
 post = 1
 while post <= SIZE and list[post] >=
 newscore
 inc post
 endwhile
 rem *** Create space for new score ***
 for current = SIZE to post step -1
 new = current + 1
 list[new] = list[current];
 next current
 rem *** Add new new score ***
 list[post] = newscore;
 rem *** Increment count ***
 if list[0] < SIZE
 inc list[0]

 endif
 endcase
 case 2: //*** Display the number of items in
 the list ***
 Print(“The list contains “+Str(list[0])
 +” entries”)
 Sync()
 Sleep(2000)
 endcase
 case 3: //*** Display the contents of the
 list ***
 if (list[0] = 0)
 Print(“The list is empty”)
 else
 Print(“Values held are”)
 for c = 1 to list[0]
 PrintC(Str(list[c])+” “)
 next c
 endif
 Sync()
 Sleep(2000)
 endcase
 case 4: //*** Quit program ***
 Print(“Quitting program in 2 seconds”)
 Sync()
 endcase
 endselect
until option = 4
Sleep(2000)
end

Activity 10.12
Modified code for DataCount:

#include “Buttons.agc”

#constant SIZE 5
dim list[SIZE+1]

//*** Repeat until quit selected ***
SetUpButtons()
repeat
 //*** Display menu ***
 Print(“1 - Enter value”)
 Print(“2 - Display number of values held”)
 Print(“3 - Display all values held”)
 Print(“4 - Delete from position”)
 Print(“5 - QUIT”)
 //*** Get option ***
 Print(“Enter option required(1-5)”)
 Sync()
 Sleep(4000)
 option = GetButtonEntry()
 while (option < 1 or option > 5)
 Print(“Invalid option. Re-enter.”)
 Sync()
 Sleep(2000)
 option = GetButtonEntry()
 endwhile
 //*** Execute option ***
 select option
 case 1://*** Add a new value to the list ***
 Print(“Enter value to be added : “)
 Sync()
 Sleep(2000)
 value = GetButtonEntry()
 if list[0] < SIZE
 rem *** Get insert position ***
 Print(“Enter position”)
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 while post < 1 or post > list[0]+1
 Print(“Position must be between
 and “ + Str(list[0]+1))
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 endwhile
 rem *** Make space for new value ***
 for c = list[0] to post step -1
 list[c+1] = list[c]
 next c
 rem *** Increment count ***
 inc list[0]
 rem *** Insert new value ***
 list[post] = value
 else

Hands On AGK BASIC: Arrays 301

 Print(“List is full”)
 endif
 Sync()
 Sleep(2000)
 endcase
 case 2: //*** Display the number of items in
 the list ***
 Print(“The list contains “+Str(list[0])
 +” entries”)
 Sync()
 Sleep(2000)
 endcase
 case 3://*** Display contents of list ***
 if (list[0] = 0)
 Print(“The list is empty”)
 else
 Print(“Values held are”)
 for c = 1 to list[0]
 PrintC(Str(list[c])+” “)
 next c
 endif
 Sync()
 Sleep(2000)
 endcase
 case 4: //*** Delete from a specified
 position ***
 rem *** Get position ***
 Print(“Enter position of item to be
 deleted”)
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 while post < 1 or post > list[0]
 Print(“The position is invalid.
 Re-enter.”)
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 endwhile
 rem *** Delete entry ***
 for current = post+1 to list[0]
 list[current-1] = list[current]
 next current
 rem *** Reduce count ***
 dec list[0]
 endcase
 case 5: //*** Quit program ***
 Print(“Quitting program in 2 seconds”)
 Sync()
 endcase
 endselect
until option = 5
Sleep(2000)
end

Activity 10.13
Modified code for DataCount:

#include “Buttons.agc”

#constant SIZE 5
dim list[SIZE+1]

//*** Repeat until quit selected ***
SetUpButtons()
repeat
 //*** Display menu ***
 Print(“1 - Enter value”)
 Print(“2 - Display number of values held”)
 Print(“3 - Display all values held”)
 Print(“4 - Delete value”)
 Print(“5 - QUIT”)
 //*** Get option ***
 Print(“Enter option required(1-5)”)
 Sync()
 Sleep(4000)
 option = GetButtonEntry()
 while (option < 1 or option > 5)
 Print(“Invalid option. Re-enter.”)
 Sync()
 Sleep(2000)
 option = GetButtonEntry()
 endwhile
 //*** Execute option ***
 select option
 case 1://*** Add a new value to the list ***
 Print(“Enter value to be added : “)
 Sync()

 Sleep(2000)
 value = GetButtonEntry()
 if list[0] < SIZE
 rem *** Get insert position ***
 Print(“Enter position”)
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 while post < 1 or post > list[0]+1
 Print(“Position must be between
 and “ + Str(list[0]+1))
 Sync()
 Sleep(1000)
 post = GetButtonEntry()
 endwhile
 rem *** Make space for new value ***
 for c = list[0] to post step -1
 list[c+1] = list[c]
 next c
 rem *** Increment count ***
 inc list[0]
 rem *** Insert new value ***
 list[post] = value
 else
 Print(“List is full”)
 endif
 Sync()
 Sleep(2000)
 endcase
 case 2: //*** Display the number of items in
 the list ***
 Print(“The list contains “+Str(list[0])
 +” entries”)
 Sync()
 Sleep(2000)
 endcase
 case 3://*** Display contents of list ***
 if (list[0] = 0)
 Print(“The list is empty”)
 else
 Print(“Values held are”)
 for c = 1 to list[0]
 PrintC(Str(list[c])+” “)
 next c
 endif
 Sync()
 Sleep(2000)
 endcase
 case 4: //*** Delete value ***
 //*** Enter value to be deleted ***
 Print(“Enter value to be deleted”)
 Sync()
 Sleep(1000)
 value = GetButtonEntry()
 //*** Search for value in list ***
 post = 1
 while (post <= list[0] and list[post] <>
 value)
 inc post
 endwhile
 rem *** IF match found, delete entry ***
 if list[post] = value
 rem *** Delete entry ***
 for current = post+1 to list[0]
 list[current-1] = list[current]
 next current
 rem *** Reduce count ***
 dec list[0]
 endif
 endcase
 case 5: //*** Quit program ***
 Print(“Quitting program in 2 seconds”)
 Sync()
 endcase
 endselect
until option = 5
Sleep(2000)

end

Activity 10.14
No solution required.

302 Hands On AGK BASIC: Arrays

Activity 10.15
Modified code for Shuffle:

#constant SIZE 52
dim list[SIZE]

rem *** Set up values in array ***
for c = 1 to SIZE
 list[c] = c-1
next c
Print(“”)
rem *** Shuffle ***
for c = 1 to SIZE *20
 rem *** Generate two subscript values ***
 sub1 = Random(1,SIZE)
 sub2 = Random(1,SIZE)
 rem *** Swap values at these positions ***
 temp = list[sub1]
 list[sub1] = list[sub2]
 list[sub2] = temp
next c
rem *** Display shuffled items ***
dim values$[13]=[“”,”Ace”,”2”,”3”,”4”,”5”,”6”,”7”,
 ”8”,”9”,”10”,”Jack”,”Queen”,”King”]
dim suits$[4]=[“”,”Hearts”,”Diamonds”,”Spades”,
 ”Hearts”]
Print(“First six cards”)
for c = 1 to 6
 PrintC(values$[list[c] mod 13 + 1])
 PrintC(“ of “)
 Print(suits$[list[c] / 13 + 1])
next c
Sync()
do
loop

The three display statements could even be combined into a
single line:

Print(Str(values$[list[c] mod 13 + 1]))+“ of “+
 Str(suits$[list[c] / 13 + 1]))

Activity 10.16
Code for DynamicArray:

rem *** Decide size of array ***
size = Random(5,12)
rem *** Set up array ***
dim list[size]
rem *** Store a value in each cell ***
for c = 0 to size
 list[c] = Random(1,20)
next c
rem *** Display the contents of the array ***
for c = 0 to size
 Print(list[c])
next c
Sync()
do
loop

Activity 10.17

a) dim matrix[2,13]

b) dim matrix [4,1]

c) dim list[7] This is a one-dimensional array

Activity 10.18
Code for Using2DArrays:

rem *** Set up array ***
dim scores[4,5]
rem *** Store values in arrays ***
for row = 0 to 4
 for col = 0 to 5
 scores[row,col] = Random(1,20)
 next col
next row
for row = 0 to 4
 for col = 0 to 5

 PrintC(Str(scores[row,col])+” “)
 next col
 Print(“”)
next row
Sync()
do
loop

Hands On AGK BASIC: Data Types and Operators 303

Data Types and Operators

In this Chapter:

T The dword Data Type

T Record Structures

T Nested Records

T Arrays of Records

T Using Other Number Bases

T Shift Operators

T Bitwise Boolean Operators

304 Hands On AGK BASIC: Data Types and Operators

Data Storage

Introduction
The type of every variable we have used so far has been determined by that variable’s
name. If it ended with a dollar sign, we had a string variable; a hash symbol at the
end meant that we had a variable capable of storing a real number; all others were,
by default, integer variables. However, as we will see, AGK BASIC allows variables
of many other types as well.

Declaring Variables
Any variable used in an AGK BASIC program can be declared. That is, rather than
having a variable suddenly appearing for the first time as part of an assignment
statement, we can write a line of code stating the variable’s name and the type of
value it is designed to hold. For example, we can declare total as an integer variable
using the line:

 total as integer

But, why should we go to the trouble of adding an extra line in order to declare a
variable, when we can quite happily get by without doing so? As a general rule, it is
considered a good thing to declare your variables. This way we can see the names of
every variable in a program or routine by just looking at the section where they are
declared. Also we can add a comment beside each variable detailing what that
variable is used for (though we should be able to gather that from the name given to
the variable). However, there are two other advantages that we derive from declaring
our variables. The first of these is that string and real variables no longer need to end
with special characters. For example by including the line

 name as string

in a program, we have created a variable called name which does not end with a
dollar sign, and yet can hold a string value. This allows us to write a line such as

 name = “Elizabeth”

Secondly, by declaring a variable, we can use the type dword which, although it
cannot store negative values, does allow larger positive integer values than can be
placed in a normal integer variable. All the data types available and the range of
values they can store are shown in FIG-11.1.

Notice that real variables are declared using the word float, not real. The new type is
dword which allows only non-negative values to be stored, but can store double the
value that can be reached with a standard integer. When declaring variables, the
general form of the statement is as shown in FIG-11.2

FIG-11.1

Data Types

 Data Type Bytes Range

dword 4 0 to 4294967295
integer 4 -2147483648 to 2147483647
float 4 3.4E +/- 38 (7 digits)
string NA NA

FIG-11.2

Declaring Variables asvariable type

Hands On AGK BASIC: Data Types and Operators 305

where:

 variable is the name to be given to the variable.

 type is the variable’s data type chosen from those given in FIG-11.1.

Type Definitions
When we need to gather a group of related data values, say the name and score of a
game player, we can create two separate variables to store this information, as in the
lines:

 name as string
 score as integer

But because these two pieces of information relate to the one person, it would be
better to bind them together in some fashion. AGK BASIC allows us to do this by
defining a record structure. In fact, the term record simply means a collection of
related information.

The type Definition

There are two stages to creating a record. Firstly, we must start by defining a blueprint
for the structure we require. This is done using a type statement. For the data
described above this would be coded as:

 type ContestantType
 name as string
 score as integer
 endtype

Notice that the keyword type is followed by an identifying name, ContestantType.
This is the name we wish to give to this record structure design. We can choose any
name as long as it conforms to the same rules as naming variables in our programs,
but it’s a good idea to end the name with Type - that way we’ll remember that it is not
a variable name when we see it used in the program.

The parts that make up a structure are known as fields. So the ContestantType
structure contains fields called name and score. Fields can also be defined without
explicitly declaring each field’s type. So it is quite acceptable to write

 type ContestantType
 name$
 score
 endtype

although in the above case, we are forced to add the $ symbol to indicate a string
field.

There is no restriction to the number of fields that can be named within a type
definition, but it cannot contain arrays. A type definition has the format shown in
FIG-11.3.

FIG-11.3

Declaring Records fieldname

type typename

endtype

as type[]

306 Hands On AGK BASIC: Data Types and Operators

where:

 typename is the name to be given to the type being defined.

 fieldname is the name of a field within the structure.

 type is the data type of the field (from FIG-11.1).

As many type declarations as required can be placed in a single program.

Declaring Variables of a Defined Type

Once we have created the type definition, we can then create variables of this type
using the as statement. For example:

 dob as DateType

The variable dob is now created containing all the fields defined in DateType (see
FIG-11.4).

If we need several variables of the same type, we need an as line for each variable
created:

 dob as DateType
 anniversary as DateType
 wifedob as DateType

The variables constructed in this way are referred to as records or composite
variables.

Accessing the Fields in a Composite Variable

When we want to access the fields in a record, we need to start with the variable name
followed by a full-stop and then the field name. So, having declared a record variable
with the line

Activity 11.1

Start a new project called UsingRecords.

After deleting the default contents of main.agc, add a type definition called
DateType for a record containing the fields day, month and year, all of which
are of type integer.

Save your project.

FIG-11.4

DataType’s Structure

dob

day month year

Activity 11.2

In UsingRecords, create two variables, p1 and p2 of type DateType.

Save your project.

Hands On AGK BASIC: Data Types and Operators 307

 challenger as ContestantType

 we can access that variable’s score field using the term:

 challenger.score

As long as we use the correct term, then we can do anything with a record’s field that
we might do with a standard variable. Hence, all of the following are valid statements:

 challenger.name = “Liz Heron”
 Print(challenger.score)
 if challenger.score > 1000
 Print(“High score”)
 endif

In most cases, it is invalid to try to treat a record as a single entity. For example, the
line

 Print(challenger)

is not allowed. Instead, the individual fields must be displayed separately:

 Print(challenger.name)
 Print(challenger.score)

The same restriction is true for all other statements - except one. It is allowable to
copy the contents of one record into a second record of the same type with just a
single statement. For example, if we define two records:

 champion as ContestantType
 challenger as ContestantType

and assign values to one of the records:

 challenger.name = “Liz Heron”
 challenger.score = 781

then we can copy all the values in challenger into champion with the single line:

 champion = challenger

Nested Record Structures

In the last chapter we created an array of top times, but this held only the actual times
themselves. In a video game, the name of the player associated with each score would
also be held.

Activity 11.3

In UsingRecords, set the fields in p1 to the date 22/11/1963 and those in p2 to
14/9/1979.

Add two Print() statements which display the dates held in p1 and p2.

Turn your code into a complete program and check that it operates as expected.

Resave your project.

308 Hands On AGK BASIC: Data Types and Operators

To do this we start with defining a record type:

 type PlayerType
 name as string
 score as integer
 endtype

But if we wanted to store the date on which a winning time was achieved, then we
could add a date field to this structure:

 type PlayerType
 name as string
 score as integer
 achieved as DateType
 endtype

Now we have, within one record structure (PlayerType), a field called achieved,
which is itself a record structure (DateType). So, if we declare a variable of this type
with the line

 best as PlayerType

then the data structure created is given visual form in FIG-11.5.

This setup is known as a nested records structure.

If we create a variable of this type:

 player as PlayerType

we can access the name and score fields in the usual way:

 player.name
 player.score

but the last field, achieved, being a record structure in its own right, must be accessed
a field at a time:

 player.achieved.day
 player.achieved.month
 player.achieved.year

FIG-11.5

Nested Structures

achieved

day month year

name score

best

Activity 11.4

Start a new project called NestedRecords and define a record structure,
TimeType, which has two fields: minutes and seconds, both of which are of type
integer. Define a second record structure, BestType, which contains two fields:
name and time. name is of type string and time of type TimeType. Declare
a variable, winner, of type BestType and set its contents to Emily Knight, 2
minutes 31 seconds. Display the contents of the record.

Hands On AGK BASIC: Data Types and Operators 309

It is not possible in AGK BASIC to create an array as one of the fields within a record
structure.

Arrays of Records

Although we cannot place an array inside a type definition, we can create an array
of records. For example, we could use the line

 dim topscores[5] as PlayerType

to create the array shown visually in FIG-11.6.

To access a data item in this structure, we start by specifying the array name and
element number. This is followed by a full stop and the name of the field to be
accessed. So, assuming we’re not using element zero, we could set the third entry in
the array to Jack Farrell, 2100, 14/7/2011 with the lines:

 topscores[3].name = “Jack Farrell”
 topscores[3].score = 2100
 topscores[3].achieved.day = 14
 topscores[3].achieved.month = 7
 topscores[3].achieved.year = 2011

The effect of these five statements is shown in FIG-11.7.

FIG-11.6

An Array of Records

name score achieved

day month year

0

1

2

3

4

5

topscores

FIG-11.7

Storing a Value in an
Array of Records

name score achieved

day month year

0

1

2

3

4

5

topscores

Jack Farell 2100 14 7 2011

310 Hands On AGK BASIC: Data Types and Operators

Summary
± Variables can be specifically declared.

± Declared variables can be of type dword as well as integer, float and string.

± Declared string variables need not have names that end with a dollar ($)
symbol.

± Real variables are declared as float.

± Declared real variables need not have names that end with the # symbol.

± type definitions can be used to create record structures.

± The data items defined within a type are known as fields of the record.

± Fields cannot be arrays.

± Once a type has been defined, variables of that type can be declared.

± Variables of a defined type are known as record variables.

± Fields within a record variable are accessed using the format

 record_variable_name.field_name

± Arrays of a defined type can also be declared.

± To access a field in a record within an array use the format

 array_name[subscript].field_name

Activity 11.5

Modify NestedRecords so that the variable winner is replaced by an array of six
elements called winners of type BestType.

The program should then assign random values to each field in records
winners[1] to winners[5] and display all of those values. Make use of the
RandomString() function in StringLibrary.agc to create values for the name
fields.

Test and save your project.

Hands On AGK BASIC: Data Types and Operators 311

Data Manipulation

Introduction
Earlier in the book we looked at the basic arithmetic operators such as addition and
multiplication. There are, however, several other operators that perform more
specialised tasks.

Other Number Systems
Although we spend most of our time working in the decimal number system (properly
called the denary number system), computers work in binary, where every possible
number (and character) is represented as a pattern of 1s and 0s.

If we want to assign a specific binary value to an integer variable, then we can do so
by starting our number with a percent (%) sign. For example, the lines

 value = %01000001

will store the binary value 01000001 in the variable value. If we are good at converting
between number systems, we could have achieved the same effect by writing

 value = 65

A specific hexadecimal value can also be assigned by starting with 0X (zero X) as in
the line:

 value = 0XFF

The more obscure octal number base is also possible by starting the value with 0C
(zero C) as in:

 value = 0C53

Remember, no matter what number base we use in our program code, this makes no
difference to how the values are stored. They are always stored in binary. The different
number bases are available to make things easier for us - not the computer.

The program in FIG-11.8 uses all four number systems to assign values to four
variables. The contents of the variables are then displayed.

A PDF file
(NumbersSystems.
pdf), available in
AGKDownloads/
Chapter11, gives a
greater description of the
various number systems
mentioned here.

FIG-11.8

Using Different
Number Bases

REM *** Assign a value to four variables ***
REM *** using a different number base for each ***
v1 = 65
v2 = %01000001
v3 = 0X41
v4 = 0C101
REM *** Display the contents of each variable ***
Print(v1)
Print(v2)
Print(v3)
Print(v4)
Sync()
do
loop

312 Hands On AGK BASIC: Data Types and Operators

Shift Operators
If you have ever sat in a well-organised show and been asked to move all the way
along the row, you’ll have an idea of what shifting is all about.

Shift operators allow the contents of an integer variable (integer or dword) to be
moved. For example, in FIG-11.9 we see the contents of a single byte being moved
one place to the left.

We can see from the diagram that the bit that starts out as the left-most bit falls off
the end and is lost. Also, to fill the gap created on the right-hand side of the byte a
new digit (a zero) is inserted.

A similar effect occurs when bits are shifted to the right (see FIG-11.10).

FIG-11.9

Shift Left

1 0 0 1 1 1 0 1

Original Contents

0 0 1 1 1 0 1 0

Contents after Shift

shifted left 1 bit1
0

Original
left-most bit

lost Right-most
bit zero-filled

FIG-11.10

Shift Right 1 0 0 1 1 1 0 1

Original Contents

0 1 0 0 1 1 1 0

Contents after Shift

shifted right 1 bit 1
0

Original
right-most bit

lost
Left-most

bit zero-filled

Activity 11.6

Create a new project called NumberBases and implement the code given in
FIG-11.8.

What four values are displayed by the program?

Modify the program so that v2 is displayed in binary and v3 in hexadecimal.

Save the project.

Activity 11.7

Write down the result of the following shifts:
 a) 10110001 shifted 2 places to the left
 b) 10110001 shifted 3 places to the right

Hands On AGK BASIC: Data Types and Operators 313

So why would we want to shift the contents of a variable? Well, one reason is that
left shifting is a very efficient way of multiplying by powers of 2.

In the decimal system, if we start with a number (say 12) and shift the digits one
column to the left (120), we’ve multiplied the original value by 10; if we shift the
original value 2 places to the left (1200), we have multiplied the value by 100.

When we do the same thing to a binary number (say, 00001100) and shift it 1 place
to the left (00011000), the original value has been multiplied by 2; a shift of 2 places
to the left (00110000) would multiply the original value by 4.

Conversely, a single right shift divides a value by 10 in the decimal system (200
becomes 20) and by 2 in the binary system (00000100 becomes 00000010).

The Shift Left Operator (<<)

If we set up a variable containing the number 7 (00000111) with the lines

 value = 7

then we can shift the contents of value one place to the left using the shift-left operator
(<<) with the line

 value = value << 1

and hence, since the computer holds everything in binary, the number held in value
is doubled to 14 (00001110).

The shift operator is used in an expression which has the form shown in FIG-11.11.

where:

 ivalue is the integer-type variable, constant or expression whose value
 is to be left-shifted.

 ibits is an integer value representing the number of places the contents
 are to be shifted. For integer values, which are stored over 32 bits
 there is no purpose in this value being greater than 32; dword
 variables can be shifted up to 64 positions.

For example, the line

 Print(%00111010 << 2) rem *** 00111010 is 58 ***

would display 232 (which is 11101000 in binary).

FIG-11.11

The Shift Left
Operator

<<ivalue ibits

Activity 11.8

Create a new project, Bits01, which sets an integer variable num to binary 11
and shifts the contents of num 1 place to the left.

The value held in num should be displayed both before and after the shift.
Also, display the before and after value in both decimal and binary.

314 Hands On AGK BASIC: Data Types and Operators

The Shift Right Operator (>>)

By shifting the contents of an integer variable to the right (using the shift-right
operator >>) we halve the numeric value of that variable. Shifting two places results
in a quartering of the original value. For example, the lines

 num2 = 24
 Print(num2 >> 2)

will display the value 6 (a quarter of 24). Of course, if we halve an odd number by
using left shift, then the fraction will be lost. So,

 num = 13
 Print(num >> 1)

would display the value 6.

Bitwise Boolean Operators
We met the Boolean operators and, or and not in an earlier chapter. These combined
true and false values to give an overall true or false result. Bitwise Boolean operators
work on the individual bits that make up a value, with a binary 1 being treated as the
equivalent of true and zero being false.

The Bitwise NOT Operator (..)

The bitwise NOT operator, .., changes all 1s in a value to 0s and changes all 0s to
1s. The operator has a rather strange syntax (see FIG-11.12).

where:

 ivalue is an integer value whose bits are to be complemented.

 0 is the numeric value zero. Actually, any integer value can be used
 as this has absolutely no effect on the result and is only required
 to satisfy the syntax of the operator.

Therefore, if we start with the line

 num = %10011101

then the statement

 result = num..0

uses the bitwise NOT operator to create a binary value whose bits are the exact
complement of those in num and stores the value in result (see FIG-11.13).

Activity 11.9

Modify Bits01 so that the value in num is shifted one place to the right rather
than the left.

Display the value before and after the shift in decimal and binary.

FIG-11.12

The Bitwise NOT
Operator

..ivalue 0

Hands On AGK BASIC: Data Types and Operators 315

Of course we can do all of this in decimal (or even hexadecimal or octal) and get
exactly the same value:

 num = 15
 num = num..0

We can even display the contents of result in binary with the line:

 Print(Bin(num))

The Bitwise AND Operator (&&)

The individual bits of two values can be ANDed together using the bitwise AND
operator, &&.

The code

 v1 = %00011111
 v2 = %11010001
 result = v1 && v2
 Print(Bin(result))

displays the value 00010001. How this result is derived is shown in FIG-11.14.

Activity 11.10

Create a new project, Bits02, which performs the following logic:

 Create integer variables s and f
 Assigns s the binary value 10101001
 Set f = bit complement of s
 Display s and f in binary

Test and save your project.

FIG-11.14

The Bitwise AND
Operator

0 0 0 1 1 1 1 1 v1

1 1 0 1 0 0 0 1 v2

0 0 0 1 0 0 0 1 result

Result of
ANDing equivalent
bits in v1 and v2

A N D

Activity 11.11

Start a new project, Bits03, and create a program based on the code above that
ANDs the values 000111112 and 110100012.

Check that the expected result is displayed.

1 0 0 1 1 1 0 1 num

0 1 1 0 0 0 1 0 result

Each bit
is the inverse of

the original

FIG-11.13

Bitwise NOT

316 Hands On AGK BASIC: Data Types and Operators

The Bitwise OR Operator (||)

The individual bits of two values can be ORed together using the bitwise OR operator,
||.

The code

 v1 = %00011111
 v2 = %11010001
 result = v1 || v2
 Print(BIN(result))

displays the value 11011111. How this result is derived is shown in FIG-11.15.

The Bitwise Exclusive OR Operator (~~)

The exclusive OR operation - sometimes written as XOR - returns a result of 1 if the
two bits being compared are different and a 0 if they are the same (see FIG-11.16).

FIG-11.15

The Bitwise OR
Operator

0 0 0 1 1 1 1 1 v1

1 1 0 1 0 0 0 1 v2

1 1 0 1 1 1 1 1 result

Result of
ORing equivalent
bits in v1 and v2

OR

Activity 11.12

Modify Bits03 to OR (rather than AND) the two values v1 and v2.

Check that the expected results are displayed.

FIG-11.16

The Bitwise XOR
Operator

0 0 0 1 1 1 1 1 v1

1 1 0 1 0 0 0 1 v2

1 1 0 0 1 1 1 0 result

Result of
XORing equivalent

bits in v1 and v2

XOR

Activity 11.14

Work out the results of the following operations:
a) 01100111 ..0 b) 01010011 && 10000110
c) 01000011 || 00010000 d) 00100111 ~~ 01001101

Activity 11.13

Modify Bits03 to XOR the two values v1 and v2.

Check that the expected results are displayed.

Hands On AGK BASIC: Data Types and Operators 317

A Practical Use For Bitwise Operations
Imagine we are writing an adventure game which contains four locations and 4 items
that the player might pick up on his journey. When the player reaches the end of the
game, he wins only if he has visited location 1 and possesses items 2 and 3.

To finish the game correctly, the program will have to keep track of where the player
has been and what he has picked up. Perhaps we could use 8 variables, or an 8-element
array to do this. Initially, set everything to zero and then when a place is visited or an
item taken, set that variable (array element) to 1. At the end of the game check to see
if the appropriate variables are set to 1 and our problem is solved. This approach is
fine but can be wasteful of memory, especially if the real game has thousands of
locations and hundreds of items.

Another approach is to use a single bit for each piece of information - after all we
only need to store a 0 or 1 in each case. Since we need to record 8 pieces of information,
we can use a single byte. All we have to do is decide the purpose of each bit in that
byte (see FIG-11.17).

We can create this initial setup with the lines:

 status = 0

Since status is an integer, it will be assigned 32 bits, but we will only be using the
right-most 8 bits of this space.

Now, let’s say the player visits location 2 and picks up items 3 and 4, this means we
need to change status as shown in FIG-11.18).

Setting these bits requires the code:

 status = %01000011

Later, the player visits location 4, so status changes again:

FIG-11.17

Using Bits to Record
Information 0 0 0 0 0 0 0 0

loc 1 loc 2 loc 3 loc 4 ite
m 1

ite
m2

ite
m 3

ite
m 4

Each bit is used to indicate
if a specific location has
been visited or item
retrieved. Initially, all bits are zero

since nowhere has been
visited nor any item retrieved
when the game starts.

status

FIG-11.18

Recording Locations
and Items 0 1 0 0 0 0 1 1

loc 1 loc 2 loc 3 loc 4 ite
m 1

ite
m2

ite
m 3

ite
m 4

Three bits are set to record
locations visited (loc 2) and
items taken (items 3 and 4).

status

318 Hands On AGK BASIC: Data Types and Operators

 status = status || %00010000

When we come to the end of the game, we can check if all the criteria for winning
have been met by setting up a variable (win) to reflect the winning condition (see
FIG-11.19).

Now, all we have to do is use the bitwise and operation on status and win and check
that result has the same value as win (see FIG-11.20).

This is coded as:

 #constant win %10000110
 result = status && win
 if result = win
 Print(“You win”)
 endif

Summary
± Integer constants can be specified in binary, hexadecimal or octal.

± Binary constants begin with the % symbol.

± Hexadecimal constants begin with 0X.

± Octal constants begin with 0C.

± Bits within an integer variable can be shifted to the left using the shift left
operator (<<).

± Bits within an integer variable can be shifted to the right using the shift right
operator (>>).

± The bits of an integer value can be complemented (NOTed) using the bitwise
NOT operator (..).

± The bits of two integer values can be ANDed using the bitwise AND operator
(&&).

FIG-11.19

The Win
Requirements 1 0 0 0 0 1 1 0

loc 1 loc 2 loc 3 loc 4 ite
m 1

ite
m2

ite
m 3

ite
m 4

The player wins if location 1
has been visited and items 2
& 3 retrieved.

win

FIG-11.20

Checking for a Win

1 0 0 0 0 1 1 0

1 0 0 0 0 1 1 0

1 1 0 1 0 1 1 1

loc 1 loc 2 loc 3 loc 4 ite
m 1

ite
m2

ite
m 3

ite
m 4

win

result

status

A N D

Updated
as the game
is played

result is
equal to win

Hands On AGK BASIC: Data Types and Operators 319

± The bits of two integer values can be ORed using the bitwise OR operator (||).

± The bits of two integer values can be XORed using the bitwise XOR operator
(~~).

320 Hands On AGK BASIC: Data Types and Operators

Solutions
Activity 11.1

Code for UsingRecords:
type DateType
 day
 month
 year
endtype

You have the option to add
 as integer

after each field name.

Activity 11.2
Code for UsingRecords:

type DateType
 day
 month
 year
endtype

p1 as DateType
p2 as DateType

Activity 11.3
Code for UsingRecords:

type DateType
 day
 month
 year
endtype

p1 as DateType
p2 as DateType

rem *** Assign values ***
p1.day = 22
p1.month = 11
p1.year = 1963

p2.day = 14
p2.month = 9
p2.year = 1979

rem *** Display dates ***
Print(Str(p1.day)+”/”+Str(p1.month)+”/”+
Str(p1.year))
Print(Str(p2.day)+”/”+Str(p2.month)+”/”
+Str(p2.year))
Sync()
do
loop

Activity 11.4
Code for NestedRecords:

type TimeType
 minutes
 seconds
endtype

type BestType
 name as string
 time as TimeType
endtype

winner as BestType

rem *** Assign Values ***
winner.name = “Emily Knight”
winner.time.minutes = 2
winner.time.seconds = 31

rem *** Display value ***

Print(winner.name+” “+Str(winner.time.minutes)+
” mins “+Str(winner.time.seconds)+” secs”)
Sync()
do
loop

Activity 11.5
Code for NestedRecords:

#include “StringLibrary.agc”

type TimeType
 minutes
 seconds
endtype

type BestType
 name as string
 time as TimeType
endtype

dim winners[5] as BestType

rem *** Assign Values ***
for c = 1 to 5
 winners[c].name = RandomString(20)
 winners[c].time.minutes = Random(1,3)
 winners[c].time.seconds = Random(0,59)
next c

rem *** Display value ***
for c = 1 to 5
 Print(winners[c].name+” “+Str(winners[c].time.
 minutes)+” mins “+Str(winners[c].time.
 seconds)+” secs”)
next c
Sync()
do
loop

Activity 11.6
The value displayed by all four Print statements is 65 since
each value assigned is equivalent to 65 in decimal.

Modified code for NumberBases:
REM *** Assign a value to four variables ***
REM *** using a different number base for each ***
v1 = 65
v2 = %01000001
v3 = 0X41
v4 = 0C101
REM *** Display the contents of each variable ***
Print(v1)
Print(Bin(v2)+” Binary”)
Print(Hex(v3)+” Hexadecimal”)
Print(v4)
Sync()
do
loop

Activity 11.7
a) 11000100
b) 00010110

Activity 11.8
Code for Bits01:

rem *** Using Shift Left Operator ***

rem *** Assign value to variable ***
num = %11
rem *** Display value in dec and bin ***
Print(“Before”)
Print(“Decimal : “+Str(num))
Print(“Binary : “ +Bin(num))
rem *** Shift left 1 bit ***
num = num << 1
rem *** Display value in dec and bin ***
Print(“After”)
Print(“Decimal : “+Str(num))
Print(“Binary : “ +Bin(num))

Hands On AGK BASIC: Data Types and Operators 321

Sync()
do
loop

Activity 11.9
Modified code for Bits01:

rem *** Using Shift Right Operator ***

rem *** Assign value to variable ***
num = %11
rem *** Display value in dec and bin ***
Print(“Before”)
Print(“Decimal : “+Str(num))
Print(“Binary : “ +Bin(num))
rem *** Shift right 1 bit ***
num = num >> 1
rem *** Display value in dec and bin ***
Print(“After”)
Print(“Decimal : “+Str(num))
Print(“Binary : “+Bin(num))
Sync()
do
loop

Activity 11.10
Code for Bits02:

rem *** Using the NOT Operator ***

rem *** Assign value to variable ***
s = %10101001
rem *** Calculate NOT s ***
f = s..0
rem *** Display s in dec and bin ***
Print(“S:”)
Print(“Binary : “ +Bin(s))
rem *** Display f in dec and bin ***
Print(“F:”)
Print(“Binary : “+Bin(f))
Sync()
do
loop

Activity 11.11
Code for Bits03:

rem *** Using the AND Operator ***

rem *** Assign values to variables ***
v1 = %00011111
v2 = %11010001
rem *** AND both values ***
result = v1 && v2
rem *** Display results ***
Print(Bin(v1)+“ AND “+Bin(v2)+” = “+Bin(result))
Sync()
do
loop

Activity 11.12
Modified code for Bits03:

rem *** Using the OR Operator ***

rem *** Assign values to variables ***
v1 = %00011111
v2 = %11010001
rem *** OR both values ***
result = v1 || v2
rem *** Display results ***
Print(Bin(v1)+“ OR “+Bin(v2)+” = “+Bin(result))
Sync()
do
loop

Activity 11.13
Modified code for Bits03:

rem *** Using the XOR Operator ***

rem *** Assign values to variables ***
v1 = %00011111
v2 = %11010001
rem *** XOR both values ***
result = v1 ~~ v2
rem *** Display results ***
Print(Bin(v1)+“ XOR “+Bin(v2)+” = “+Bin(result))
Sync()
do
loop

Activity 11.14
a) 10011000 (the leading 24 bits will be set to 1) so what you
see on the screen is 11111111 11111111 11111111 10011000.

b) 00000010

c) 01010011

d) 01101010

322 Hands On AGK BASIC: Data Types and Operators

323 Hands On AGK BASIC: Files

File Handling

In this Chapter:

T Writing Data to a File

T Reading Data from a File

T Checking that a File Exists

T Determining a File’s Size

T Deleting a File

T Managing Folders

Hands On AGK BASIC: Files 324

Files

Introduction
If we intend to hold onto information after an app has been completed, then we need
to store that information on a backing storage device such as a disk or flash memory.

Typical information will be such things as app settings and game score details.

Accessing Files
We’ll start by finding out how to write data to a file. The basic steps involved consist
of the main stages:

	 Open	the	file	for	writing
	 Output	data	to	the	file
	 Close	the	file

OpenToWrite()

We need to start by creating the new file in which our data is to be held. This can be
done using the OpenToWrite() statement which has the format shown in FIG-12.1.

where:

 id is an integer value giving the ID to be assigned to the file. No two
 files may have the same ID value while open.

 file is a string giving the name of the file to be opened. The name
 may include path information.

 imode is an integer value (0 or 1). If zero, the current contents of the file
 will be deleted before new data is added. If 1, the new data is
 added to the end of the existing data within the file.

A typical statement might be:

	stdfile	=	OpenToWrite(“fastesttime.std”,1)

If a file matching the name given does not exist, the file will be created automatically.

The file is assumed to be in the folder used by the device for the app’s data files (this
is determined by the operating system on the device). If the filename includes folder
details, that folder is assumed to be a subfolder of the app data folder. If the folder
does not exist, it will be created automatically.

The second version of the statement automatically assigns an ID to the file and
returns that value. All subsequent statements that access the file will use this ID.

FIG-12.1

OpenToWrite()

()fileOpenToWrite imode,integer

Version 1

Version 2

id ,()fileOpenToWrite imode,

325 Hands On AGK BASIC: Files

WriteInteger()

Once a file has been opened for writing, we can then store within it the information
we want to save. Values must be written one item at a time. There is a different
command for each data type. To write an integer value to the file, we use the
WriteInteger() statement (see FIG-12.2).

where:

 id is an integer value giving the file ID.

 ivalue is an integer value giving the actual data to be written to the file.

WriteFloat()

If the value to be written to the file is a real one (rather than an integer), then the
WriteFloat() statement is used (see FIG-12.3).

where:

 id is an integer value giving the file ID.

 fvalue is the real value to be written to the file.

WriteString()

To write a standard string value to a file the WriteString() statement is used (see
FIG-12.4).

where:

 id is an integer value giving the file ID.

 string is the string value to be written to the file. The string will be
 terminated using the standard null character.

WriteLine()

To create a string terminated with a return character rather than a null, use the
WriteLine() statement (see FIG-12.5).

where:

 id is an integer value giving the file ID.

 string is the string value to be written to the file. The string will be
 terminated using a return character.

FIG-12.2

WriteInteger()

()idWriteInteger ivalue,

FIG-12.3

WriteFloat() ()idWriteFloat fvalue,

FIG-12.4

WriteString()

()idWriteString string,

FIG-12.5

WriteLine() ()idWriteLine string,

Hands On AGK BASIC: Files 326

WriteByte()

There are occasions when it is useful to write to a file one byte at a time. This can be
done using the WriteByte() statement (see FIG-12.6).

where

 id is an integer value giving the file ID.

 iv is an integer value (one byte in length) to be written to the
 file. If iv is stored over more than one byte, only the least-
 significant byte is written.

CloseFile()

Once we’ve finished writing data, the file must be closed. This frees up RAM space
that has been linked to the file and ensures that the last of the data has been written
to the file. This is achieved using the CloseFile() statement which has the format
given in FIG-12.7.

where:

 id is an integer value giving the ID of the file to be closed.

Once a file is closed it cannot be used again until it is reopened.

FIG-12.6

WriteByte() (iv)WriteByte id

FIG-12.7

CloseFile()

()idCloseFile

This Activity
demonstrates how to
write the contents of
a record to a file.

Activity 12.1

Start a new project, UseDataFile and modify main.agc to read:
	 rem	***	set	up	record	stucture	***
	 type	PlayerType
					 	 name	as	string
					 	 score	as	integer
 endtype
	 rem	***	Create	record	varibale	***
	 no1	as	PlayerType
	 rem	***	Assign	values	to	the	fields	within	the	records	***
	 no1.name	=	“Jane”
	 no1.score	=	613
	 rem	***	Open	file	***
	 myfile	=	OpenToWrite(“Test.dat”,0)
 rem	***	Write	record	fields	to	file	***
	 WriteString(myfile,no1.name)
	 WriteInteger(myfile,no1.score)
	 rem	***	Close	file	***
	 CloseFile(myfile)
	 Print(“Writing	to	file	completed”)
	 Sync()
 do
	 loop
Test and save the program.

327 Hands On AGK BASIC: Files

 OpenToRead()

Sometime after data has been written to a file, you are going to want to read that data
back from the file. To do this we need to start by opening the file for reading using
the OpenToRead() statement which has the format shown in FIG-12.8.

where:

 id is an integer value giving the ID to be assigned to the file.

 file is a string giving the name of the file to be opened. The name
 may include path information.

The second version statement returns the ID it has assigned to the file.

If the specified file is not found in the default folder used by the target device, the
game’s media file will also be searched. Since each app creates its own data folder,
it’s important that you use the same program to both write and read a file. If the file
cannot be found then the program will abort with an error message. All subsequent
statements that access the file will use this ID.

ReadInteger()

When a file has been opened for reading, we must read the information from the file
one item at a time. There is a different command for each data type. To read an integer
value from the file, we use the ReadInteger() statement (see FIG-12.9).

where:

 id is an integer value giving the file ID.

The statement returns the integer value read from the file.

ReadFloat()

The ReadFloat() statement reads a real value from a file (see FIG-12.10).

where:

 id is an integer value giving the file ID.

The statement returns a real value read from the file.

FIG-12.8

OpenToRead()

()fileOpenToReadinteger

Version 1

Version 2

id ,()fileOpenToRead

FIG-12.9

ReadInteger()

()idReadIntegerinteger

FIG-12.10

ReadFloat() ()idReadFloatfloat

Hands On AGK BASIC: Files 328

ReadString()

The ReadString() statement reads a standard string from a file (see FIG-12.11).

where:

 id is an integer value giving the file ID.

The statement returns a null-terminated string read from the file.

ReadLine()

The ReadLine() statement, reads a return-terminated string from a file (see FIG-
12.12).

where:

 id is an integer value giving the file ID.

The statement returns a normal string.

ReadByte()

To read a single byte from an existing file, use ReadByte() (see FIG-12.13).

where

 id is an integer value giving the file ID.

When we have finished reading from a file, the file should be closed using the
CloseFile() statement.

A short program to read the data stored in file Test.dat by Activity 12.1 is shown in
FIG-12.14.

FIG-12.11

ReadString()

()idReadStringstring

FIG-12.12

ReadLine() ()idReadLinestring

FIG-12.13

ReadByte() ()ReadByte idinteger

 Ë This new code must
be placed in the same
project as the earlier
code so that the data
file will be found. The
data file is held in a
folder whose name and
position is based on the
project’s name.

FIG-12.14

Reading From a File

rem	***	Open	file	for	reading	***

myfile	=	OpenToRead(“Test.dat”)
rem	***	read	data	from	file	***
name$	=	ReadString(myfile)
score	=	ReadInteger(myfile)
rem	***	Close	the	file	***
CloseFile(myfile)
rem	***	Display	information	read	***
Print(name$)
Print(score)
Sync()
do
loop

329 Hands On AGK BASIC: Files

Notice that it is entirely the responsibility of the programmer to read the correct type
of data from the file. When we created Test.dat, the data written to it was a string
followed by an integer. So, when we read the contents of the same file, we must make
sure that we first read a string and then an integer.

FileEOF()

Although Test.dat contained only two items of data, a file may contain as many items
of data as required. Sometimes we may not even know exactly how many data items
have been written to a file. For example, the program in FIG-12.15 generates random
numbers between 1 and 12, writing each value to a file. The program stops when a
12 is generated (the 12 is not written to the file).

Attempting to read all the data from the file we have just created causes a problem
because we do not know how many values are in the file. We would like our program
to just keep on reading until we reach the end of the data.

This is where the FileEOF() statement comes in. This statement checks to see if the
end of the file has been reached. The statement has the format shown in FIG-12.16.

Activity 12.2

Add the code in FIG-12.12 to UseDataFile’s main.agc. Place the code at
the start of the program. Check that the program correctly reads back the
information stored in the file. Save your project.

FIG-12.15

Writing an Unknown
Quantity of Data

Activity 12.3

Start a new project called LongFile and set main.agc to match the code given in
FIG-12.15. Run your project.

It would be better if we could see what values are being written to the file.
Modify your code so that a list of the values written to the file are also
displayed in the app window.

Test and save your updated project.

Broadcast the project to your tablet or phone and run it there.

rem	***	Open	file	for	writing	***

myfile	=	OpenToWrite(“Numbers.dat”,0)
rem	***	Generate	random	number	***
no	=	Random(1,12)
rem	***	WHILE	no	not	12	DO	***
while	no	<>	12
				rem	***	Write	number	to	file	***
				WriteInteger(myfile,no)
				rem	***	Generate	another	number	***
				no	=	Random(1,12)
endwhile
rem	***	Close	the	file	***
CloseFile(myfile)
end

Hands On AGK BASIC: Files 330

where:

 id is an integer value giving the file ID.

The statement returns 1 if the end of file has been reached, otherwise zero is returned.

Typically, the statement is used in a while loop:

	rem	***	Read	from	file	***	
	while	fileEOF(id)	=	0
		 rem	***	Handle	value	read	from	file	***
		 rem	***	read	from	file	***
	endwhile

The program in FIG-12.17 makes use of the FileEOF() statement to read the file
created by the program in FIG-12.15.

File Management
We have looked at the commands necessary for reading and writing to files, but there
are a few other file-related commands which will help us manage those files.

GetFileExists()

If you open a file for writing and that file does not exist, the program will automatically
create that file, but if we attempt to open a non-existent file for reading then the
program will crash. To avoid such a crash, we can use the GetFileExists() statement

FIG-12.16

FileEOF()

()idFileEOFinteger

FIG-12.17

Using the FileEOF()
Statement

rem	***	Open	file	for	reading	***
myfile	=	OpenToRead(“Numbers.dat”)
rem	***	read	a	value	from	the	file	***
num	=	ReadInteger(myfile)
rem	***	WHILE	not	EOF	DO	***
while	fileEOF(myfile)	<>	1
				rem	***	Display	the	value	read	***
				Print(num)
	 	rem	***	read	a	value	from	the	file	***
				num	=	ReadInteger(myfile)
endwhile
rem	***	Close	the	file	***
CloseFile(myfile)
Print(“Finished”)
Sync()
do
loop

Activity 12.4

Add the code in FIG-12.17 to LongFile’s main.agc. Place this new code at the
start of the file. Check that the program correctly reads back the information
stored in the file when run from your PC and tablet or phone. Save your project.

331 Hands On AGK BASIC: Files

to check that the file we intend to use does actually exist before executing an
OpenForReading() statement. The format of the GetFileExists() statement is
given in FIG-12.18.

where:

 file is a string giving the name of the file to be checked.

If the named file does exist, the statement returns 1, otherwise zero is returned. The
file will be searched for in the device’s directory and the program’s media folder.

FileIsOpen()

Another check you can make before beginning to write or read from a file is to make
sure that the file has been successfully opened. This is done using the FileIsOpen()	
statement (see FIG-12.19).

where:

 id is an integer value giving the ID of the file. The will have been
 assigned by a previous OpenToWrite() or OpenToRead()
 statement.

The statement returns 1 if the file has been opened successfully, otherwise zero is
returned.

GetFileSize()

We can find out the size of a file in bytes using the GetFileSize() statement (see
FIG-12.20).

where:

 id is an integer value giving the ID of the file.

DeleteFile()

If a file is no longer needed it is important that you delete the file to keep the space
available on your device to a maximum. File deletion is performed using the
DeleteFile() statement (see FIG-12.21).

where:

 file is a string giving the name of the file to be deleted.

FIG-12.18

GetFileExists()

()fileGetFileExistsinteger

FIG-12.19

FileIsOpen()

()idFileIsOpeninteger

FIG-12.20

GetFileSize()

()idGetFileSizeinteger

FIG-12.21

DeleteFile()

()fileDeleteFile

Hands On AGK BASIC: Files 332

Folder Management
When an app runs it makes use of a folder on your PC’s disk or in within your
device’s memory. This folder is where it finds any resource files needed by your app
and where it saves any files created by the app itself. Various AGK commands allow
us to discover the path to that folder and the name of the folder itself.

GetWritePath()

The GetWritePath() statement allows us to find the path to the folder used by your
app. The statement’s format is shown in FIG-12.22.

The path given is an absolute path from the root directory.

GetFolder()

To find out the name of the folder itself, use the GetFolder() statement (see FIG-
12.23).

The statement returns a string containing the name of the folder used. This string will
also contain path information if the default folder is no longer being used.

The short program in FIG-12.24 displays the path and folder used by the app.

From the results produced by Activity 12.5 we can see that all files use the folder
called media. (Don’t confuse this with the media folder created within an AGK
project when its code is compiled.)

Other platforms will have different path and folder information. In some there will
be no specific sub-folder for files and in this case the GetFolder() function will

FIG-12.22

GetWritePath()

()GetWritePathstring

FIG-12.23

GetFolder()

GetFolder ()string

FIG-12.24

Getting Path and
Folder Details

rem	***	Get	Folder	Details	***

rem	***	Make	the	print	small	enough	***
SetPrintSize(3)
do
				rem	***	Display	details	***
				Print(“Folder	used	:	“+GetWritePath()+	GetFolder())
				Sync()
loop

Activity 12.5

Start a new project called Folders and implement the code given in FIG-12.22.

Run the project on your PC and then save it.

What is the name of the folder used by the app? Where is the folder located?

Open Windows Explorer and find the folder used by the app.

333 Hands On AGK BASIC: Files

return a blank string.

MakeFolder()

You can create a new sub-folder using the MakeFolder() statement (see FIG-12.25).

where

 sfolder is a string giving the name of the new sub-folder to be created.

The new folder is created as a sub-folder off the current folder.

SetFolder()

To change the folder in which you are working to another folder, use SetFolder()
(see FIG-12.26).

where

 sfolder is a string giving the name of the folder

Once you change the folder, your app will look for any resources or data files that
need to be loaded in that folder. New files will also be written to the folder.

You can set the current folder back to its original default setting by calling SetFolder()	
with an empty string as the argument.

FIG-12.25

MakeFolder() MakeFolder ()integer sfolder

Activity 12.6

Modify Folders so that it creates a new sub-folder called MySubFolder at the
start of the program.

Run and save your project. Open Windows Explorer and look inside the
executing app’s media folder and check that the new folder has been created.

SetFolder ()integer sfolder
FIG-12.26

SetFolder()

Activity 12.7

Modify Folders by adding a line of code to make MySubFolder the new
working folder.

After changing the folder, add the lines:

 OpenToWrite(1,”MyDataFile”,0)
	 WriteString(1,”XXX”)
	 CloseFile(1)

Run and save your project.

Open Windows Explorer and check that the new file, MyDataFile, has been
created within MySubFolder.

Hands On AGK BASIC: Files 334

GetFirstFolder()

To find the name of any other folders which exist as sub-folders to the current folder,
begin by using GetFirstFolder() (see FIG-12.27).

The function will return the name of the first sub-folder found. If there are no sub-
folders, an empty string is returned.

GetNextFolder()

After finding the first sub-folder, subsequent ones should be detected using
GetNextFolder() (see FIG-12.28).

Each time the function is called, the next sub-folder’s name will be returned. When
no more sub-folders remain, the function will return an empty string.

The program in FIG-12.29 demonstrates how the name of all sub-folders within the
default start-up folder can be listed.

FIG-12.27

GetFirstFolder()

GetFirstFolder ()string

GetNextFolder ()string
FIG-12.28

GetNextFolder()

FIG-12.29

Listing Sub-folders

rem	***	Finding	Sub-folders	***

rem	***	Make	the	print	small	enough	***
SetPrintSize(3)

rem	***	Create	some	new	sub-folders	***
MakeFolder(“AAA”)
MakeFolder(“BBB”)
MakeFolder(“CCC”)

rem	***	Get	name	of	first	sub-folder	***
name$	=	GetFirstFolder()
rem	***	List	all	subfolders	***
while	name$	<>	“”
				rem	***	Print	the	name	***
				Print(name$)
				rem	***	Get	the	next	name	***
				name$	=	GetNextFolder()
endwhile
Sync()

do
loop

Activity 12.8

Start a new project called SubFolders and implement the code given in FIG-
12.29.

Test and save your program.

335 Hands On AGK BASIC: Files

DeleteFolder()

An existing folder can be deleted using DeleteFolder() (see FIG-12.30).

where

 sfolder is a string giving the name of the folder to be deleted. The folder
 must be a sub-folder of the current directory. There must be no
 files within the folder to be deleted.

GetFirstFile()

We can work our way through the names of the files in the current directory in much
the same way as we did with the sub-folders. The first filename in the current folder
can be found using GetFirstFile() (see FIG-12.31).

The function returns the name of the first file in the current folder. If there are no files,
an empty string is returned.

GetNextFile()

The next file name can be obtained using GetNextFile() (see FIG-12.32).

The function will return an empty string when no more filenames remain.

File - Zip
Your AGK app can create and access zip files. A zip file is a file which contains a
collection of one or more regular files in a compressed format. You can even create
a structure of folders and sub-folders within the zip file.

Using a zip file can be a useful way of collecting together all the files used by an app
and minimising the storage space those files require.

CreateZip()

Use CreateZip() to create a zip file in the app’s working folder. The statement’s
format is shown in FIG-12.33.

FIG-12.30

DeleteFolder() DeleteFolder ()sfolder

Activity 12.9

Modify SubFolders so that after the sub-folders are listed, folder BBB is
deleted and the folder names relisted.

Test and save your program.

FIG-12.31

GetFirstFile()

GetFirstFile ()string

FIG-12.32

GetNextFile() GetNextFile ()string

Hands On AGK BASIC: Files 336

where

 id is an integer value giving the ID to be assigned to the ZIP file.

 sfile is a string containing the name of the file to be created.

With format 1 you choose the unique ID to be assigned to the file; in format 2, the ID
is selected automatically by the app.

AddZipEntry()

The created zip file is initially empty. We now need to add each of the files we want
to hold in the zip file. This is done using AddZipEntry() which allows us to add a
named file to the zip file. The format for this statement is given in FIG-12.34.

where

 id is an integer value giving the ID of the existing ZIP file.

 sfile is a string giving the name of the file to be added. This string may
 contain relative path information.

 szippath is a string giving the path within the zip file where the new file is
 to be stored. If the string is empty the file is stored in the root area
 of the zip. If folder names are given, the folders will be created
 within the zip file where necessary.

CloseZip()

When all of the necessary files have been added, the zip file needs to be closed. This
is done using CloseZip() (see FIG-12.35).

where

 id is an integer value giving the ID of the ZIP file to be closed.

ExtractZip()

The files held within a zip file can be extracted using ExtractZip() (see FIG-12.36).

FIG-12.33

CreateZip()

CreateZip ()

Format 2

CreateZip ()id
Format 1

integer

sfile

sfile

FIG-12.34

AddZipEntry() AddZipEntry ()id sfile szippath

FIG-12.35

CloseZip() CloseZip ()id

FIG-12.36

ExtractZip()

ExtractZip ()spathsfile

337 Hands On AGK BASIC: Files

where

 sfile is a string giving the name of the ZIP file from which other files
 are to be extracted.

 spath is a string giving details of the folder where the extracted files are
 to be stored. An empty string will cause the files to be stored in
 the working folder.

Summary
± Any data that is to exist when an app has finished executing must be saved in a

file.

± Files are stored in a folder determined by the device on which the app is being
run.

± Use WriteToFile() to write to an existing file or to create a new output file.

± New data can be added to existing data within a file or the existing data can be
erased.

± Use WriteInteger() to write an integer value to a file.

± Use WriteFloat() to write a real value to a file.

± Use WriteString() to write a standard, null-terminated string to a file.

± Use WriteLine() to write a return-terminated string to a file.

± Use WriteByte() to write a single byte to a file.

± Use GetFileExists() to check that a file exists before attempting to open a
file for reading.

± Use ReadInteger() to read an integer value from a file.

± Use ReadFloat() to read a real value from a file.

± Use ReadString() to read a null-terminated string from a file.

± Use ReadLine() to read a return-terminated string from a file.

± Use ReadByte() to read a single byte from a file.

± Use FileIsOpen() to check if a file has been opened successfully.

± Use GetFileSize() to determine the number of bytes within a file.

± Use DeleteFile() to delete a file that is no longer required.

± Use GetWritePath() to discover the path to the main folder used by the app.

± Use GetFolder() to find the name of the main folder currently being used by
the app.

± Use MakeFolder() to create a sub-folder off the current folder.

± Use SetFolder() to specify a new main folder.

± Use GetFirstFolder() to find the name of the first sub-folder off the current
folder.

± Use GetNextFolder() to get the names of subsequent sub-folders.

Hands On AGK BASIC: Files 338

± Use DeleteFolder() to delete an empty sub-folder.

± Use GetFirstFile() to get the name of the first file within the current folder.

± Use GetNextFile() to get the names of subsequent files in the current folder.

± Use CreateZip() to create an empty zip file.

± Use AddZipEntry() to add a data file to an open zip file.

± Use CloseZip() to close a previously opened zip file.

± Use ExtractZip() to extract all the data files in a named zip file

339 Hands On AGK BASIC: Files

Solutions
Activity 12.1

No solution required.

Activity 12.2
Modified code for UseDataFile:

rem	***	Open	file	for	reading	***
myfile	=	OpenToRead(“Test.dat”)
rem	***	read	data	from	file	***
name$	=	ReadString(myfile)
score	=	ReadInteger(myfile)
rem	***	Close	the	file	***
CloseFile(myfile)
rem	***	Display	information	read	***
Print(name$)
Print(score)
Sync()
do
loop

rem	***	set	up	record	stucture	***
type	PlayerType
				 name	as	string
				 score	as	integer
endtype
rem	***	Create	record	varibale	***
no1	as	PlayerType
rem	***	Assign	values	to	the	fields	within	the	
records	***
no1.name	=	“Jane”
no1.score	=	613
rem	***	Open	file	***
myfile	=	OpenToWrite(“Test.dat”,0)
rem	***	Write	record	fields	to	file	***
WriteString(myfile,no1.name)
WriteInteger(myfile,no1.score)
rem	***	Close	file	***
CloseFile(myfile)
Print(“Writing	to	file	completed”)
Sync()
do
loop

Activity 12.3
Modified code for LongFile:

rem	***	Open	file	for	writing	***
myfile	=	OpenToWrite(“Numbers.dat”,0)
rem	***	Generate	random	number	***
no	=	Random(1,12)
rem	***	WHILE	no	not	12	DO	***
while	no	<>	12
				rem	***	Write	number	to	file	***
 Print(no)
 		WriteInteger(myfile,no)
				rem	***	Generate	another	number	***
				no	=	Random(1,12)
endwhile
Sync()
rem	***	Close	the	file	***
CloseFile(myfile)
do
loop

To run on your device, run the app player or viewer then
press the compile and broadcast button.

Activity 12.4
Modified code for LongFile:

rem	***	Open	file	for	reading	***
myfile	=	OpenToRead(“Numbers.dat”)
rem	***	read	a	value	from	the	file	***
num	=	ReadInteger(myfile)
rem	***	WHILE	not	EOF	DO	***
while	fileEOF(myfile)	<>	1
			rem	***	Display	the	value	read	***

				Print(num)
				rem	***	Read	a	value	from	the	file	***
				num	=	ReadInteger(myfile)
endwhile
rem	***	Close	the	file	***
CloseFile(myfile)
Print(“Finished”)
Sync()
do
loop

rem	***	Open	file	for	writing	***
myfile	=	OpenToWrite(“Numbers.dat”,0)
rem	***	Generate	random	number	***
no	=	Random(1,12)
rem	***	WHILE	no	not	12	DO	***
while	no	<>	12
				rem	***	Write	number	to	file	***
 Print(no)
				WriteInteger(myfile,no)
				rem	***	Generate	another	number	***
				no	=	Random(1,12)
endwhile
Sync()
rem	***	Close	the	file	***
CloseFile(myfile)
do
loop

Activity 12.5
The name of the folder is media.

The path, on this occasion was
C:\Users\User\Documents\AGK\Folders\

Activity 12.6
Modified version of Folders:

rem	***	Get	Folder	Details	***

rem	***	Make	new	sub-folder	***
MakeFolder(“MySubFolder”)
rem	***	Make	the	print	small	enough	***
SetPrintSize(2.5)
do
				rem	***	Display	details	***
				Print(“Folder	used	:	“	+	GetWritePath()	+	
 GetFolder())
				Sync()
loop

The output will not change from the previous version but
you should now see the new folder when using Windows
Explorer.

Activity 12.7
Modified version of Folders:

rem	***	Get	Folder	Details	***

rem	***	Make	new	sub-folder	***
MakeFolder(“MySubFolder”)
rem	***	Make	this	the	active	folder	***
SetFolder(“MySubFolder”)
rem	***	Write	a	file	to	the	folder	***
OpenToWrite(1,”MyDataFile”,0)
WriteString(1,”XXX”)
CloseFile(1)
rem	***	Make	the	print	small	enough	***
SetPrintSize(2.5)
do
				rem	***	Display	details	***
				Print(“Folder	used	:	“	+	GetWritePath()	+	
 GetFolder())
				Sync()
loop

The output will now show the result from GetFolder() as
media/MySubFolder.

Using Windows Explorer, we can see that the new file has

Hands On AGK BASIC: Files 340

been created within MySubFolder.

Activity 12.8
No solution required.

Activity 12.9
Modified code for SubFolders:

rem	***	Finding	Sub-folders	***

rem	***	Make	the	print	small	enough	***
SetPrintSize(3)
rem	***	Create	some	new	subfolders	***
MakeFolder(“AAA”)
MakeFolder(“BBB”)
MakeFolder(“CCC”)
rem	***	Get	name	of	first	sub-folder	***
name$	=	GetFirstFolder()
rem	***	List	all	the	subfolders	***
while	name$	<>	“”
				rem	***	Print	the	name	***
				Print(name$)
				rem	***	Get	the	next	name	***
				name$	=	GetNextFolder()
endwhile
Sync()
rem	***	Wait	3	seconds	***
Sleep(3000)
rem	***	Delete	folder	BBB	***
DeleteFolder(“BBB”)
Print	(“Deleted	folder”)
Sync()
Sleep(1000)
rem	***	Relist	all	the	folder	names	***
name$	=	GetFirstFolder()
while	name$	<>	“”
				Print(name$)
				name$	=	GetNextFolder()
endwhile
Sync()
do
loop

Hands On AGK BASIC: Particles 341

In this Chapter:

T Creating Particle Emitters

T Adjusting Particle Characteristics

T Applying Forces to Particles

T Setting Emitter Shape

T Changing Particle Colours

T	Using	An	Image	to	Define	Particle	Shape

T Setting Particle Depth

T Fixing Emitter Screen Position

Particles

342 Hands On AGK BASIC: Particles

Particles

Introduction
If you’ve ever seen a sparkler in action on Guy Fawkes night (or whatever day your
country uses as an excuse to let you play with fireworks), you’ll be able to imagine
the effect of the particle instructions in AGK BASIC. Once you’ve created a particles
object, it continues to create a sparkler effect until it is destroyed. A snapshot of the
basic effect is shown in FIG-13.1.

The particles shoot out from a central point. This point is known as the particle
emitter. Like a true firework, the sparks eventually die off and disappear.

There are various characteristics that can be set, such as the quantity, speed, duration
and colour of the particles. It will be useful if we think of a particle object as having
two components: the emitter and the particles themselves.

Creating Particles
MakeParticles()

To create a stream of particles, we need to execute a MakeParticles() statement.
This positions the emitter on the screen and assigns an ID to the whole effect. The
statement has two possible formats as shown in FIG-13.2.

where:

 id is an integer stating the ID to be assigned to the particles object.

FIG-13.1

Particles

FIG-13.2

CreateParticles() ()

integer

id

Version 1

, x ,

Version 2

CreateParticles y

CreateParticles ()x , y

Hands On AGK BASIC: Particles 343

 x,y are real values giving the position of the emitter within the app
 window.

In the second version of the statement, the ID is assigned automatically and returned
by the statement.

SetParticlesSize()

The size of the particles produced by the emitter can be changed using the
SetParticleSize() statement (see FIG-13.3).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

 size is a real number giving the size of the particles. The default size
 is about 0.1.

SetParticleFrequency()

The number of particles created every second by the emitter can be changed using
the SetParticlesFrequency() statement (see FIG-13.4).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

 ifreq is an integer value giving the number of particles to be created
 every second.

FIG-13.3

SetParticlesSize()

SetParticlesSize (id , size)

Activity 13.2

Modify the size of the particles in your UsingParticles project setting them to
a size of 0.5.
Test and save your project.

FIG-13.4

SetParticlesFrequency() SetParticlesFrequency (id , ifreq)

Activity 13.1

Start a new project called UsingParticles and modify main.agc to contain the
following code.
 rem *** Particles ***
 id = CreateParticles(70,40)
 do
 Sync()
 loop

Modify the coordinates to position the emitter at the centre of the app window.

Test and save the project.

344 Hands On AGK BASIC: Particles

SetParticlesLife()

Particles exist for a fixed amount of time before disappearing. That time can be
adjusted using the SetParticlesLife() statement (see FIG-13.5).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

 itime is an integer value giving the time (in seconds) that the particles
 are to survive.

SetParticlesMax()

The emitter can be made to stop producing particles after a specified number of
particles have been created. This is achieved using the SetParticlesMax() statement
(see FIG-13.6).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

 imax is an integer value giving the maximum number of particles to
 be emitted. Use a value of -1 for an infinite number of particles.
 -1 is the default value.

ResetParticleCount()

If you have used SetParticlesMax() to set the number of particles that can be
created, the program keeps a count of how many particles have been emitted and
stops producing particles when that count reaches the figure specified. You can reset
the count to zero using the ResetParticleCount() statement. Note that this does not
affect the maximum value set, only the count used to see if that maximum value has
been reached.

FIG-13.5

SetParticlesLife() SetParticlesLife (id , itime)

Activity 13.4

Set the particle life to 1 second and test the program. Now change the life to 10
seconds and observe how this affects the result.

FIG-13.6

SetParticlesMax() SetParticlesMax (id , imax)

Activity 13.5

Set the maximum particle count to 100 and test the program.

Activity 13.3

Set the particle frequency in your program to 20 and observe what effect this
has on the display.

Hands On AGK BASIC: Particles 345

The format for the ResetParticleCount() statement is shown in FIG-13.7.

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

SetParticlesVelocityRange()

The speed of the particles leaving the emitter can be set to be within a given range
using the SetParticlesVelocityRange() statement (see FIG-13.8).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

 min is a real value giving the minimum speed of a particle leaving the
 transmitter.

 max is a real number giving the maximum speed of a particle leaving
 the emitter.

SetParticlesAngle()

Particles normally travel away from the emitter in all directions, but it is possible to
limit that direction using the SetParticlesAngle() statement (see FIG-13.9).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

 angle is a real value giving the angle over which particles are to be

FIG-13.7

ResetParticleCount() ResetParticleCount (id)

Activity 13.6

In your program’s do..loop structure, add the following code:

 if Random(1,800) = 400
 ResetParticleCount(id)
 endif

Test your modified code.

FIG-13.8

SetParticlesVelocity-
Range () SetParticlesVelocityRange (id , min , max)

Activity 13.7

Immediately before the do..loop structure, add a line setting the speed for
particles in the range 0.1 to 2.0 and test your code.

FIG-13.9

SetParticlesAngle()

SetParticlesAngle (id , angle)

346 Hands On AGK BASIC: Particles

 emitted. The angle is given in degrees.

By default, the angle is measured on either side of a vertical line drawn down from
the emitter (see FIG-13.10).

SetParticlesAngleRad()

If you wish to specify the particles’ angle in radians rather than degrees, you can use
the SetParticlesAngleRad() statement (see FIG-13.11).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

 angle is a real value giving the angle over which particles are to be
 emitted (in radians).

SetParticlesDirection()

The trouble with the SetParticlesAngle() statement is that although it gives us
control over the angle of spread of the particles, it does not allow us to specify a
direction. By default, the spread is always centred around a vertical line starting
down from the emitter. To control the direction of that spread we can use the
SetParticlesDirection() statement (see FIG-13.12).

FIG-13.10

How
SetParticlesAngle()
Operates

θ

emitter

Particles
emitted in this

area for an angle
of θ

Activity 13.8

Add the statement SetParticlesAngle(id,90) at an appropriate point in your
program.

How does this effect the particles produced?

FIG-13.11

SetParticlesAngleRad() SetParticlesAngleRad (id , angle)

FIG-13.12

SetParticlesDirection() SetParticlesDirection (id , x , y)

Hands On AGK BASIC: Particles 347

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

 x,y are real values giving the end point of a line starting at the
 emitter. The emitter is taken as the origin for these coordinates.

Perhaps the simplest way to specify the (x,y) coordinates for this command is to use
the cos() and sin() function. For example, the statement

 SetParticlesDirection(id,cos(270),sin(270))

would emit particles directly upwards.

By using SetParticlesDirection() and SetParticlesAngle() together you can
control the direction and spread of the particles.

The SetParticlesDirection() statement also has an effect on the speed of the
particles. The further the end of the specified line is from the emitter, the faster
particles will move (although the particles’ speed continues to be affected by any
SetParticlesVelocityRange() statement that is included in your code). So the
statement

 SetParticlesDirection(id,4*cos(270),4*sin(270))

will allow the particles to be up to four times faster than the previous example.

The program in FIG-13.13 modifies the particles’ direction dynamically while the
program is running.

 Ë Remember that
angles in AGK are
measured in a clockwise
direction.

Activity 13.9

Add a SetParticlesDirection() statement which causes the particles to fly
off to the right of the app window.

Activity 13.10

Modify your SetParticlesDirection() statement so that the end point is ten
times greater in distance from the emitter.

FIG-13.13

Using
SetParticlesDirection()

rem *** Rotating Particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,0.5)
SetParticlesFrequency(id,20)
SetParticlesLife(id,20)
SetParticlesVelocityRange(id,2.0,5.0)
SetParticlesDirection(id,4*cos(0),4*sin(0))
SetParticlesAngle(id,20)
angle = 0
do
 if Random(1,10) = 5
 inc angle,5
 SetParticlesDirection(id,4*cos(angle),4*sin(angle))
 endif
Sync()
loop

348 Hands On AGK BASIC: Particles

AddParticlesForce()

Once particles have started moving, they will normally keep going in the same
direction and speed until the end of their lifetime. However, by using the
AddParticlesForce() statement you can adjust that velocity. The format of the this
statement is shown in FIG-13.14.

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

 start is a real value giving the number of seconds into the particles’
 life when the effect is to start.

 finish is a real value giving the number of seconds into the particles’
 life when the effect is to finish.

 x is a real number giving the force in the x direction that is to be
 added to the particles’ velocity every second during which the
 force is being applied.

 y is a real number giving the force in the y direction that is to be
 applied to the particles every second.

For example, the line

 AddParticlesForce(id,3,5,-15,-5)

would, between the 3rd and 5th second of each particle’s life, exert a force of -15 in
the x direction (towards the left) and -5 in the y direction (upwards).

FIG-13.14

AddParticlesForce()

AddParticlesForce (id , start , , ,finish)x y

Activity 13.12

Start a new project called ParticlesForce.

In main.agc, write code to create a particles emitter at position (10,60).
Set particles size to 0.5, frequency to 25 and life to 20. Velocity range should
be 2.0 to 5.0 and particle direction should be 4*cos(0), 4*sin(0) with an angle
of spread of 20o. Between 3 and 5 seconds, a force of -15,-5 should be applied.

Test and save your project.

Add a second AddParticlesForce() statement so that, between 6 and 8
seconds, a force of 15, 5 is applied.

Activity 13.11

Start a new project called RotatingParticles and set main.agc to the code
shown in FIG-13.13.

Test and save your project.

Hands On AGK BASIC: Particles 349

ClearParticlesForces()

If a program makes use of the AddParticlesForce() statement to affect the path of
the particles, all such forces can be eliminated using the ClearParticlesForces()
statement which has the format shown in FIG-13.15.

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

As soon as this statement is executed, no new forces will be applied to existing
particles, but these will continue on their existing paths. New particles will be
unaffected by any previously executed AddParticlesForce() statements.

SetParticlesStartZone()

By default, all particles start from a single point on the screen. This point is the
position of the emitter. By using the SetParticlesStartZone() statement we can
create either a line along which particles can start or a rectangular perimeter. The
concept is shown in FIG-13.16.

FIG-13.15

ClearParticlesForces() ClearParticlesForces (id)

FIG-13.16

Using Various Start
Zone Options

Normally, all
particles originate
from a single point...

...but they can be
made to originate
from anywhere
along a line...

...or even anywhere
along the perimeter
of a rectangle.

To simplify the
diagram, particles
are shown as coming
from the two ends of
the line only.

To simplify the
diagram, particles
are shown as coming
from the four corners
only.

Paths
of particles

 Ë Remember, although
the diagram shows
particles being emitted
from specific points on
the line and rectangle, in
fact, they can be emitted
from anywhere along
the line or rectangle’s
perimeter.

Activity 13.13

In your ParticlesForce project, add code so that there is a one chance in 400 of
particle forces being eliminated each time the Sync() statement is executed.

350 Hands On AGK BASIC: Particles

The format for the SetParticleStartZone() statement is shown in FIG-13.17.

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

 x1,y1 are real values giving the coordinates of the top-left corner of the
 particles’ start zone. Coordinates are relative to the emitter.

 x2,y2 are real values giving the coordinates of the bottom-right corner
 of the particles’ start zone. Coordinates are relative to the emitter.

When y1 and y2 have the same value, the start zone will be a horizontal line (as
shown in the second option of FIG-13.16). When x1 and x2 have the same value, the
start zone will be a vertical line. For all other options, the start zone will be a rectangle
(as shown in the third option of FIG-13.16).

The program in FIG-13.18 demonstrates the use of a horizontal line as the particles’
start zone.

AddParticlesColorKeyFrame()

If you are bored with white particles, you can add a little colour using the
AddParticlesColorKeyFrame() statement. This statement allows you to specify a
new colour for the particles at a specific time in their lifespan. The format of the
AddParticlesColorKeyFrame() statement is shown in FIG-13.19.

FIG-13.17

SetParticlesStartZone() SetParticlesStartZone (id , x1 , y1 , x2 , y2)

FIG-13.18

Using
SetParticlesStartZone()

rem *** Start zone particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,0.5)
SetParticlesFrequency(id,200)
SetParticlesLife(id,20)
SetParticlesVelocityRange(id,0.5,2.0)

rem *** Set start zone ***
SetParticlesStartZone(id,-25,0,25,0)
do
 Sync()
loop

Activity 13.14

Start a new project, ParticlesStartZone, and implement the code given above.

Modify the code so that a rectangular area is used. Change the y values in the
SetParticlesStartZone() statement so that the rectangle is 5% above and 5%
below the position of the emitter.

Test and save your project.

FIG-13.19

AddParticlesColor-
KeyFrame()

AddParticlesColorKeyFrame (id , t , ir , ig , ib , ia)

Hands On AGK BASIC: Particles 351

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

 t is a real number giving the number of seconds into the particles’
 lifetime when the colour change is to take effect.

 ir is an integer value (0 to 255) giving the red component of the
 new colour.

 ig is an integer value (0 to 255) giving the green component of the
 new colour.

 ib is an integer value (0 to 255) giving the blue component of the
 new colour.

 ia is an integer value (0 to 255) giving the alpha component of the
 new colour (0: invisible; 255: opaque).

For example, if we wanted the particles to turn yellow after two seconds, we would
use the statement:

AddParticlesColorKeyFrame(id,2,255,255,0,255)

However, when you make use of this statement, you should also explicitly state what
colour the particles should be at the start of their life. Hence, when turning the
particles yellow after two seconds, we should precede this with the line

AddParticlesColorKeyFrame(id,0,255,255,255,255)

which will make the particles white at the start of their life.

SetParticlesColorInterpolation()

If you watched carefully as the particles changed from one colour to the next in your
last Activity, you may have noticed that the transition is a subtle one: the particles
shift through various shades as they change from their old colour to the new. You can
control this transition using the SetParticlesColorInterpolation() statement
with has the format shown in FIG-13.20.

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

 imode is an integer value (0 or 1) giving the transition mode to be used.
 0 gives instant transition; 1 (the default) gives smooth transition.

Activity 13.15

Modify ParticlesStartZone so that the particles start white, turn yellow after 2
seconds, red after 5 seconds and blue after 8 seconds.
Test and save your project.

FIG-13.20

SetParticlesColor-
Interpolation() SetParticlesColorInterpolation (id , imode)

352 Hands On AGK BASIC: Particles

ClearParticlesColors()

The colour assignment for new particles can be forced back to the standard white
using the ClearParticlesColors() statement. However, existing particles will
retain their current colour for the remainder of their lifetime.

The statement has the format shown in FIG-13.21.

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

SetParticlesImage()

Another option available when dealing with particles, is to replace the simple square,
default particle with an image. To do this we need to use the SetParticlesImage()
statement which has the format shown in FIG-13.22.

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

 imgId is an integer value giving the ID of the image to be used to create
 the particles. This image must have been previously loaded
 using the LoadImage() statement.

You will have to make the size of the particles larger to see the image used; perhaps
around 3 or 4%.

Activity 13.16

Re-run the latest version of ParticlesStartZone paying attention to how the
particles change colour.

Now add the line

 SetParticlesColorInterpolation (id,0)

to your program and check out how this changes the transition effect.

Resave your project.

FIG-13.21

ClearParticlesColors() ClearParticlesColors (id)

Activity 13.17

Modify ParticlesStartZone so that all new particles revert to white after 10
seconds.

Test and save your project.

FIG-13.22

SetParticlesImage() SetParticlesImage (id , imgId)

Hands On AGK BASIC: Particles 353

Output from an image-based set of particles is shown in FIG-13.23.

The program in FIG-13.24 shows how this output was created.

FIG-13.23

Image-Based
Particles

FIG-13.24

Using the
SetParticlesImage()
Statement

rem *** Image-based Particles ***

rem *** Create particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,4)
SetParticlesFrequency(id,100)
SetParticlesLife(id,2)
SetParticlesVelocityRange(id,0.5,2.0)
rem *** Load image ***
LoadImage(1,”Star.png”,0)
rem *** Assign image to particles ***
SetParticlesImage(id,1)
do
 Sync()
loop

Activity 13.18

Start a new project called ImageParticles. Compile the default code and copy
the file Star.png from the AGKDownloads/Chapter13 to the project’s media
folder. Implement the code given in FIG-13.24 and test your program.

Modify the code so that the particles change to yellow after 0.75 seconds and
red after 1.25 seconds. Test the new code.

Modify the program again so that the emitter is always positioned at any point
pressed on the screen (use SetParticlesPosition()). Test your code.

To stop the emitter when the mouse button or your finger is raised, set the
particle frequency to zero when GetPointerState() returns zero and 100 when
GetPointerState() returns 1.

Resave your project.

354 Hands On AGK BASIC: Particles

SetParticlesVisible()

You can hide all the particles currently showing on the screen using the
SetParticlesVisible() statement. You can also make them reappear using the
same statement. No particle updating takes place when the particles are invisible, so
if the particles are made to reappear, their position and velocity will match those at
the time the particles were hidden.

The SetParticlesVisible() statement has the format shown in FIG-13.25.

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

 ivisible is an integer value (0 or 1) which determines if the particles are
 visible (1) or hidden (0).

SetParticlesDepth()

If particles are being used in combination with other visual resources such as sprites,
we may need to control the “depth” of the particles to make them appear to be “in
front” of or “behind” those other elements. This can be achieved using the
SetParticlesDepth() statement (see FIG-13.26).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

 idepth	 is an integer value giving the depth setting for the emitter and its
 particles. The default depth for particles and other visual
 elements is 10. Any value between 0 and 10000 can be used.

FixParticlesToScreen()

Although a topic for a later chapter, the screen display can be zoomed and scrolled.
Normally such actions will affect the size and position of an emitter and its particles.

If you want the particles object to be unaffected by these actions, you can make use
of the FixParticlesToScreen() statement which will fix the particles’ position and
size on the screen . The statement can also be used to return the particles to the default
option of moving with the scroll. The statement’s format is shown in FIG-13.27.

FIG-13.25

SetParticlesVisible() SetParticlesVisible (id), ivisible

Activity 13.19

Modify ImageParticles so that all particles are invisible when the screen is no
longer touched/no mouse button is being pressed and reappear when the screen
is next touched/mouse button pressed.

Test and resave your project.

FIG-13.26

SetParticlesDepth() SetParticlesDepth (id), idepth

Hands On AGK BASIC: Particles 355

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

 imode is an integer value (0 or 1) used to fix the particles of the screen
 (1) or to allow them to move and resize with the zooming and
 scrolling (0).

SetParticlesActive()

You can pause an emitter, freezing its particles in place using SetParticlesActive().
Use the same statement to reactivate the flow. The statement has the format shown in
FIG-13.28.

where

 id is an integer giving the ID of the emitter.

 imode is an integer value (0 or 1) which determines the state of the
 emitter and its particles. (0: inactive, 1: active).

UpdateParticles()

As time passes, we see the particles produced by the emitter move on the screen. If
the screen updates 40 times per second, then each frame represents the passing of
0.025 seconds. By using the UpdateParticles() statement we can “jump forward in
time”. For example, if we were to execute the line

 UpdateParticles(1,0.5)

then the position of the particles from emitter 1 would jump forward 0.5 seconds in
time rather than the default 0.025 seconds.

The format for the UpdateParticles() statement is given in FIG-13.29.

where

 id is an integer value giving the ID of the particle emitter.

 fsecs is a real number giving the time in seconds that is to jumped.

Retrieving Particles Data
As we have seen, there are many attributes to a particles object. These include
frequency, speed, direction and colour. As well as a set of commands to set these
attributes, there is a corresponding set of commands to retrieve their current settings.
Those statements are described below.

FIG-13.27

FixParticlesToScreen()

FixParticlesToScreen (id), imode

FIG-13.28

SetParticlesActive() SetParticlesActive (id), imode

FIG-13.29

UpdateParticles() UpdateParticles (id), fsecs

356 Hands On AGK BASIC: Particles

GetParticlesAngle()

The angle over which particles leave the emitter is set using SetParticlesAngle().
The current setting of this angle can be discovered using the GetParticlesAngle()
statement whose format is given in FIG-13.28.

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

The value returned is in degrees.

GetParticlesAngleRad()

When the particles’ angle is required in radians rather than degrees, then the
GetParticlesAngleRad() statement can be used (see FIG-13.29).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

The value returned is in radians.

GetParticlesDepth()

The current depth setting for an emitter and its particles can be determined using the
GetParticlesDepth() statement (see FIG-13.30).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

GetParticlesDirectionX()

When we make use of the SetParticlesDirection() statement, we can retrieve the
x-coordinate of the end point of the line supplied using GetParticlesDirectionX()
(see FIG-13.31).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

FIG-13.28

GetParticlesAngle()

GetParticlesAnglefloat (id)

FIG-13.29

GetParticlesAngleRad()

GetParticlesAngleRadfloat (id)

FIG-13.30

GetParticlesDepth()

GetParticlesDepthinteger (id)

FIG-13.31

GetParticlesDirectionX() GetParticlesDirectionXfloat (id)

Hands On AGK BASIC: Particles 357

GetParticlesDirectionY()

The y-coordinate of the end point of the line can be retrieved using the
GetParticlesDirectionY() statement (see FIG-13.32).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

GetParticlesExists()

We can check that an emitter of a specified ID currently exists using the
GetParticlesExists() statement (see FIG-13.33).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

The statement returns 1 if the specified emitter exists, otherwise zero is returned.

GetParticlesFrequency()

We can determine the current rate of particle production from an emitter using the
GetParticlesFrequency() statement (see FIG-13.34)

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

GetParticlesLife()

We can discover the current setting for a particle’s lifetime using GetParticlesLife()
(see FIG-13.35).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

The value returned is given in seconds.

FIG-13.32

GetParticlesDirectionY() GetParticlesDirectionYfloat (id)

FIG-13.33

GetParticlesExists()

GetParticlesExistsinteger (id)

FIG-13.34

GetParticlesFrequency()

GetParticlesFrequencyfloat (id)

FIG-13.35

GetParticlesLife()

GetParticlesLifefloat (id)

358 Hands On AGK BASIC: Particles

GetParticlesMaxReached()

If we have set a maximum number of particles that are to be emitted, we can find out
if that limit has been reached using the GetParticlesMaxReached() statement (see
FIG-13.36).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

The statement returns 1 if the set number of particles have been emitted and all of
those particles are now dead. All other situations return zero.

GetParticlesSize()

To determine the current setting for particle size, use the GetParticlesSize()
statement (see FIG-13.37).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

GetParticlesVisible()

A program can check if particles are currently visible using GetParticlesVisible()
(see FIG-13.38).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

The statement returns 1 if the particles are visible; zero if they are not.

GetParticlesX()

The x-coordinate of the emitter’s position can be found using the GetParticlesX()
statement (see FIG-13.39).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

FIG-13.36

GetParticlesMaxReached()

GetParticlesMaxReachedinteger (id)

FIG-13.37

GetParticlesSize()

GetParticlesSizefloat (id)

FIG-13.38

GetParticlesVisible()

GetParticlesVisibleinteger (id)

FIG-13.39

GetParticlesX() GetParticlesXfloat (id)

Hands On AGK BASIC: Particles 359

GetParticlesY()

The y-coordinate of the emitter position can be found using the GetParticlesY()
statement (see FIG-13.40).

where:

 id is an integer value giving the ID previously assigned to the
 particles object.

Summary
± A particles object creates a sparkler effect on the screen.

± A particles object consists of an emitter and a set of moving particles which
emanate from the emitter.

± By default, particles are white in colour.

± Use MakeParticles() to create a particle and position a particles object.

± Each particles object must be assigned a unique ID.

± Use SetParticlesSize() to set the size of the particles produced.

± Use SetParticlesFrequency() to set the number of particles produced each
second.

± Use SetParticlesLife() to set the time (in seconds) a particle is to exist.

± Use SetParticlesMax() to set the maximum number of particles produced
by the emitter. No more particles will be produced after this quantity has been
emitted.

± Use ResetParticleCount() to reset the count of how many particles have
been produced to zero.

± Use SetParticlesVelocityRange() to set the minimum and maximum speed
of the particles produced. Each particle will be assigned a speed within the
range specified.

± Use SetParticlesAngle() or SetParticlesAngleRad() to set the angle over
which the particles will produced. By default this angle is bisected by the
positive y-axis.

± Use SetParticlesDirection() to set the direction about which the particles’
angle is measured.

± Use AddParticlesForce() to apply a new force to existing particles after a
specified time.

± Use ClearParticlesForces() to remove all additional forces applied to
particles.

± Use SetParticlesStartZone() to set the size and shape of the emitter. This
affects where particles first appear.

± Use AddParticlesColorKeyFrame() to change the colour of the emitted
particles after a given time.

FIG-13.40

GetParticlesY() GetParticlesYfloat (id)

360 Hands On AGK BASIC: Particles

± Use SetParticlesColorInterpolation() to specify how particles change
from one colour to another (abruptly or through various shade changes).

± Use ClearParticlesColors() to return particles to their standard white
colour.

± Use SetParticlesImage() to use an image to determine the shape of the
particles.

± Use SetParticlesVisible() to set the particles’ visibility.

± Use SetParticlesDepth() to set the layer on which particles are placed. The
default layer is 10.

± Use FixParticlesToScreen() to fix the position of an emitter on the screen,
irrespective of any scrolling or zooming effects that are applied.

± Use GetParticlesAngle() or GetParticlesAngleRad() to retrieve the angle
at which particles are being emitted.

± Use GetParticlesDepth() to retrieve the depth setting for the particles object.

± Use GetParticlesDirectionX() and GetParticlesDirectionY() to
retrieve the end point used after the SetParticlesDirection() statement was
executed.

± Use GetParticlesExist() to check that a particles object of a specified ID
currently exists.

± Use GetParticlesFrequency() to discover the current frequency setting for a
particles object.

± Use GetParticlesLife() to discover the current life setting for a particles
object.

± Use GetParticlesMaxReached() to discover if the maximum number of
particles have been produced.

± Use GetParticlesSize() to discover the current size setting for a particles.

± Use GetParticlesVisible() to discover the current visibility setting for a
particles object.

± Use GetParticlesX() and GetParticlesY() to discover the position of the
particles emitter.

Hands On AGK BASIC: Particles 361

Solutions
Activity 13.1

Modified code for UsingParticles:
rem *** Particles ***
id = CreateParticles(50,50)
do
 Sync()

loop

Activity 13.2
Modified code for UsingParticles:

rem *** Particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,0.5)
do
 Sync()
loop

Activity 13.3
Modified code for UsingParticles:

rem *** Particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,0.5)
SetParticlesFrequency(id,20)
do
 Sync()
loop

Activity 13.4
Final code for UsingParticles:

rem *** Particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,0.5)
SetParticlesFrequency(id,20)
SetParticlesLife(id,10)
do
 Sync()
loop

With the particles’ life set to one second, the particles do not
get far from the emitter before being destroyed. A ten second
life gives the particles time to pass the boundary of the app
window.

Activity 13.5
Modified code for UsingParticles:

rem *** Particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,0.5)
SetParticlesFrequency(id,20)
SetParticlesLife(id,10)
SetParticlesMax(id,100)
do
 Sync()
loop

Particles are no longer produced after exactly 100 particles
have appeared.

Activity 13.6
Modified code for UsingParticles:

rem *** Particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,0.5)
SetParticlesFrequency(id,20)
SetParticlesLife(id,10)
SetParticlesMax(id,100)
do

 if Random(1,800) = 400
 ResetParticleCount(id)
 endif
 Sync()
loop

Batches of 100 particles will be produced with random time
gaps between each group.

Activity 13.7
Modified code for UsingParticles:

rem *** Particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,0.5)
SetParticlesFrequency(id,20)
SetParticlesLife(id,10)
SetParticlesMax(id,100)
SetParticlesVelocityRange(id,0.1,2.0)
do
 if Random(1,800) = 400
 ResetParticleCount(id)
 endif
 Sync()

loop

The speed at which particles leave the emitter will vary;
some will be faster than before, some slower.

Activity 13.8
Modified code for UsingParticles:

rem *** Particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,0.5)
SetParticlesFrequency(id,20)
SetParticlesLife(id,10)
SetParticlesMax(id,100)
SetParticlesVelocityRange(id,0.1,2.0)
SetParticlesAngle(id,90)
do
 if Random(1,800) = 400
 ResetParticleCount(id)
 endif
 Sync()
loop

All particles moved “down” within a triangular area which
extends 45o either side of the vertical.

Activity 13.9
Modified code for UsingParticles:

rem *** Particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,0.5)
SetParticlesFrequency(id,20)
SetParticlesLife(id,10)
SetParticlesMax(id,100)
SetParticlesVelocityRange(id,0.1,2.0)
SetParticlesAngle(id,90)
SetParticlesDirection(id,cos(0),sin(0))
do
 if Random(1,800) = 400
 ResetParticleCount(id)
 endif
 Sync()
loop

Notice that, despite the SetParticlesVelocityRange()
statement, all the particles travel very slowly.

Activity 13.10
Modified code for UsingParticles:

rem *** Particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,0.5)
SetParticlesFrequency(id,20)
SetParticlesLife(id,10)
SetParticlesMax(id,100)

362 Hands On AGK BASIC: Particles

SetParticlesVelocityRange(id,0.1,2.0)
SetParticlesAngle(id,90)
SetParticlesDirection(id,10*cos(0),10*sin(0))
do
 if Random(1,800) = 400
 ResetParticleCount(id)
 endif
 Sync()
loop

The particles now have a range of speeds similar to that
shown before the SetParticlesDirection() statement was
added.

Activity 13.11
No solution required.

Activity 13.12
Code for ParticlesForce:

rem *** Particles ***
id = CreateParticles(10,60)
SetParticlesSize(id,0.5)
SetParticlesFrequency(id,25)
SetParticlesLife(id,20)
SetParticlesVelocityRange(id,2.0,5.0)
SetParticlesAngle(id,20)
SetParticlesDirection(id,4*cos(0),4*sin(0))
AddParticlesForce(id,3,5,-15,-5)
do
 Sync()
loop

Modified code for ParticlesForce:
rem *** Particles ***
id = CreateParticles(10,60)
SetParticlesSize(id,0.5)
SetParticlesFrequency(id,25)
SetParticlesLife(id,20)
SetParticlesVelocityRange(id,2.0,5.0)
SetParticlesAngle(id,20)
SetParticlesDirection(id,4*cos(0),4*sin(0))
AddParticlesForce(id,3,5,-15,-5)
AddParticlesForce(id,6,8,15,5)
do
 Sync()
loop

Activity 13.13
Modified code for ParticlesForce:

rem *** Particles ***
id = CreateParticles(10,60)
SetParticlesSize(id,0.5)
SetParticlesFrequency(id,25)
SetParticlesLife(id,20)
SetParticlesVelocityRange(id,2.0,5.0)
SetParticlesAngle(id,20)
SetParticlesDirection(id,4*cos(0),4*sin(0))
AddParticlesForce(id,3,5,-15,-5)
AddParticlesForce(id,6,8,15,5)
do
 if Random(1,400) = 200
 ClearParticlesForces(id)
 endif
 Sync()

loop

Activity 13.14
Modified code for ParticlesStartZone:

rem *** Start zone particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,0.5)
SetParticlesFrequency(id,200)
SetParticlesLife(id,20)
SetParticlesVelocityRange(id,0.5,2.0)
rem *** Set start zone ***
SetParticlesStartZone(id,-25,-5,25,5)
do
 Sync()

loop

Activity 13.15
Modified code for ParticlesStartZone:

rem *** Start zone particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,0.5)
SetParticlesFrequency(id,200)
SetParticlesLife(id,20)
SetParticlesVelocityRange(id,0.5,2.0)
rem *** Set start zone ***
SetParticlesStartZone(id,-25,-5,25,5)
rem *** white particles at start ***
AddParticlesColorKeyFrame(id,0,255,255,255,255)
rem *** yellow particles after 2 seconds ***
AddParticlesColorKeyFrame(id,2,255,255,0,255)
rem *** red particles after 2 seconds ***
AddParticlesColorKeyFrame(id,5,255,0,0,255)
rem *** blue particles after 8 seconds ***
AddParticlesColorKeyFrame(id,8,0,0,255,255)
do
 Sync()
loop

Activity 13.16
Modified code for ParticlesStartZone:

rem *** Start zone particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,0.5)
SetParticlesFrequency(id,200)
SetParticlesLife(id,20)
SetParticlesVelocityRange(id,0.5,2.0)
rem *** Set start zone ***
SetParticlesStartZone(id,-25,-5,25,5)
rem *** white particles at start ***
AddParticlesColorKeyFrame(id,0,255,255,255,255)
rem *** yellow particles after 2 seconds ***
AddParticlesColorKeyFrame(id,2,255,255,0,255)
rem *** red particles after 2 seconds ***
AddParticlesColorKeyFrame(id,5,255,0,0,255)
rem *** blue particles after 8 seconds ***
AddParticlesColorKeyFrame(id,8,0,0,255,255)
rem *** Instant transition ***
SetParticlesColorInterpolation(id,0)
do
 Sync()

loop

Activity 13.17
Modified code for ParticlesStartZone:

rem *** Start zone particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,0.5)
SetParticlesFrequency(id,200)
SetParticlesLife(id,20)
SetParticlesVelocityRange(id,0.5,2.0)
rem *** Set start zone ***
SetParticlesStartZone(id,-25,-5,25,5)
rem *** white particles at start ***
AddParticlesColorKeyFrame(id,0,255,255,255,255)
rem *** yellow particles after 2 seconds ***
AddParticlesColorKeyFrame(id,2,255,255,0,255)
rem *** red particles after 2 seconds ***
AddParticlesColorKeyFrame(id,5,255,0,0,255)
rem *** blue particles after 8 seconds ***
AddParticlesColorKeyFrame(id,8,0,0,255,255)
rem *** Instant transition ***
SetParticlesColorInterpolation(id,0)
rem *** Set timer ***
time = GetSeconds()
do
 rem *** After 10 seconds stop using colour ***
 if GetSeconds()-time = 10
 ClearParticlesColors(id)
 endif
 Sync()

loop

Hands On AGK BASIC: Particles 363

Activity 13.18
Modified code for ImageParticles (coloured images):

rem *** Image-based Particles ***

rem *** Create particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,4)
SetParticlesFrequency(id,100)
SetParticlesLife(id,2)
SetParticlesVelocityRange(id,0.5,2.0)
rem *** Load image ***
LoadImage(1,”Star.png”,0)
rem *** Assign image to particles ***
SetParticlesImage(id,1)
rem *** White particles at start ***
AddParticlesColorKeyFrame(id,0,255,255,255,255)
rem *** Yellow particles after 0.75 seconds ***
AddParticlesColorKeyFrame(id,0.75,255,255,0,255)
rem *** Red particles after 1.25 seconds ***
AddParticlesColorKeyFrame(id,1.25,255,0,0,255)
do
 Sync()
loop

Modified code for ImageParticles (repositioned emitter):
rem *** Image-based Particles ***

rem *** Create particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,4)
SetParticlesFrequency(id,100)
SetParticlesLife(id,2)
SetParticlesVelocityRange(id,0.5,2.0)
rem *** Load image ***
LoadImage(1,”Star.png”,0)
rem *** Assign image to particles ***
SetParticlesImage(id,1)
rem *** White particles at start ***
AddParticlesColorKeyFrame(id,0,255,255,255,255)
rem *** Yellow particles after 0.75 seconds ***
AddParticlesColorKeyFrame(id,0.75,255,255,0,255)
rem *** Red particles after 1.25 seconds ***
AddParticlesColorKeyFrame(id,1.25,255,0,0,255)
do
 rem *** IF pressed, reposition emitter ***
 if GetPointerState()=1
 SetParticlesPosition(id,GetPointerX(),
 GetPointerY())
 endif
 Sync()
loop

Modified code for ImageParticles (stop particles when not
pressed):

rem *** Image-based Particles ***

rem *** Create particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,4)
SetParticlesFrequency(id,100)
SetParticlesLife(id,2)
SetParticlesVelocityRange(id,0.5,2.0)
rem *** Load image ***
LoadImage(1,”Star.png”,0)
rem *** Assign image to particles ***
SetParticlesImage(id,1)
rem *** White particles at start ***
AddParticlesColorKeyFrame(id,0,255,255,255,255)
rem *** Yellow particles after 0.75 seconds ***
AddParticlesColorKeyFrame(id,0.75,255,255,0,255)
rem *** Red particles after 1.25 seconds ***
AddParticlesColorKeyFrame(id,1.25,255,0,0,255)
do
 rem *** IF pressed, reposition emitter ***
 if GetPointerState()=1
 SetParticlesFrequency(id,100)
 SetParticlesPosition(id,GetPointerX(),
 GetPointerY())
 else
 SetParticlesFrequency(id,0)
 endif
 Sync()
loop

Activity 13.19
Modified code for ImageParticles:

rem *** Image-based Particles ***

rem *** Create particles ***
id = CreateParticles(50,50)
SetParticlesSize(id,4)
SetParticlesFrequency(id,100)
SetParticlesLife(id,2)
SetParticlesVelocityRange(id,0.5,2.0)
rem *** Load image ***
LoadImage(1,”Star.png”,0)
rem *** Assign image to particles ***
SetParticlesImage(id,1)
rem *** White particles at start ***
AddParticlesColorKeyFrame(id,0,255,255,255,255)
rem *** Yellow particles after 0.75 seconds ***
AddParticlesColorKeyFrame(id,0.75,255,255,0,255)
rem *** Red particles after 1.25 seconds ***
AddParticlesColorKeyFrame(id,1.25,255,0,0,255)
do
 rem *** IF pressed, reposition emitter ***
 if GetPointerState()=1
 SetParticlesVisible(id,1)
 SetParticlesPosition(id,GetPointerX(),
 GetPointerY())
 else
 SetParticlesVisible(id,0)
 endif
 Sync()
loop

364 Hands On AGK BASIC: Particles

Hands On AGK BASIC : Text 365

Text

In this Chapter:

T Colouring Text

T Positioning Text

T Setting Text Visibility

T Sizing Text

T Determining Text Dimensions

T Adjusting Text Spacing

T Setting Text Depth

T Detecting Text Hits

T Moving and Rotating Individual Characters

T Colouring Individual Characters

T Altering Text Display Style

T Loading a New Default Font

T Setting the Font for Individual Texts

366 Hands On AGK BASIC: Text

Text

Introduction
In the first chapters of this book we saw how to create textual output using the
Print() and PrintC() statements. The disadvantage of using these statements for all
but the simplest output was obvious; any previously displayed text was lost whenever
the screen display was updated (using Sync()). The only way to overcome this was
to execute the same Print() statement after every update.

Later, in Chapter 6, we were introduced to text resources. This allowed us to create
text which remained on screen and which could be positioned with accuracy.

In that chapter we covered a few of the basic text commands. In this chapter the
remainder of the text commands are covered as well as other techniques such as how
to change the font used by the text commands.

Review
We’ll start by just listing the text commands covered back in Chapter 6. These were:

CreateText(id,str) id is the ID to be assigned to the text resource.
 str is the text to be held in the text resource.

int CreateText(str) str is the text to be held in the text resource.
 The ID assigned to the resource is returned.

SetTextColor(id,ir,ig,ib,it) id is the ID of the text resource
 ir is the value of the red component (0 to 255).
 ig is the value of the green component (0 to 255).
 ib is the value of the blue component (0 to 255).
 it is the transparency factor (0: invisible;
 255:opaque)

SetTextPosition(id,x,y) id is the ID of the text resource.
 x,y are real values giving the coordinates for the
 text.

SetTextSize(id,fsz) id is the ID of the text resource.
 fsz is the height of the text (as a percentage or
 virtual pixels). The width is determined
 automatically.

SetTextString(id,str) id is the ID of the text resource.
 str is the new text to be assigned to the resource.
 Any previous text is deleted.

SetTextVisible(id,iv) id is the ID of the text resource.
 iv determines visibility (1: visible; 0: hidden).

DeleteText(id) id is the ID of the text resource to be deleted.

Hands On AGK BASIC: Text 367

Further Text Statements

SetTextRed(), SetTextGreen(), SetTextBlue() and SetTextAlpha()

As an alternative to setting all the colour and transparency options of text using
SetTextColor(), you can also set these attributes individually using the
SetTextRed(), SetTextGreen(), SetTextBlue() and SetTextAlpha() statements.
FIG-14.1 to FIG-14.4 give the format for each of these statements.

where:

 id is an integer value giving the ID of the text resource.

 ired is an integer value (0 to 255) giving the intensity of the red.
 (0: off; 255: full red).

where:

 id is an integer value giving the ID of the text resource.

 igreen is an integer value (0 to 255) giving the intensity of the green.
 (0: off; 255: full green).

where:

 id is an integer value giving the ID of the text resource.

 iblue is an integer value (0 to 255) giving the intensity of the blue.
 (0: off; 255: full blue).

where:

 id is an integer value giving the ID of the text resource.

 itrans is an integer value (0 to 255) giving the transparency of the
 text. (0: invisible; 255: opaque).

GetTextRed(), GetTextGreen(), GetTextBlue() and GetTextAlpha()

The colour and transparency values which have been defined for a given text resource
can be retrieved using the corresponding GetTextRed(), GetTextGreen(),
GetTextBlue() and GetTextAlpha() statements (see FIG-14.5 to FIG-14.8).

FIG-14.1

SetTextRed() ()SetTextRed id ired

FIG-14.2

SetTextGreen() ()SetTextGreen id igreen

FIG-14.3

SetTextBlue() ()SetTextBlue id iblue

FIG-14.4

SetTextAlpha() ()SetTextAlpha id itrans

FIG-14.5

GetTextRed() ()GetTextRed idinteger

368 Hands On AGK BASIC: Text

where:

 id is an integer value giving the ID of the text resource whose
 colour attribute is to be returned.

The value returned will represent the red, green, blue or transparency setting for the
text resource depending on which of the four functions is called. All returned values
will be in the range 0 to 255.

SetTextX() and SetTextY()

Alternatives to SetTextPosition()are SetTextX() and SetTextY() which allow
text to be repositioned horizontally (SetTextX()) or vertically (SetTextY()). The
format for each of these two statements is shown in FIG-14.9 and FIG-14.10.

where:

 id is an integer value giving the ID of the text resource.

 x is a real value giving the new x-coordinate for the text. This will
 be a percentage or virtual pixels value.

where:

 id is an integer value giving the ID of the text resource.

 y is a real value giving the new y-coordinate for the text. This will
 be a percentage or virtual pixels value.

GetTextX() and GetTextY()

Retrieving the position of a text resource is achieved using the GetTextX() and
GetTextY() statements which return the x and y coordinates respectively. The format
for each of these statements is shown in FIG-14.11 and FIG-14.12.

where:

 id is an integer value giving the ID of the text resource.

FIG-14.6
GetTextGreen() ()GetTextGreeninteger id

()GetTextBlue idinteger

()GetTextAlpha idinteger

FIG-14.7
GetTextBlue()

FIG-14.8
GetTextAlpha()

FIG-14.9

SetTextX() ()SetTextX id x

FIG-14.10

SetTextY() ()SetTextY id y

FIG-14.11

GetTextX() ()GetTextXfloat id
FIG-14.12

GetTextY() ()GetTextYfloat id

Hands On AGK BASIC: Text 369

The functions return a real number giving the x or y coordinate of the text. This value
will represent a percentage or virtual coordinate depending on which system is being
used.

GetTextVisible()

To determine if a text resource is visible, use the GetTextVisible() statement (see
FIG-14.13).

where:

 id is an integer value giving the ID of the text resource.

The function returns 1 if the text is visible; zero if the text is hidden.

GetTextSize()

To discover the current size setting for the text in a text resource, use the GetTextSize()
statement (see FIG-14.14).

where:

 id is an integer value giving the ID of the text resource.

GetTextTotalHeight()

A function which performs a similar operation to GetTextSize() is
GetTextTotalHeight() (see FIG-14.15).

where:

 id is an integer value giving the ID of the text resource.

This function returns the actual height of the text in the text resource. For a resource
containing a single line of text, this will be the same value as GetTextSize() returns.
However, when an empty string is defined, GetTextTotalHeight() will return zero
whereas GetTextSize() will still return the size setting.

FIG-14.13

GetTextVisible() ()GetTextVisible idinteger

FIG-14.14

GetTextSize() ()GetTextSize idfloat

Activity 14.1

Start a new project called Text01, and write a program to determine the default
size of a text resource containing the string Hello again. Save your project.

FIG-14.15

GetTextTotalHeight() ()GetTextTotalHeight idfloat

When the text is displayed
over several lines,
GetTextTotalHeight()

returns the height from
the top of the first line of
text to the bottom of the
last line.

Activity 14.2

Change the Print() statement in Text01 so that the value returned by
GetTextTotalHeight()is displayed. Run your program with the original string
and then an empty one. Save your project.

370 Hands On AGK BASIC: Text

GetTextTotalWidth()

When you are placing text within a complex background, it is often necessary to be
sure that the text will fit within the space allocated. As well as checking the height of
the text we also need to discover the width of the text as a percentage of the screen
width or in virtual pixels. This can be achieved using the GetTextTotalWidth()
statement (see FIG-14.16).

where:

 id is an integer value giving the ID of the text resource.

SetTextMaxWidth()

If you need to limit the width of a text item, you can use SetTextMaxWidth() (see
FIG-14.17).

where

 id is an integer value giving the ID of the text item.

 fwidth is a real number giving the maximum width allowed (in
 percentage or virtual pixels).

If the text being output exceeds the specified width, it is continued on another line.

This statement must be called before the contents of the text object are set.

The following code

 CreateText(1,””)
 SetTextSize(1,4)
 SetTextMaxWidth(1,10)
 SetTextString(1,”AAABBB”)
 Sync()

produces the output:

 AAA
 BBB

FIG-14.16

GetTextTotalWidth() ()GetTextTotalWidth idfloat

Activity 14.3

Modify Text01 so that both the text height and width are displayed. Run the
program using the following text values:

 a) “”
 b) “abc”
 c) “abcdef”

Save your project.

FIG-14.17

SetTextMaxWidth()

SetTextMaxWidth ()id fwidth

Hands On AGK BASIC: Text 371

SetTextScissor()

You can clip the displayed text so that it does not appear outside a specified rectangular
area of the screen. This is done using SetTextScissor() (see FIG-14.18).

where

 id is an integer value giving the ID of the text item to be affected.

 x1,y1 are real values giving the coordinates of the top-left corner of the
 rectangular area.

 x2,y2 are real values giving the coordinates of the bottom-right corner
 of the rectangle.

To understand the effect of this command, compare the output produced from the
statement

 CreateText(1,”ABCDEFGHI”+Chr(10)+”123456789”+Chr(10)+”XXXXXXXXX
 XXXX”)

as seen in FIG-14.19

and when the same text object is cut using the line

SetTextScissor(1,5,2,30,10)

as shown in FIG-14.20.

GetTextLength()

While GetTextTotalWidth() returns the physical size of the string within a text
resource, GetTextLength() returns the number of characters in the string. This
includes any non-printing characters such as newline. The format for GetTextLength()
is shown in FIG-14.21.

where:

 id is an integer value giving the ID of the text resource.

FIG-14.18

SetTextScissor()

SetTextScissor ()id x1 y1 x2 y2

FIG-14.19

Regular Text Output

FIG-14.20

Clipped Text

(5,2)

(30,10)

FIG-14.21

GetTextLength() ()GetTextLength idinteger

372 Hands On AGK BASIC: Text

SetTextAlignment()

By default, the text position specifies where the top left corner of the text is to be
positioned. This is known as left-aligned text. But it is possible to modify this so that
the position is used to place the top-right corner of the text (right-aligned text).
Finally, the text can be centre-aligned using the position given to place the top-centre
of the text. FIG-14.22 shows the effect of each alignment option.

To change from the default left-aligned text, use the SetTextAlignment() statement
(see FIG-14.23).

where:

 id is an integer value giving the ID of the text resource.

 ialign is an integer value (0, 1 or 2) which gives the alignment to be
 used. (0: left-alignment, 1: centre-alignment, 2: right-alignment)

SetTextSpacing()

You can create a wider or narrower gap between the individual letters within a piece
of text using the SetTextSpacing() statement (see FIG-14.24).

where:

 id is an integer value giving the ID of the text resource.

 fspace is a real value giving the gap between the characters in the text.
 The default value is zero which creates the standard gap. A larger
 positive value will increase the gap; a negative value will
 decrease the gap.

FIG-14.22

Alignment Options

Hello world

Hello world

Hello world

Left Alignment

Alignment
about this x-coord

value

Centre Alignment

Right Alignment

FIG-14.23

SetTextAlignment() ()SetTextAlignment id ialign

Activity 14.4

Modify Text01 so that the text alignment starts with left-align (the default) then,
after a one second delay to right-align and finally, after another one second
delay, to centre-align.

Observe the difference in each case then save your project.

FIG-14.24

SetTextSpacing() ()SetTextSpacing id fspace

Hands On AGK BASIC: Text 373

SetTextLineSpacing()

Normally, text resources will contain only a single line of text, but it is possible to
have multiple lines by adding the newline character (ASCII code 10) within the text’s
string with a line such as:

CreateText(1,”ABCDEF”+Chr(10)+”GHIJKL”)

When a multiple-line text resource is being used, you can control the gap between
the lines of text using the SetTextLineSpacing() statement (see FIG-14.25).

where:

 id is an integer value giving the ID of the text resource.

 fspace is a real value giving the gap between the lines of the text within
 the resource. The default value is zero which creates the standard
 gap. A larger positive value will increase the gap; a negative
 value will decrease the gap.

SetTextDepth()

Like a sprite, the depth of a text resource can be set. This way you can ensure text
always stays on top of any sprite or vice versa. Text depth is set using the statement
SetTextDepth() (see FIG-14.26).

Activity 14.5

Modify Text01 by removing the alignment code added in the previous Activity,
then change the gap between the letters of the text to each of the following
values:
 a) 1
 b) 2
 c) -1

Observe the difference in each case then save your project

FIG-14.25

SetTextLineSpacing() ()SetTextLineSpacing id fspace

Activity 14.6

Change the text string used in Text01 to contain the text

 ABCDEF
 GHIJKL
 MNOPQR

over three lines.

Now, run the program with line spacing settings of 1, 2 and -1 and observe the
difference in each case. Save your project.

FIG-14.26

SetTextDepth() ()SetTextDepth id idepth

374 Hands On AGK BASIC: Text

where:

 id is an integer value giving the ID of the text resource.

 idepth is an integer value (0 to 10,000) giving the depth setting for the
 text resource. 0 is the front-most layer and will show over any
 other visual resource.

GetTextDepth()

To discover the current depth setting for a text resource, use GetTextDepth() (see
FIG-14.27).

where:

 id is an integer value giving the ID of the text resource.

GetTextHitTest()

Like sprites, text resources can detect if a given set of coordinates are inside the
display area of the text. This is done using the GetTextHitTest() statement (see
FIG-14.28).

where:

 id is an integer value giving the ID of the text resource.

 x,y are a pair of real values giving the coordinates to be checked.

If the coordinates given are inside the area of the text resources, this function returns
1, otherwise zero is returned.

GetTextExists()

Any resource that can be deleted should really be checked to make sure it exists
before your code attempts to access it. Failure to do this can cause a runtime error.

You can check the existence of a text resource using the GetTextExists() statement
(see FIG-14.29).

FIG-14.27

GetTextDepth() ()GetTextDepth idinteger

FIG-14.28

GetTextHitTest() ()GetTextHitTextinteger id x y

Activity 14.7

Start a new project called MenuSelection. Get the program to display three text
resources containing the strings:
 New
 Open
 Save
The program should display the text contained in any text resource that is
pressed. Test and save your project.

FIG-14.29

GetTextExists()

()GetTextExists idinteger

Hands On AGK BASIC: Text 375

where:

 id is an integer value giving the ID of the text resource whose
 existence is to be checked.

The function returns 1 if the ID specified is assigned to a current text resource,
otherwise zero is returned.

Text Character Statements
As well as the set of commands we have looked at so far, all of which affect the
characteristics of the whole text resources, another set of commands are available
which deal with the individual characters within the text. These statements are
covered in this section.

SetTextCharPosition()

We can reposition individual characters within a text resource using the
SetTextCharPosition() statement (see FIG-14.30).

where:

 id is an integer value giving the ID of the text resource.

 ichrsub is an integer value giving the position of the character within the
 text resource’s string. The first character is at position zero.
 If the subscript given is invalid, the statement is not executed.

 x,y are a pair of real values giving the new position for the character.
 The new position is measured relative to the top-left of the first
 character in the text. All other characters will be unaffected.

The code in FIG-14.31 moves the third letter of a string to a new position after a 3
second delay.

FIG-14.30

SetTextCharPosition() ()SetTextCharPosition id xichrsub y

FIG-14.31

Moving a Character rem ** Move a character ***

rem *** Create and place text ***
CreateText(1,”ABCDEF”)
SetTextPosition(1,50,50)
Sync()
rem *** Wait 3 seconds ***
Sleep(3000)
rem *** Move character ***
SetTextCharPosition(1,2,2,-5)
Sync()
do
loop

Activity 14.8

Start a new project called MoveText and implement the code given in FIG-
14.31.

376 Hands On AGK BASIC: Text

SetTextCharX() and SetTextCharY()

If you need to move a character one direction only, you can use the SetTextCharX()
or SetTextCharY() statements (see FIG-14.32 and FIG-14.33).

where:

 id is an integer value giving the ID of the text resource.

 ichrsub is an integer value giving the position of the character within the
 text resource’s string. The first character is at position zero.
 If the subscript given is invalid, the statement is not executed.

 x is a real number giving the character’s new position along the
 x-axis measured from the position of the first character in the
 existing string.

where:

 id is an integer value giving the ID of the text resource.

 ichrsub is an integer value giving the position of the character within the
 text resource’s string. The first character is at position zero.
 If the subscript given is invalid, the statement is not executed.

 y is a real number giving the character’s new position along the
 y-axis measured from the position of the first character in the
 existing string.

The program in FIG-14.34 displays a text containing six letters. Each time the pointer
moves over them, a new letter falls to the bottom of the screen.

FIG-14.32

SetTextCharX() ()SetTextCharX id xichrsub

FIG-14.33

SetTextCharY() ()SetTextCharY id yichrsub

FIG-14.34

Falling Characters

rem ** Move a character ***

rem *** Create and place text ***
CreateText(1,”ABCDEF”)
SetTextPosition(1,50,50)
Sync()
rem *** Start a character zero ***
char = 0
do
 rem *** If pointer over text drop first letter remaining ***
 if GetTextHitTest(1,GetPointerX(),GetPointerY()) and char < 6
 for c = 1 to 40
 SetTextCharY(1,char,c)
 Sync()
 next c
 rem *** Move to next letter ***
 inc char
 endif
loop

Hands On AGK BASIC: Text 377

GetTextCharX() and GetTextCharY()

You can find the coordinates of an individual character within the text using the
GetTextCharX() and GetTextCharY() statements (see FIG-14.35 and FIG-14.36).

where:

 id is an integer value giving the ID of the text resource.

 ichrsub is an integer value giving the position of the character within the
 text resource’s string. The first character is at position zero.
 If the subscript given is invalid, the statement is not executed.

The function returns the x-coordinate of the character relative to the position of the
top-left of the parent text.

where:

 id is an integer value giving the ID of the text resource.

 ichrsub is an integer value giving the position of the character within the
 text resource’s string. The first character is at position zero.
 If the subscript given is invalid, the statement is not executed.

The function returns the y-coordinate of the character relative to the position of the
top-left of the parent text.

To calculate the absolute position of the fourth character in text resource 1, you can
use the lines:

 x = GetTextX(1) + GetTextCharX(1,3)

 y = GetTextY(1) + GetTextCharY(1,3)

SetTextCharAngle() and SetTextCharAngleRad()

Characters within a text resource can also be rotated. This is done using either
SetTextCharAngle() and specifying the angle in degrees or with
SetTextCharAngleRad() giving the angle in radians. The format of the two functions
are shown in FIG-14.37 and FIG-14.38.

where:

 id is an integer value giving the ID of the text resource.

Activity 14.9

Start a new project called FallingText and implement the code given in FIG-
14.34. Test and save your project.

FIG-14.35

GetTextCharX() ()GetTextCharXfloat id ichrsub

FIG-14.36

GetTextCharY() ()GetTextCharYfloat id ichrsub

FIG-14.37

SetTextCharAngle() ()SetTextCharAngle id angleichrsub

378 Hands On AGK BASIC: Text

 ichrsub is an integer value giving the position of the character within the
 text resource’s string. The first character is at position zero.

 angle is a real value giving the angle (in degrees) to which the character
 is to be rotated.

where:

 id is an integer value giving the ID of the text resource.

 ichrsub is an integer value giving the position of the character within the
 text resource’s string. The first character is at position zero.

 angle is a real value giving the angle (in radians) to which the character
 is to be rotated.

The program in FIG-14.39 is a variation on the previous program. This time the
letters rotate by a random amount as they fall to the bottom of the screen.

FIG-14.38

SetTextCharAngleRad() ()SetTextCharAngleRad id angleichrsub

FIG-14.39

Rotating Characters

rem ** Move a character ***
rem *** Create and place text ***
CreateText(1,”ABCDEF”)
SetTextPosition(1,50,50)
Sync()
rem *** Start a character zero ***
char = 0
do
 rem *** If pointer over text drop first letter remaining ***
 if GetTextHitTest(1,GetPointerX(),GetPointerY()) and char < 6
 rem *** select a random angle ***
 angle = Random(1,360)
 rem *** Calculate 40th of angle ***
 anglestep# = angle / 40.0
 rem *** Current rotation is zero ***
 currentangle# = 0
 rem *** FOR 40 times DO ***
 for c = 1 to 40
 rem *** Move the down 1% ***
 SetTextCharY(1,char,c)
 rem *** Increase angle ***
 currentangle# = currentangle# + anglestep#
 SetTextCharAngle(1,char,currentangle#)
 Sync()
 next c
 rem *** Move to next letter ***
 inc char
 endif
loop

Activity 14.10

Modify FallingText to match the code given in FIG-14.39. Change the code
again so that all characters fall at the same time.
(HINT: This is a more complex change than it first appears. You should use an
array for the angle step sizes.) What problems are there with the final result?
Save your project.

Hands On AGK BASIC: Text 379

GetTextCharAngle() and GetTextCharAngleRad()

You can retrieve the current angle setting for a character using either
GetTextCharAngle() which returns the angle in degrees or GetTextCharAngleRad()
which returns the angle in radians. The format for each of these two statements is
shown in FIG-14.40 and FIG-14.41.

where:

 id is an integer value giving the ID of the text resource.

 ichrsub is an integer value giving the position of the character within the
 text resource’s string. The first character is at position zero.

where:

 id is an integer value giving the ID of the text resource.

 ichrsub is an integer value giving the position of the character within the
 text resource’s string. The first character is at position zero.

Repositioned Characters and Hit Detection

As we have already seen, it is possible to determine if a point is within a text resource
on the screen using the GetTextHitTest() statement.

However, this statement uses the original position of the text string to determine if a
point (x,y) is within the text string area. It does not take into account any repositioned
characters (see FIG-14.42).

FIG-14.40

GetTextCharAngle()

()GetTextCharAnglefloat id ichrsub

FIG-14.41

GetTextCharAngleRad() ()GetTextCharAngleRadfloat id ichrsub

FIG-14.42

Detecting a Text Hit

A B C DE F

Screen

Original
text position

Repositioned
text

Hit only
registered in

this area

Activity 14.11

Re-run FallingText. After all the characters have fallen to the bottom of the
screen, try moving the pointer over these characters, then try moving the
pointer over the original position in the middle of the screen. What happens in
both cases?

380 Hands On AGK BASIC: Text

SetTextCharColor()

The colour of an individual character can be set using SetTextCharColor(). This
statement has the format shown in FIG-14.43.

where:

 id is an integer value specifying the ID of the text resource whose
 colour is to be set.

 ichrsub is an integer value giving the position of the character within the
 text resource’s string. The first character is at position zero.

 ired is an integer value specifying the intensity of the red component
 of the colour. Range 0 to 255.

 igreen is an integer value specifying the intensity of the green component
 of the colour. Range 0 to 255.

 iblue is an integer value specifying the intensity of the blue component
 of the colour. Range 0 to 255.

 itrans is an integer value specifying the transparency of the text.
 Range 0 (invisible) to 255 (fully opaque).

SetTextCharColorAlpha(), SetTextCharColorRed(),
SetTextCharColorGreen() and SetTextCharColorBlue()

While SetTextCharColor() is fine if you want to change all or most of the color
attributes of a character, when only one value needs to be changed, then you can use
SetTextCharColorAlpha(), SetTextCharColorRed(), SetTextCharColorGreen()
or SetTextCharColorBlue()as appropriate. The format for each of these statements
is shown in FIG-14.44 to FIG-14.47.

where:

 id is an integer value giving the ID of the text resource.

 ichrsub is an integer value giving the position of the character within the
 text resource’s string. The first character is at position zero.

 itrans is an integer value (0 to 255) giving the transparency of the
 text. (0: invisible; 255: opaque) .

where:

 id is an integer value giving the ID of the text resource.

FIG-14.43

SetTextCharColor()

()SetTextCharColor id , ired , igreen , iblue itrans,ichrsub,

FIG-14.44

SetTextCharColorAlpha()

()idSetTextCharColorAlpha ichrsub, itrans,

FIG-14.45

SetTextCharColorRed() ()idSetTextCharColorRed ichrsub, ired,

Hands On AGK BASIC: Text 381

 ichrsub is an integer value giving the position of the character within
 the text resource’s string. The first character is at position zero.

 ired is an integer value (0 to 255) giving the intensity of the red.
 (0: off; 255: full red) .

where:

 id is an integer value giving the ID of the text resource.

 ichrsub is an integer value giving the position of the character within
 the text resource’s string. The first character is at position zero.

 igreen is an integer value (0 to 255) giving the intensity of the green.
 (0: off; 255: full green).

where:

 id is an integer value giving the ID of the text resource.

 ichrsub is an integer value giving the position of the character within
 the text resource’s string. The first character is at position zero.

 iblue is an integer value (0 to 255) giving the intensity of the blue.
 (0: off; 255: full blue).

GetTextCharColorAlpha(), GetTextCharColorRed(),
GetTextCharColorGreen() and GetTextCharColorBlue()

To retrieve the colour and transparency settings for a character, you can use the
statements GetTextCharColorAlpha() , GetTextCharColorRed() ,
GetTextCharColorGreen() and GetTextCharColorBlue(). The format for each of
these statements is shown in FIG-14.48 to FIG-14.51.

where:

 id is an integer value giving the ID of the text resource.

 ichrsub is an integer value giving the position of the character within

FIG-14.46

SetTextCharColorGreen() ()idSetTextCharColorGreen ichrsub, igreen,

FIG-14.47

SetTextCharColorBlue() ()idSetTextCharColorBlue ichrsub, iblue,

FIG-14.48
GetTextCharColorAlpha()

FIG-14.49
GetTextCharColorRed()

FIG-14.50
GetTextCharColorGreen()

FIG-14.51
GetTextCharColorBlue()

()idGetTextCharColorAlpha ichrsub,integer

(idGetTextCharColorRed ,integer)ichrsub

(idGetTextCharColorGreen ,integer)ichrsub

(idGetTextCharColorBlue ,integer)ichrsub

382 Hands On AGK BASIC: Text

 the text resource’s string. The first character is at position zero.

The value returned will represent the transparency, red, green, or blue setting for the
character depending on which of the four functions is called. All returned values will
be in the range 0 to 255.

The program in FIG-14.52 cycles through the characters in a string changing each to
yellow and then back to white.

SetTextDefaultMinFilter() and SetTextDefaultMagFilter()

The text displayed when you use a Print() statement or a text resource is actually
taken from an image. When you create text which is smaller or larger than the actual
size of the character’s image, then AGK scales that image. The scaling process used
when the characters are smaller than the image size can be set using
SetTextDefaultMinFilter(). When the characters are larger than the image size,
the scaling process used can be set using SetTextDefaultMagFilter().

The two scaling options available will create either a sharp but blocky result, or a
more blurred but smoother finish (see FIG-14.53).

Activity 14.12

Create a new project called ColourfulCharacters and implement the code given
in FIG-14.52.

Modify your program so that each letter takes on a random colour.

Save your project.

FIG-14.52

Colouring Characters

rem *** Colour characters ***
rem *** Create and size text ***
CreateText(1,”oooooooooo”)
SetTextSize(1,10)
do
 rem *** FOR each character DO ***
 for c = 0 to 9
 rem *** Change colour to yellow ***
 SetTextCharColor(1,c,255,255,0,255)
 Sync()
 Sleep(200)
 rem *** Change back to white ***
 SetTextCharColorBlue(1,c,255)
 Sync()
 next c
loop

FIG-14.53

Character Display Styles Option 0

Sharp/Blocky
Option 1

Blurred/Smooth

Hands On AGK BASIC: Text 383

The format for each of the two statements is shown in FIG-14.54 and FIG-14.55.

where:

 ioption is an integer value (0 or 1) giving the scaling process to be used
 on characters which are not the same size as the original character
 image. 0: sharp/blocky, 1: blurred/smooth. The default option is
 1.

SetTextDefaultFontImage()

The image file used for the characters displayed by the Print() statement and text
resources can be replaced by your own image containing a new font.

The first choice you have to make is whether to use a monospaced font (where every
character is exactly the same width) or a proportional font (where the width of
characters vary).

For a monospaced font your image must conform to the following rules:

± Characters must be in 6 rows of 16 characters.

± The characters within a row must be evenly spaced.

± Each row must be evenly spaced.

± The characters must be in ASCII code order, starting with the space character
(ASCII 32) and ending with the del character (ASCII 127).

± The characters must be white on a transparent background.

± The image should be in PNG format.

± The image width must be exactly divisible by 16 and the height by 6.

The image must, like any other, be stored in a project’s media folder.

The SetTextDefaultFontImage() allows us to specify the image containing the font
to be used for all subsequent text displays. The format for the statement is given in
FIG-14.56.

FIG-14.54

SetTextDefaultMinFilter()

FIG-14.55

SetTextDefaultMagFilter()

()ioptionSetTextDefaultMinFilter

()ioptionSetTextDefaultMagFilter

Activity 14.13

Run ColourfulCharacters which you created in Activity 14.11 and observe the
nature of the characters displayed.

Add the line

 SetTextDefaultMagFilter(0)

at the start of the program and then check what effect this has on the
appearance of the characters.

FIG-14.56

SetTextDefaultFontImage() ()imgIdSetTextDefaultFontImage

384 Hands On AGK BASIC: Text

where:

 imgId is an integer value giving the ID of the image containing the new
 font.

This command must be executed before any text resource is created or Print
statement output produced.

A typical mono-spaced image is shown in FIG-14.57. Note that the background
colour is shown in grey only to make the characters visible here - in fact, the
background must be transparent. Rectangular blocks are used to replace characters
not available in this font.

The program in FIG-14.58 uses this font image to demonstrate the result achieved by
creating you own font.

When you want to create a proportional font with characters occupying various

FIG-14.57

Font Image File

FIG-14.58

Using a New Default Font

Activity 14.14

Start a new project called NewFont. Copy the file OCRFont.png from
AGKDownloads/Chapter14 to the project’s media folder.

Implement the code given in FIG-14.58 and observe the new font.

rem *** Load a new font ***
LoadImage(1,”OCRFont.png”)
rem *** Create and size text ***
SetTextDefaultFontImage(1)
CreateText(1,”ABCDEFGHIJKLMNOPQRSTUVWXYZ”+chr(10)+”abcdefghijklmn
opqrstuvwxyz”+Chr(10)+”AbCdEfGhIjKl”)
SetTextSize(1,10)
Sync()
do
loop

Hands On AGK BASIC: Text 385

widths (e.g. W will be wider than i) things become more complicated.

You need to create an atlas texture image file containing the characters from the
space (ASCII 32) to the del (ASCII 127) character and, to accompany this, you also
need a subimage text file giving the details of the position and size of each character.

Atlas texture files and the subimage text file formats are explained in Chapter 16.

SetTextDefaultExtendedFontImage()

Regular printable ASCII characters have codes between 32 and 127, but there is also
a set of extended characters which use the codes 128 to 255. You can set these up in
a text object with statements such as

 SetTextString(1,Chr(170)+Chr(190))

As with the codes 32 to 127, AGK contains a single image with a shape for each of
these extended characters.

You can also have your own set of characters for code 128 to 255 by using
SetTextDefaultExtendedFontImage(). The format for this statement is shown in
FIG-14.59.

where

 imgId is an integer value giving the ID of the image containing the
 character images.

The image you use has the same general requirements as those listed earlier for use
with SetTextDefaultFont(). The only difference being that the extended font image
requires 8 rows of 16 characters (since this time there are 128 characters rather than
96).

SetTextFontImage()

If you want to change the font for just one text resource rather than them all, then you
can use SetTextFontImage(). This statement has the format shown in FIG-14.60.

where:

 id is an integer value specifying the ID of the text resource whose
 font is to be set.

 imgId is an integer value giving the ID of the image containing the new
 font. The image structure requirements are identical to those
 described for SetTextDefaultFont().

Summary
± A text resource can be used in place of output produced by a Print()

statement.

FIG-14.59

SetTextDefaultExtended
FontImage()

SetTextDefaultExtendedFontImage ()imgId

FIG-14.60

SetTextFontImage() ()imgIdSetTextFontImage id ,

386 Hands On AGK BASIC: Text

± Text strings do not have to be re-output after every Sync() statement, unlike
the characters produced by a Print() statement.

± Text can be sized, coloured, made transparent and positioned.

± Use SetTextRed(), SetTextGreen() and SetTextBlue() to set the individual
colour components of a text object.

± Use GetTextRed(), GetTextGreen() and GetTextBlue() to discover the
individual colour component settings of a text object.

± Use SetTextAlpha() to set the transparency of a text object.

± Use GetTextAlpha() to discover the transparency setting of a text object.

± Use SetTextX() and SetTextY() to set the individual x and y coordinates of a
text object.

±Use GetTextX() and GetTextY() to discover the individual x and y coordinates
of a text object.

± Use GetTextVisible() to discover the current visibility setting of a text
object.

± Use GetTextSize() to discover the current size setting of a text object.

± Use GetTextTotalHeight() to discover the overall height of a text object.
This will differ from the value returned by GetTextSize() if the text extends
over several lines or contains zero characters.

± Use GetTextTotalWidth() to discover the overall width of a text object.

± Use SetTextMaxWidth() to set a maximum width for a text object. If the text
exceeds this length it will wrap onto a new line.

± Use SetTextScissor() to crop the area of the screen in which a text object is
visible.

± Use GetTextLength() to discover the number of characters in a text object.

± Use SetTextAlignment() to set the alignment of a text object.

± Use SetTextSpacing() to set the spacing between the individual characters
within a text object.

± Use SetTextLineSpacing() to set the spacing between lines of a multi-line
text object.

± Use SetTextDepth() to set the layer on which a text object is to be placed.
The default layer is 10.

± Use GetTextDepth() to discover the layer setting of a text object.

± Use GetTextHitTest() to discover if a given position is within the text
object’s space.

± Use GetTextExists() to check that a text object of a given ID currently exists.

± Individual characters within a text string can be coloured, made transparent,
rotated and positioned.

± Use SetTextCharPosition() to set the position of an individual character
within a text object.

Hands On AGK BASIC: Text 387

± Use SetTextCharX() and SetTextCharY() to set the x and y coordinates of an
individual character within a text object.

± Use GetTextCharX() and GetTextCharY() to discover the x and y coordinates
of an individual character within a text object.

± Use SetTextCharAngle() or SetTextCharAngleRad() to set the angle of an
individual character within a text object.

± Use GetTextCharAngle() or GetTextCharAngleRad() to discover the angle of
an individual character within a text object.

± The new position of a moved character is not taken into account when
determining if a given point is within the area of a text object.

± Use SetTextCharColor() to set the colour of an individual character within a
text object.

± Set individual character colour attributes using SetTextCharRed(),
SetTextCharGreen(), SetTextCharBlue() and SetTextCharAlpha().

± Use GetTextCharRed(), GetTextCharGreen(), GetTextCharBlue() and
GetTextCharAlpha() to retrieve the attributes of individual characters within a
text object.

± The characters displayed by a text object are obtained from an image.

± When characters are displayed at a size other than that within the image from
which they are taken, those characters are scaled.

± Scaling uses one of two options: sharp but blocky, or smooth but blurred (the
default).

± Use SetTextDefaultMinFilter() to select which scaling option is used for
characters smaller than the original size.

± Use SetTextDefaultMagFilter() to select which scaling option is used for
characters larger than the original size.

± The font used by all text resources can be changed by loading a new image file
containing a new font.

± New font image files can be monospaced or proportional.

± Monospace font images must be 16 characters by 6 rows covering the
characters space to del.

± Proportional font images must be accompanied by a subimage text file giving
the position and dimensions of each character.

± The subimage text file accompanying a proportional font image must give
filenames based on each character’s ASCII code value (e.g. 65.png for the
upper case A).

± Use SetTextDefaultFontImage() to set the image used when displaying all
text characters in the ASCII range 32 to 127.

± Use SetTextDefaultExtendedFontImage() to set the image used when
displaying characters in the ASCII range 128 to 255.

± The image used for characters 128 to 255 should be 16 characters by 8 rows
for a monospaced font.

388 Hands On AGK BASIC: Text

± Use SetTextFontImage() to change the image used for a specific text object
(all other text objects will use the default image).

Hands On AGK BASIC: Text 389

Solutions
Activity 14.1

Code for Text01:
CreateText(1,”Hello again”)
SetTextPosition(1,50,50)
Print(GetTextSize(1))
Sync()
do
loop

It is necessary to move the text resource away from its
default position at the top left of the screen since the Print()
statement also writes to that position.

The default size is 4.0.

Activity 14.2
Modified code for Text01:

CreateText(1,”Hello again”)
SetTextPosition(1,50,50)
Print(GetTextTotalHeight(1))
Sync()
do
loop

To change the text, modify the first line to read:
CreateText(1,””)

Notice that the height given for “Hello again” matches that
returned by GetTextSize(), but in the case of the empty
string, GetTextTotalHeight() returns zero since no actual text
is output.

Activity 14.3
Modified code for Text01:

CreateText(1,””)
SetTextPosition(1,50,50)
Print(GetTextTotalHeight(1))
Print(GetTextTotalWidth(1))
Sync()
do
loop

A blank string returns a length of zero.
“abc” returns 7.5.
“abcdef” returns 15.0.

Since the text width is given as a percentage of the screen’s
width, then the text width values will change if the screen
width changes.

Activity 14.4
Modified code for Text01:

CreateText(1,”abcdef”)
rem *** Left-alignment ***
SetTextAlignment(1,0)
SetTextPosition(1,50,50)
Sync()
Sleep(1000)
rem *** right-alignment ****
SetTextAlignment(1,2)
Sync()
Sleep(1000)
rem *** centre-alignment ***
SetTextAlignment(1,1)
Sync()
Print(GetTextTotalHeight(1))
Print(GetTextTotalWidth(1))
Sync()
do
loop

Activity 14.5
Modified code for Text01:

CreateText(1,”abcdef”)
SetTextPosition(1,50,50)
SetTextSpacing(1,1)
Print(GetTextTotalHeight(1))

Print(GetTextTotalWidth(1))
Sync()
do
loop

The SetTextSpacing() command is changed to
SetTextSpacing(1,2)

and
SetTextSpacing(1,-1)

for subsequent runs.

Not only is there an obvious visual effect, but the value
returned by the GetTextTotalWidth() statement will also
change. The values returned by this are:

 20.0, 25.0 and 10

Activity 14.6
Modified code for Text01:

CreateText(1,”abcdef”+chr(10)+”ghijkl”+chr(10)+
”mnopqr”)
SetTextPosition(1,50,50)
SetTextSpacing(1,-1)
SetTextLineSpacing(1,1)
Print(GetTextTotalHeight(1))
Print(GetTextTotalWidth(1))
Sync()
do
loop

The SetTextLineSpacing() command is changed to
SetTextLineSpacing(1,2)

and
SetTextLineSpacing(1,-1)

for subsequent runs.

The output produced by GetTextTotalHeight() will be:

 14.0, 16.0 and 10.0

Activity 14.7
Code for MenuSelection:

rem *** Menu selection ***

rem *** Set up strings ***
dim menu[3] as string = [“”,”New”,”Open”,”Save”]
rem *** Set up Text resources ***
for c = 1 to 3
 CreateText(c,menu[c])
 SetTextPosition(c, 40,20+c*5)
next c
do
 rem *** Check if pressed ***
 for c = 1 to 3
 if GetTextHitTest(c, GetPointerX(),
 GetPointerY()) = 1 and GetPointerState() = 1
 Print(menu[c])
 endif
 next c
 Sync()
loop

The most difficult part is to know what value is in each text
resource since there is no GetTextString() statement to allow
us to discover that value.

390 Hands On AGK BASIC: Text

To solve this problem, the strings to be placed within the text
resources are held in an array, menu. The content of menu[1]
is stored in text ID 1, menu[2] in text 2, etc. When we have
the ID of a resource we can find the string it contains in the
corresponding element of menu.

Activity 14.8
No solution required.

Activity 14.9
No solution required.

Activity 14.10
Modified code for FallingText:

rem ** Move all characters ***
dim anglesteps#[6]
rem *** Create and place text ***
CreateText(1,”ABCDEF”)
SetTextPosition(1,50,50)
Sync()
rem *** Calculate an angle step size for each
character ***
for c = 0 to 5
 rem *** select a random angle ***
 angle = Random(1,360)
 rem *** Calculate 40th of angle ***
 anglesteps#[c] = angle / 40.0
next c
do
 rem *** If pointer over text drop first letter
 remaining ***
 if GetTextHitTest(1,GetPointerX(),GetPointerY())
 rem *** FOR 40 times DO ***
 for c = 1 to 40
 for ch = 0 to 5
 rem *** Move the down 1% ***
 SetTextCharY(1,ch,c)
 rem *** Increase angle ***
 angle# = anglesteps#[ch]*c
 SetTextCharAngle(1,ch,angle#)
 Sync()
 next ch
 next c
 endif
loop

The problem with this example is that the falling process is
rather slow.

We could improve the speed by giving a step size of 2 or 4 to
the for c = 1 to 40 loop.

Activity 14.11
Moving the pointer over the fallen characters has no effect,
but moving it over the original position starts the whole
process running once more with the characters falling from
their original position.

Activity 14.12
Modified code for ColourfulCharacters:

rem *** Colour characters ***
rem *** Create and size text ***
CreateText(1,”oooooooooo”)
SetTextSize(1,10)
do
 rem *** FOR each character DO ***
 for c = 0 to 9
 rem *** Change to random colour ***
 SetTextCharColor(1,c,Random(1,255),
 Random(1,255),Random(1,255),255)
 Sync()
 Sleep(200)
 rem *** Change back to white ***
 SetTextCharColor(1,c,255,255,255,255)
 Sync()

 next c
loop

Activity 14.13
When the characters are displayed initially they use the
smooth but blurred style. Adding the new line to the code
changes this to the sharper but blocky style.

Activity 14.14
No solution required.

Hands On AGK BASIC: User Input 391

User Input

In this Chapter:

T Virtual Buttons

T Keyboard Input

T Using Edit Boxes

T Virtual Joysticks

T Physical Joysticks

T	Device-Specific	Input

T Identifying a Device’s Operating System

392 Hands On AGK BASIC: User Input

Virtual Buttons

Introduction
We have already made use of the AGK virtual buttons in several programs in earlier
chapters. It is these buttons that appear when you called the SetUpButtons() function
supplied in an earlier chapter. Each virtual button is assigned an image automatically
(although that image can be replaced). A typical virtual button is shown in FIG-15.1.

In this section we will examine the AGK statements used to create and manipulate
those buttons.

Virtual Button Statements
AddVirtualButton()

To create a virtual button we need to use the AddVirtualButton() statement. This
not only assigns an ID to the button, but also positions and sizes the button. The
format of the statement is given in FIG-15.2.

where:

 id is an integer value specifying the ID to be assigned to the virtual
 button.

 x,y are real values giving the coordinates at which the button is to be
 positioned. These coordinates represent the position of the centre
 of the button.

 fwidth is a real number giving the width of the button (percentage or
 virtual pixels).

SetVirtualButtonText()

You can add text to the button using the SetVirtualButtonText() statement (see
FIG-15.3).

FIG-15.1

A Typical Virtual Button

FIG-15.2

AddVirtualButton()

AddVirtualButton (id , x , y , fwidth)

Activity 15.1

Start a new project named UsingVirtualButtons and write code to create a
single button in the centre of the screen with a width setting of 10.

What happens when you click/press on the button? Save your project.

FIG-15.3

SetVirtualButtonText()

SetVirtualButtonText (id , string)

Hands On AGK BASIC: User Input 393

where:

 id is an integer value specifying the ID assigned to the button.

 string is a string value giving the text to be placed within the button.

The size of the text is fixed automatically, so if you try to assign a string with too
many characters, it will overflow the edges of the button.

SetVirtualButtonColor()

You can change the colour of the button using the SetVirtualButtonColor()
statement (see FIG-15.4).

where:

 id is an integer value specifying the ID assigned to the button.

 ired is an integer value giving the intensity of the red component of
 the colour (0: no red; 255: full red).

 igreen is an integer value giving the intensity of the green component
 of the colour (0: no green; 255: full green).

 iblue is an integer value giving the intensity of the blue component of
 the colour (0: no blue; 255: full blue).

SetVirtualButtonAlpha()

A button’s transparency level can be set using the SetVirtualButtonAlpha()
statement (see FIG-15.5).

where:

 id is an integer value specifying the ID assigned to the button.

 itrans is an integer value giving the transparency setting of the button
 (0 : invisible, 255: opaque).

Activity 15.2

In UsingVirtualButtons, place the text Yes in the button.

Test and save your project.

FIG-15.4

SetVirtualButtonColor()

SetVirtualButtonColor (id , ired , igreen , iblue)

Activity 15.3

In UsingVirtualButtons, set the colour of the button to yellow (R:255, G:255,
B:0).

Test and save your project.

FIG-15.5

SetVirtualButtonAlpha() SetVirtualButtonAlphainteger (id , itrans)

394 Hands On AGK BASIC: User Input

SetVirtualButtonPosition()

A button can be repositioned at any time using the SetVirtualButtonPosition()
statement (see FIG-15.6)

where:

 id is an integer value specifying the ID assigned to the button.

 x,y are real values giving the coordinates of the centre of the button.

SetVirtualButtonSize()

A button can also be resized using the SetVirtualButtonSize() statement (see FIG-
15.7)

where:

 id is an integer value specifying the ID assigned to the button.

 fsize is a real value giving the new width of the button.

SetVirtualButtonVisible()

A button’s visibility can be changed using the SetVirtualButtonVisible()
statement (see FIG-15.8)

where:

 id is an integer value specifying the ID assigned to the button.

 iv is an integer value (0 or 1) specifying the visibility of the button
 (0: invisible, 1: visible).

SetVirtualButtonActive()

A button can be made inactive, and hence unresponsive to user presses, with the
SetVirtualButtonActive() statement (see FIG-15.9).

where:

Activity 15.4

In UsingVirtualButtons, make the button translucent with a setting of 126. Test
and save your project.

FIG-15.6

SetVirtualButtonPosition() SetVirtualButtonPosition (id , x , y)

FIG-15.7

SetVirtualButtonSize()

SetVirtualButtonSize (id , fsize)

FIG-15.8

SetVirtualButtonVisible() SetVirtualButtonVisible (id , iv)

FIG-15.9

SetVirtualButtonActive() SetVirtualButtonActiveinteger (id , iactive)

Hands On AGK BASIC: User Input 395

 id is an integer value specifying the ID assigned to the button.

 iactive is an integer value (0 or 1) specifying the button’s response
 (0: inactive, 1: active).

SetVirtualButtonImageUp() and SetVirtualButtonImageDown()

We have seen how to set up a virtual button and add text to it, but a better option is
to load your own images onto the button. Two images are used; one for the unpressed
or “up” version of the button, the other for the pressed “down” version.

These images are loaded onto the button using the SetVitualButtonImageUp()and
SetVirtualButtonImageDown() statements (see FIG-15.10 and FIG-15.11).

where:

 id is an integer value specifying the ID assigned to the button.

 imgId is an integer value giving the ID of the image to be loaded. This
 image will be displayed when the button is unpressed.

where:

 id is an integer value specifying the ID assigned to the button.

 imgId is an integer value giving the ID of the image to be loaded. This
 image will be displayed when the button is pressed.

The program in FIG-15.12 displays a button showing the Japanese Hiragana symbol
for the letter “a” using a slightly different image for the up and down positions.

Activity 15.5

Modify UsingVirtualButtons, so that the button becomes inactive after 5
seconds.

Test and save your project.

FIG-15.10

SetVirtualButtonImageUp() SetVirtualButtonImageUp (id imgId)

SetVirtualButtonImageDown (id imgId)

FIG-15.11

SetVirtualButtonImageDown()

FIG-15.12

Using Images on a
Virtual Button

rem *** Using Virtual Buttons 2 ***

rem *** Load images used ***
LoadImage(1,”AUp.png”,0)
LoadImage(2,”ADown.png”,0)
rem *** Create button ***
AddVirtualButton(1,50,90,10)
rem *** Add images to button ***
SetVirtualButtonImageUp(1,1)
SetVirtualButtonImageDown(1,2)
do
 Sync()
loop

396 Hands On AGK BASIC: User Input

GetVirtualButtonPressed()

Although we have created a button, we also need to get the program to react to that
button being pressed. We can check if a button is pressed (and then execute other
code) using the GetVirtualButtonPressed()statement (see FIG-15.13).

where:

 id is an integer value specifying the ID assigned to the button.

This function returns 1 at the instant the virtual button is first pressed. At all other
times zero is returned, irrespective of the button being up or down.

GetVirtualButtonReleased()

You can also detect the moment a button is released using the
GetVirtualButtonReleased()statement (see FIG-15.14).

where:

 id is an integer value specifying the ID assigned to the button.

The function returns 1 only at the instant the button is released, at all other times, zero
is returned.

Activity 15.6

Create a new project called VB2. Copy the files AUp.png and ADown.png from
AGKDownloads/Chapter15 then implement the code in FIG-15.12.

Test and save your project.

FIG-15.13

GetVirtualButtonPressed() GetVirtualButtonPressedinteger (id)

Activity 15.7

In your VB2 project, get the program to add the letter a to a displayed string
each time the virtual button is pressed. This requires the following additional
lines of code:

 rem *** Create text object ***
 text$ = “”
 CreateText(1,text$)
 SetTextPosition(1,40,50)

 rem *** IF key presses, add an “a” ***
 if GetVirtualButtonPressed(1)=1
 text$=text$+”a”
 SetTextString(1,text$)
 endif

Test and save your program.

FIG-15.14

GetVirtualButtonReleased() GetVirtualButtonReleasedinteger (id)

Hands On AGK BASIC: User Input 397

GetVirtualButtonState()

Since GetVirtualButtonPressed() and GetVirtualButtonReleased() only return
1 for a single instant, neither is useful for giving you details of the current state of a
button. To discover if a button is currently being held down or is in the released state,
the GetVirtualButtonState() command can be used (see FIG-15.15).

where:

 id is an integer value specifying the ID assigned to the button.

The function returns 1 when the button is being held down and zero when the button
is untouched.

GetVirtualButtonExists()

To check if a button of a given ID currently exists, the GetVirtualButtonExists()
statement is used. This has the format shown in FIG-15.16.

where:

 id is an integer value specifying the ID to be checked.

The function returns 1 if a virtual button of the specified ID exists, otherwise zero is
returned.

DeleteVirtualButton()

When a button is no longer required, it can be deleted using the DeleteVirtualButton()
statement (see FIG-15.17).

where:

 id is an integer value specifying the ID of the button to be deleted.

Using Multiple Virtual Buttons
A maximum of 12 virtual buttons can exist at any one time in a program. When more
than one button exists, we need to cycle through each button checking to see if it has
been pressed. This requires code which implements the following logic:

 FOR each button DO
 IF button just pressed THEN
 Execute code associated with that button
 ENDIF
 ENDFOR

The program in FIG-15.18 is an extension of the code in project VB2. This time there
are five Japanese character keys. These represent the vowels a, i, u, e, o in that order.

FIG-15.15

GetVirtualButtonState()

GetVirtualButtonStateinteger (id)

FIG-15.16

GetVirtualButtonExists() GetVirtualButtonExistsinteger (id)

FIG-15.17

DeleteVirtualButton() DeleteVirtualButton (id)

398 Hands On AGK BASIC: User Input

Pressing a key adds the English equivalent of the vowel to a displayed string.

rem *** Using Virtual Buttons 3 ***

rem *** Global variables - image IDs ***
global AUp, ADown, IUp, IDown, UUp, Udown, EUp, EDown, OUp, ODown

rem *** Main logic ***
LoadImages()
SetUpButtons()
rem *** Create text object ***
text$ = “”
CreateText(1,””)
SetTextPosition(1,40,50)
do
 rem *** IF key pressed, add appropriate vowel ***
 for c = 1 to 5
 if GetVirtualButtonPressed(c)=1
 text$=text$+Mid(“aiueo”,c,1)
 SetTextString(1,text$)
 endif
 next c
 Sync()
loop

rem *** Functions ***
function LoadImages()
 AUp = LoadImage(“AUp.png”)
 ADown = LoadImage(“ADown.png”)
 IUp = LoadImage(“IUp.png”)
 IDown = LoadImage(“IDown.png”)
 UUp = LoadImage(“UUp.png”)
 UDown = LoadImage(“UDown.png”)
 EUp = LoadImage(“EUp.png”)
 EDown = LoadImage(“EDown.png”)
 OUp = LoadImage(“OUp.png”)
 ODown = LoadImage(“ODown.png”)
endfunction

function SetUpButtons()
 rem *** A ***
 AddVirtualButton(1,28,90,10)
 SetVirtualButtonImageUp(1,AUp)
 SetVirtualButtonImageDown(1,ADown)
 rem *** I ***
 AddVirtualButton(2,39,90,10)
 SetVirtualButtonImageUp(2,IUp)
 SetVirtualButtonImageDown(2,IDown)
 rem *** U ***
 AddVirtualButton(3,50,90,10)
 SetVirtualButtonImageUp(3,UUp)
 SetVirtualButtonImageDown(3,UDown)
 rem *** E ***
 AddVirtualButton(4,61,90,10)
 SetVirtualButtonImageUp(4,EUp)
 SetVirtualButtonImageDown(4,EDown)
 rem *** O ***
 AddVirtualButton(5,72,90,10)
 SetVirtualButtonImageUp(5,AUp)
 SetVirtualButtonImageDown(5,ADown)
endfunction

FIG-15.18

Using Images on Virtual
Buttons

Hands On AGK BASIC: User Input 399

Summary
± Use AddVirtualButton() to create up to 12 virtual buttons. The command

also positions and sizes a button.

± Virtual buttons are automatically assigned “up” and “down” images which are
displayed when the button is unpressed (up) or pressed (down).

± Use SetVirtualButtonText() to place text on a button.

± Use SetVirtualButtonColor() to colour the button image.

± Use SetVirtualButtonAlpha() to set the button’s transparency.

± Use SetVirtualButtonPosition() to reposition a button.

± Use SetVirtualButtonSize() to resize a button.

± Use SetVirtualButtonVisible() to hide or display a button.

± Use SetVirtualButtonActive() to deactivate/activate a button.

± Use SetVirtualButtonImageUp() to replace the image used when a button is
unpressed.

± Use SetVirtualButtonImageDown() to replace the image used when a button
is pressed.

± Use GetVirtualButtonPressed() to detect the instant a button is pressed.

± Use GetVirtualButtonReleased() to detect the instant a button is released.

± Use GetVirtualButtonState() to determine if a button is currently pressed or
unpressed.

± Use GetVirtualButtonExists() to check that a button of a specified ID
currently exists.

± Use DeleteVirtualButton() to delete an existing button.

Activity 15.8

Start a new project called HiraganaButtons. Copy the appropriate image files
from AGKDownload/Chapter15 to the project’s media folder then copy the
code given in FIG-15.18 into main.agc.

Test the code to check that the buttons add the correct characters to the
displayed string. Save your project.

400 Hands On AGK BASIC: User Input

Keyboard Input

Introduction
Virtual buttons and sprites are fine for user input as long as that input is relatively
simple, but when we need the user to enter alphanumeric values, then a full keyboard
is required. This can be achieved by using a text-input resource. Adding a text-input
resource automatically creates an on-screen edit box and, when your app is running
on a tablet or smartphone, a virtual keyboard (see FIG-15.19).

The commands associated with a text-input resource are explained below.

Text-Input Statements
StartTextInput()

Many programming languages contain commands which will cause a program to halt
while the user enters information at a keyboard. And while this is not a problem for
traditional data entry situations, such a setup does not always suit a gaming
environment where we may wish animations or other activities to continue in the
background while data is keyed in.

To solve this problem, AGK splits keyboard entry into several stages. The first of
these begins when the StartTextInput() statement is executed.

This statement creates a rectangular area on the screen for text entry. It also causes a
virtual keyboard to appear when a hardware keyboard is not attached to the device.
The statement has the format shown in FIG-15.20.

The program in FIG-15.21 shows how minimum code is necessary to initiate
keyboard input.

FIG-15.19

A Typical Keyboard Input
Screen

FIG-15.20

StartTextInput()

StartTextInput ()

FIG-15.21

Using StartTextInput()

rem *** Keyboard input ***

StartTextInput()
do
 Sync()
loop

Edit box
created by input

statement

Virtual
keyboard appears

automatically

Hands On AGK BASIC: User Input 401

GetTextInputCompleted()

The statement GetTextCompleted() will return 1 at the instant text input has been
completed or cancelled (when the Enter or Esc key is pressed). At all other times the
statement returns zero. The format for this command is given in FIG-15.22.

GetTextInput()

When GetTextInputCompleted() returns a 1, you can then retrieve the string that
was entered by the user using the GetTextInput() statement (see FIG-15.23).

The function returns the string entered.

GetTextInputCancelled()

The user can decide to cancel text input by pressing the Escape key. If this happens,
then the statement GetTextInputCancelled() will return 1. On the other hand, if the
player enters data normally and finishes by pressing the Enter key, then
GetTextInputCancelled() returns zero.

GetTextInputCancelled() has the format shown in FIG-15.24.

This statement can only be called after GetTextInputCompleted() has returned 1.

Activity 15.9

Start a new project called KeyboardInput and copy the code given above into
main.agc.

Test and save the project.

FIG-15.22

GetTextInputCompleted()

GetTextInputCompletedinteger ()

Activity 15.10

Modify KeyboardInput so that the word “Completed” appears when the Enter
key is pressed. (HINT: Make use of a text object to produce the word.)

Test and save the project.

FIG-15.23

GetTextInput() GetTextInputstring ()

Activity 15.11

Modify KeyboardInput so that in place of the word Completed, the program
displays the text entered when input has been completed.

Test and save the project.

FIG-15.24

GetTextInputCancelled() GetTextInputCancelledinteger ()

402 Hands On AGK BASIC: User Input

StopTextInput()

Although the text input box and virtual keyboard will automatically be removed as
soon as the user presses the Enter or Escape key, it is also possible to achieve the
same effect with your code using the StopTextInput() statement.

An obvious reason to do this would be that the Enter key has not been pressed after
a reasonable time period.

The StopTextInput() statement’s format is shown in FIG-15.25.

GetTextInputState()

Whereas GetTextInputCompleted() will return 1 only at the instant the Enter or
Escape key is first pressed, GetTextInputState() returns a value of zero during the
whole text input stage and always returns 1 when no text input is being requested.
Hence, this statement returns 1 if executed before StartTextInput() and also returns
1 at any time after the Enter (or Escape) key has been pressed.

The statement has the format shown in FIG-15.26.

The program in FIG-15.27 highlights the use of the GetTextInputState() command
by displaying a message to indicate the value being returned by the statement at
various points in the program.

Activity 15.12

Modify KeyboardInput so that, if keyboard entry is cancelled by the user, the
message User cancelled is displayed.

Test and save your project.

FIG-15.25

StopTextInput()

StopTextInput ()

Activity 15.13

Modify KeyboardInput so that keyboard entry is cancelled if the Enter or
Escape key is not pressed within 8 seconds.

Test and save your project.

FIG-15.26

GetTextInputState() GetTextInputStateinteger ()

rem *** Set up blank text ***
CreateText(1,””)
rem *** Save current time ***
time = GetSeconds()
rem *** No text entry at this point ***
if GetTextInputState() = 1
 SetTextString(1,”No text entry”)
 Sync()
endif

FIG-15.27

Using GetTextInputState()

Hands On AGK BASIC: User Input 403

SetTextInputMaxChars()

If you want to impose a limit on the number of characters that can be entered when
using StartTextInput(), use the SetTextInputMaxChars() statement (see FIG-
15.28).

where

 imax is an integer value giving the maximum characters allowed. Use
 zero if you want unlimited characters.

GetLastChar()

The ASCII code for the last character to be entered when using the StartTextInput()
statement can be retrieved using GetLastChar() (see FIG-15.29).

The function returns zero if no character has been entered.

SetCursorBlinkTime()

A final attribute you can control when using StartTextInput() is the cursor flash
rate. This is done using SetCursorBlinkTime() (see FIG-15.30).

where

FIG-15.27
(continued)

Using GetTextInputState()

rem *** Accept text after 6 seconds ***
repeat
 if GetSeconds() - time = 6
 StartTextInput()
 endif
 Sync()
until GetSeconds() - time = 7
rem *** Display text entry state message ***
do
 if GetTextInputState() = 0
 SetTextString(1,”Text being entered”)
 else
 SetTextString(1,”No text being entered”)
 endif
 Sync()
loop

Activity 15.14

Start a new project called KeyboardState and implement the code given in
FIG-15.27.

Test and save your program.

SetTextInputMaxChars ()imax
FIG-15.28

SetTextInputMaxChars()

GetLastChar ()integer
FIG-15.29

GetLastChar()

SetCursorBlinkTime ()fsecs
FIG-15.30

SetCursorBlinkTime()

404 Hands On AGK BASIC: User Input

fsecs is a real number giving the interval between cursor blinks in fractions of
 a second.

The default blink time is about 0.5 seconds.

Summary
± For a full range of character input we can use a text-input resource.

± Use StartTextInput() to activate a text-input resource.

± Once started, text-input automatically creates a text input box and, where no
physical keyboard is connected, a virtual, on-screen keyboard.

± Use GetTextInputCompleted() to determine if the user has pressed the Enter
or Escape key.

± Use GetTextInputCancelled() to determine if the user has aborted the input
operation by pressing the Escape key.

± When text input has been completed, use GetTextInput() to determine the
string entered by the user.

± Use StopTextInput() to terminate text input via your program code.

± Use GetTextInputState() to determine if the program is currently accepting
text input from the user.

± Use SetTextInputMaxChars() to specify a maximum number of characters to
be allowed within the edit box.

± Use GetLastChar() to find the ASCII code for the last character entered at the
keyboard.

± Use SetCursorBlinkTime() To set the flash rate for the cursor within the edit
box.

Hands On AGK BASIC: User Input 405

Edit Box Statements

Introduction
The text input commands are fine if all we want is to get something simple like a
player’s name or a password, but it isn’t really suitable if we want to gather more
complex information.

For complete control over the number and position of data entry edit boxes, AGK has
a set of edit box commands.

A typical screen layout produced using these commands is shown in FIG-15.31.

Edit Box Statements
CreateEditBox()

A new edit box can be created using the CreateEditBox() statement (see FIG-15.32).

FIG-15.31

A Simple Edit Box Layout

FIG-15.32

CreateEditBox()

CreateEditBox ()

Format 2

CreateEditBox ()id
Format 1

integer

406 Hands On AGK BASIC: User Input

where

 id is an integer value specifying the ID to be assigned to the edit
 box. No two edit boxes may be assigned the same ID value.

Format 1 allows you to specify the ID to be assigned; format 2 returns the ID
automatically assigned by AGK.

SetEditBoxSize()

To size an edit box, use SetEditBoxSize() (see FIG-15.33).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 fwidth is a real value giving the width of the edit box (percentage or
 virtual coordinates as appropriate).

 fheight is a real value giving the height of the edit box.

The dimensions given are for the inside of the edit box. The border takes up additional
space.

GetEditBoxWidth() and GetEditBoxHeight()

The current dimensions of an edit box can be found using the GetEditBoxWidth()
and GetEditBoxHeight() statements (see FIG-15.34).

where

 id is an integer value giving the ID of the edit box whose dimensions
 are to be found.

The value returned by each function will be a percentage of the screen size or in
virtual pixels depending on the system your program has been set up for.

SetEditBoxPosition()

To position an edit box once it has been created, use SetEditBoxPosition() (see
FIG-15.35.

where

 id is an integer value giving the ID previously assigned to the edit
 box.

FIG-15.33

SetEditBoxSize() SetEditBoxSize ()id fwidth fheight

FIG-15.34

GetEditBoxWidth()

GetEditBoxHeight()

GetEditBoxWidth ()idfloat

GetEditBoxHeight ()idfloat

FIG-15.35

SetEditBoxPosition() SetEditBoxPosition ()id x y

Hands On AGK BASIC: User Input 407

 x,y are real values giving the coordinates at which the top-left corner
 of the edit box is to be positioned.

GetEditBoxX() and GetEditBoxY()

The coordinates of the edit box’s top-left corner can be found using GetEditBoxX()
and GetEditBoxY() (see FIG-15.36).

where

 id is an integer value giving the ID of the edit box whose position
 is to be found.

SetEditBoxMaxChars()

The maximum number of characters that can be entered within an edit box is set
using SetEditBoxMaxChars() (see FIG-15.37).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 imax is an integer value giving the maximum characters allowed
 within the edit box.

GetEditBoxText()

To access the text entered in an edit box, use GetEditBoxText() (see FIG-15.38).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

The function returns a string containing a copy of the text within the specified edit
box.

SetEditBoxFocus()

An edit box is said to have focus when it has been selected and you see the cursor
within the the box awaiting user input. You can give an edit box focus simply by
clicking within the box or you can assign focus using the SetEditBoxFocus()
statement (see FIG-15.39).

FIG-15.36

GetEditBoxX()

GetEditBoxY()

GetEditBoxX ()idfloat

GetEditBoxY ()idfloat

FIG-15.37

SetEditBoxMaxChars() SetEditBoxMaxChars ()imaxid

FIG-15.38

GetEditBoxText() GetEditBoxText ()idstring

FIG-15.39

SetEditBoxFocus() SetEditBoxFocus ()id ifocus

408 Hands On AGK BASIC: User Input

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 ifocus is an integer value (0 or 1) which either assigns focus to the edit
 box (1) or removes focus (0).

An edit box can lose focus in several ways: the user presses the Enter key to complete
text entry within the box, the user clicks on another edit box, or a program command
assigns focus to a different edit box.

GetEditBoxHasFocus()

To check if a specific edit box currently has focus, use GetEditBoxHasFocus() (see
FIG-15.40).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

The function returns 1 if the specified edit box has focus, otherwise zero is returned.

GetCurrentEditBox()

To discover the ID of the edit box currently with focus, use GetCurrentEditBox()
(see FIG-15.41).

The function returns the ID of the edit box which currently has focus. If no edit box
has focus, zero is returned.

GetEditBoxChanged()

You can check if an edit box has just lost focus using GetEditBoxChanged() (see
FIG-15.42). The function returns 1 at the moment the edit box loses focus.

where

 id is an integer value giving the ID of the edit box to be checked.

If we assume that when an edit box loses focus its content will have been changed,
then this function is useful for initiating any process you wish to carry out because
of these changes.

The program in FIG-15.43 demonstrates the use of most of the edit box statements
already described by creating a single edit box, setting the maximum characters
allowed to 15, assigning it focus, and when focus is lost, displaying the contents of
the edit box.

FIG-15.40

GetEditBoxHasFocus() GetEditBoxHasFocus ()idinteger

FIG-15.41

GetCurrentEditBox()

GetCurrentEditBox ()integer

FIG-15.42

GetEditBoxChanged() GetEditBoxChanged ()idinteger

Hands On AGK BASIC: User Input 409

SetEditBoxTextSize()

The text within a text box is automatically set to be two units less than the height of
the box and there will be times when this is too large. You can change the height of
the text using the SetEditBoxTextSize() statement (see FIG-15.44).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 fsz is a real value giving the height of the text (percentage or virtual
 pixels, as appropriate).

FIG-15.43

Using Edit Boxes

rem *** Using Edit boxes ***

rem *** Create the edit box ***
CreateEditBox(1)
SetEditBoxSize(1,70,5)
SetEditBoxPosition(1,10,20)
rem *** Set maximum characters to 15 ***
SetEditBoxMaxChars(1,15)
rem *** Assign focus to the edit box ***
SetEditBoxFocus(1,1)
do
 rem *** If the box loses focus, display contents ***
 if GetEditBoxChanged(1) = 1
 Print(“Text entered was : “+GetEditBoxText(1))
 endif
 Sync()
loop

Activity 15.15

Start a new project called EditBox01 and implement the code given in FIG-
15.43.

Test your program. Check what happens when you try to enter more than 15
characters.

Save your project.

FIG-15.44

SetEditBoxTextSize() SetEditBoxTextSize ()fszid

Activity 15.16

Modify EditBox01 so that the text size used within the edit box is set to 3.5.

Modify the code again so that there is no limit on the number of characters that
can be entered in the edit box.

What happens when the edit box has been filled?

Save your project.

410 Hands On AGK BASIC: User Input

SetEditBoxTextColor()

The colour of the text appearing within an edit box can also be specified using the
SetEditBoxTextColor() statement (see FIG-15.45).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 ired is an integer (0 to 255) value giving the intensity of the red
 component of the text’s colour (0: no red, 255: full red).

 igreen is an integer (0 to 255) value giving the intensity of the green
 component of the text’s colour (0: no green, 255: full green).

 iblue is an integer (0 to 255) value giving the intensity of the blue
 component of the text’s colour (0: no blue, 255: full blue).

SetEditBoxFontImage()

To change the font used for the text that appears within the edit box, use
SetEditBoxFontImage() (see FIG-15.46).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 imgId is an integer value giving the ID of the previously loaded image
 containing the required font.

SetEditBoxMultiLine()

An edit box can be modified to accept multiple lines of text - useful if you want the
user to enter details such as their postal address or a lengthy comment.

To allow an edit box to accept multiple lines, use the SetEditBoxMultiLine()
statement (see FIG-15.47).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 iop is an integer value (0 or 1) which specifies if multi-line entry is
 allowed (1) or disabled (0).

A multi-line edit box will move to a new line when the current line is full or the Enter

FIG-15.45

SetEditBoxTextColor() SetEditBoxTextColor ()id ired igreen iblue

FIG-15.46

SetEditBoxFontImage() SetEditBoxFontImage ()id imgId

Details on how to create
a monospaced font image
was described in Chapter
14. Details of how to
create a proportional font
image are covered in
Chapter 16.

FIG-15.47

SetEditBoxMultiLine() SetEditBoxMultiLine ()iopid

Hands On AGK BASIC: User Input 411

key is pressed. Because it accepts the Enter key as part of the input, the edit box will
only lose focus when the user selects an area outside that edit box.

SetEditBoxMaxLines()

Where multi-line entry is allowed, the maximum number of lines the user can enter
can be specified using SetEditBoxMaxLines() (see FIG-15.48).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 imax is an integer value giving the maximum number of lines allowed.
 A value of zero gives unlimited lines.

When using multiple lines, the height of the box and the text within it should be
adjusted accordingly, otherwise the lines of text will scroll within the box.

GetEditBoxLines()

To discover the number of lines of text the user has entered in an edit box, use
GetEditBoxLines() (see FIG-15.49).

where

 id is an integer value giving the ID of the edit box whose lines
 setting is to be found.

An edit box in which no text has been entered will return 0.

SetEditBoxText()

Any realistic form has to have some sort of indication of what the user is expected to
enter in each box. We could achieve this by adding text objects above or to the side
of each edit box. But a quicker way is to include such details within the edit box as
its initial text contents. This can be done using the SetEditBoxText() statement (see
FIG-15.50).

FIG-15.48

SetEditBoxMaxLines() SetEditBoxMaxLines ()imaxid

Activity 15.17

Modify EditBox01 so that a second edit box is added. This box should be sized
as 70x20, positioned at (10,30), and be enabled for a maximum of 7 lines.
Change the text sizes in each edit box to 2.5.

When you press Enter to end text entry in the first edit box, focus does not shift
automatically to the second box. Modify your code so that it does and remove
the code to display the contents of the first box.

Test and save your project.

GetEditBoxLines ()idinteger
FIG-15.49

GetEditBoxLines()

412 Hands On AGK BASIC: User Input

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 svalue is a string giving the initial text to appear within the edit box.

When an edit box gains focus, any text set up by the SetEditBoxText() statement
will remain and new text is added to the end of that existing text. To get rid of the text
just as the user begins to type, we need execute another SetEditBoxText() statement
setting the contents of the box to an empty string.

The program in FIG-15.51 is an extension to the EditBox01 adding initial statements
to each edit box and clearing that text as soon as the box gains focus.

FIG-15.50

SetEditBoxText()

SetEditBoxText ()id svalue

FIG-15.51

Using Edit Box
Descriptors

rem *** Using Edit boxes ***

rem *** Initial text in edit boxes ***
dim initialtext[2] as string =[“”,”Name”,”Postal Address”]

rem *** Create the name edit box ***
CreateEditBox(1)
SetEditBoxSize(1,70,5)
SetEditBoxPosition(1,10,20)
rem *** Set text size ***
SetEditBoxTextSize(1,2.5)

rem *** Set initial text ***
SetEditBoxText(1,initialtext[1])

rem *** Create address edit box ***
CreateEditBox(2)
SetEditBoxSize(2,70,20)
SetEditBoxPosition(2,10,30)
rem *** Max 7 lines ***
SetEditBoxMultiLine(2,1)
SetEditBoxMaxLines(2,7)
rem *** Set text size ***
SetEditBoxTextSize(2,2.5)

rem *** initial text ***
SetEditBoxText(2,initialtext[2])

do
 rem *** Get ID of current edit box ***
 id = GetCurrentEditBox()
 rem *** If an edit box is in focus ***
 if id <> 0
 rem *** If it contains its initial text ***
 if GetEditBoxText(id) = initialtext[id]
 rem *** Remove it ***
 SetEditBoxText(id,””)
 endif
 endif
 Sync()
loop

Hands On AGK BASIC: User Input 413

Various aspects of an edit box, such as the border, background and cursor can be
modified using various commands.

SetEditBoxBackgroundColor()

To change the background colour within an edit box, use the
SetEditBoxBackgroundColor() statement (see FIG-15.52).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 ired is an integer (0 to 255) value giving the intensity of the red
 component of the edit box’s background colour (0: no red,
 255: full red).

 igreen is an integer (0 to 255) value giving the intensity of the green
 component of the edit box’s background colour (0: no green,
 255: full green).

 iblue is an integer (0 to 255) value giving the intensity of the blue
 component of the edit box’s background colour (0: no blue,
 255: full blue).

 itrans is an integer value specifying the opacity of the background
 (0: invisible, 255: opaque).

SetEditBoxBackgroundImage()

If you want to have an image as the background within an edit box, you can use
SetEditBoxBackgroundImage() (see FIG-15.53).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

Activity 15.18

Modify EditBox01 to match the code in FIG-15.51.

Test the program, checking that the descriptive text is removed when an edit
box gains focus.

Modify the code so that, if an edit box loses focus when it contains no user-
entered text, the original description is reinstated.

Test and save your project.

FIG-15.52

SetEditBoxBackground
Color()

SetEditBoxBackgroundColor ()id ired igreen iblue itrans

FIG-15.53

SetEditBoxBackground
Image()

SetEditBoxBackgroundImage ()id imgId

414 Hands On AGK BASIC: User Input

 imgId is an integer value giving the ID of the previously loaded image
 to be used as the edit box background.

To remove an existing image background, call the SetEditBoxBackgroundImage()
statement with the imgId parameter set to zero.

Background colour and image can be combined, if you wish.

SetEditBoxBorderColor()

The edit box’s border can also have its colour modified using the
SetEditBoxBorderColor() statement (see FIG-15.54).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 ired is an integer (0 to 255) value giving the intensity of the red
 component of the edit box’s border colour (0: no red,
 255: full red).

 igreen is an integer (0 to 255) value giving the intensity of the green
 component of the edit box’s border colour (0: no green,
 255: full green).

 iblue is an integer (0 to 255) value giving the intensity of the blue
 component of the edit box’s border colour (0: no blue,
 255: full blue).

 itrans is an integer value specifying the opacity of the border
 (0: invisible, 255: opaque).

SetEditBoxBorderImage()

A second option for modifying the edit box’s border is to use an image. This requires
the statement SetEditBoxBorderImage() (see FIG-15.55).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 imgId is an integer value giving the ID of the previously loaded image
 to be used as the edit box border.

The border colour and image statements can be used in combination. To remove an
existing border image, call SetEditBoxBorderImage() with the imgId parameter set
to zero.

FIG-15.54

SetEditBoxBorderColor()

SetEditBoxBorderColor ()id ired igreen iblue itrans

FIG-15.55

SetEditBoxBorderImage() SetEditBoxBorderImage ()id imgId

Hands On AGK BASIC: User Input 415

SetEditBoxBorderSize()

To change the width of the edit box border, use SetEditBoxBorderSize() (see FIG-
15.56).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 fsize is a real value giving the width of the border (percentage or
 virtual).

SetEditBoxCursorWidth()

The width of the cursor can be set using SetEditBoxCursorWidth() (see FIG-15.57).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 fwidth is a real value giving the width of the border (percentage or
 virtual). The default value is 1.5.

SetEditBoxCursorColor()

To change the colour of the edit box’s cursor use SetEditBoxCursorColor() (see
FIG-15.58).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 ired is an integer (0 to 255) value giving the intensity of the red
 component of the cursor’s colour (0: no red, 255: full red).

 igreen is an integer (0 to 255) value giving the intensity of the green
 component of the cursor’s colour (0: no green, 255: full green).

 iblue is an integer (0 to 255) value giving the intensity of the blue
 component of the cursor’s colour (0: no blue, 255: full blue).

SetEditBoxCursorBlinkTime()

The final attribute of the cursor that can be modified is its blink time. You can do this
using SetEditBoxCursorBlinkTime() (see FIG-15.59).

SetEditBoxBorderSize ()id fsize
FIG-15.56

SetEditBoxBorderSize()

FIG-15.57

SetEditBoxCursorWidth()

SetEditBoxCursorWidth ()id fwidth

FIG-15.58

SetEditBoxCursorColor() SetEditBoxCursorColor ()id ired igreen iblue

416 Hands On AGK BASIC: User Input

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 fsecs is an real value giving the cursor’s blink time in fractions of a
 second. The default time is about 0.5 seconds.

SetEditBoxScissor()

We can crop the part of an edit box which is actually visible on the screen using
SetEditBoxScissor() (see FIG-15.60).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 x1,y1 are real values giving the coordinates of the top-left corner of the
 visible area of the edit box.

 x2,y2 are real values giving the coordinates of the bottom-right corner
 of the visible area of the edit box.

In FIG-15.61 we see an edit box originally created using the code

CreateEditBox(2)
SetEditBoxSize(2,70,20)
SetEditBoxPosition(2,10,30)

and then scissored using the line

 SetEditBoxScissor(2,8,40,45,52)

SetEditBoxActive()

There are occasions when we may want to stop the user entering data in a box. For
example, if a form had a box labelled Maiden Name, we wouldn’t want males or
unmarried females to enter data there.

FIG-15.59

SetEditBoxCursorBlink
Time()

SetEditBoxCursorBlinkTime ()id fsecs

FIG-15.60

SetEditBoxScissor() SetEditBoxScissor ()id x1 y1 x2 y2

Original Edit Box Scissored Edit Box

(45,52)

(8,40)

FIG-15.61

The Effect of Using
SetEditBoxScissor()

Hands On AGK BASIC: User Input 417

To make a visible box unable to gain focus, we can use the SetEditBoxActive()
statement (see FIG-15.62).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 iop is an integer (0 or 1) specifying whether the box is to be inactive
 (0) or active (1).

An inactive box cannot gain focus and hence the user cannot enter new data into that
edit box; an active box can gain focus.

GetEditBoxActive()

The active state of an edit box can be determined using GetEditBoxActive() (see
FIG-15.63).

where

 id is an integer value giving the ID of the edit box to be checked.

The function returns 1 if the specified edit box is active, otherwise zero is returned.

SetEditBoxVisible()

An edit box can be made invisible (or made to reappear) using SetEditBoxVisible()
(see FIG-15.64).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 iv is an integer (0 or 1) specifying whether the box is to be visible
 (1) or invisible (0).

An invisible edit box cannot gain focus.

GetEditBoxVisible()

To check the visibility status of an edit box use GetEditBoxVisible() (see FIG-
15.65).

where

FIG-15.62

SetEditBoxActive() SetEditBoxActive ()id iop

GetEditBoxActive ()idinteger
FIG-15.63

GetEditBoxActive()

SetEditBoxVisible ()id iv

FIG-15.64

SetEditBoxVisible()

GetEditBoxVisible ()idinteger
FIG-15.65

GetEditBoxVisible()

418 Hands On AGK BASIC: User Input

 id is an integer value giving the ID of the edit box to be checked.

The function returns 1 if the specified edit box is visible, otherwise zero is returned.

SetEditBoxDepth()

You may want to adjust the layer on which your edit box appears. By default, edit
boxes, like sprites, are placed on layer 10. To modify the edit box’s layer, use
SetEditBoxDepth() (see FIG-15.66).

where

 id is an integer value giving the ID previously assigned to the edit
 box.

 idepth is an integer value giving the layer on which the edit box is to be
 placed.

DeleteEditBox()

If an edit box is no longer required, it can be deleted using DeleteEditBox() (see
FIG-15.67).

where

 id is an integer value giving the ID of the edit box to be deleted.

GetEditBoxExists()

To check that an edit box of a specified ID exists, use GetEditBoxExists() (see FIG-
15.68).

where

 id is an integer value giving the ID of the edit box to be checked.

The function returns 1 if an edit box of the specified ID exists, otherwise zero is
returned.

Summary
± Use CreateEditBox() to create an edit box.

± Use SetEditBoxSize() to set the dimensions of an edit box.

± Use GetEditBoxWidth() and GetEditBoxHeight() to discover the current
dimensions of an edit box.

± Use SetEditBoxPosition() to position an edit box.

FIG-15.66

SetEditBoxDepth() SetEditBoxDepth ()id idepth

FIG-15.67

DeleteEditBox() DeleteEditBox ()id

FIG-15.68

GetEditBoxExists() GetEditBoxExists ()idinteger

Hands On AGK BASIC: User Input 419

± Use GetEditBoxX() and GetEditBoxY() to find the current position of an edit
box.

± Use SetEditBoxMaxChars() to set a maximum number of characters allowed
within an edit box.

± Use GetEditBoxText() to retrieve the contents of an edit box.

± Use SetEditBoxFocus() to set/remove edit box focus.

± Use GetEditBoxHasFocus() to check if an edit box currently has focus.

± Use GetCurrentEditBox() to discover the ID of any edit box which has focus.

± Use GetEditBoxChanged() to detect if an edit box has just lost focus.

± Use SetEditBoxTextSize() to set the size of the text used within an edit box.

± Use SetEditBoxTextColor() to set the colour of the text used within an edit
box.

± Use SetEditBoxFontImage() to change the text font used within an edit box.

± Use SetEditBoxMultiLine() to allow multiple lines of text to be entered
within an edit box.

± Use SetEditBoxMaxLines() to set the maximum number of lines allowed
within an edit box.

± Use GetEditBoxLines() to discover how many lines of text the user has
entered in a multi-line edit box.

± Use SetEditBoxText() to set the text displayed within an edit box.

± Use SetEditBoxBackgroundColor() to set the colour used as background
within an edit box.

± Use SetEditBoxBackgroundImage() to display an image as an edit box’s
background.

± Background colour and image can be used in combination.

± Use SetEditBoxBorderColor() to set the colour used in the border of an edit
box.

± Use SetEditBoxBorderImage() to display an image in an edit box’s border.

± Use SetEditBoxBorderSize() to set the width of an edit box’s border.

± Use SetEditBoxCursorWidth() to set the width of the cursor which appears
within an edit box.

± Use SetEditBoxCursorColor() to set the colour of the cursor within an edit
box.

± Use SetEditBoxCursorBlinkTime() to set the flashing rate for an edit box’s
cursor.

± Use SetEditBoxScissor() to make only part of an edit box visible.

± Use SetEditBoxActive() to activate/deactivate an edit box.

± Use GetEditBoxActive() to discover if a specified edit box is currently active.

± Use SetEditBoxVisible() to make an edit box visible/invisible.

420 Hands On AGK BASIC: User Input

± Use GetEditBoxVisible() to discover if a specified edit box is currently
visible.

± Use SetEditBoxDepth() to specify which layer an edit box is to be placed on.

± Use DeleteEditBox() to remove an edit box object from a program.

± Use GetEditBoxExists() to check if an edit box with a given ID currently
exists.

Hands On AGK BASIC: User Input 421

Joystick Input

Introduction
AGK can handle a real joystick or create a virtual one. Since most of you will be
writing apps for portable devices, we’ll start with the virtual joystick commands.
These create a joystick-type interface on your screen which consists of two graphical
components: a static outer graphic and a moveable inner graphic (see FIG-15.69).

Virtual Joystick Statements
AddVirtualJoystick()

To create a virtual joystick, we need to execute the AddVirtualJoystick() command,
which also determines the position and size of the joystick. This statement has the
format shown in FIG-15.70.

where:

 id is an integer value giving the ID to be assigned to the joystick.

 x,y are real numbers giving the coordinates at which the joystick is
 to be placed.

 fsize is a real number giving the diameter of the joystick.

SetVirtualJoystickPosition()

Your virtual joystick can be repositioned on the screen using the
SetVirtualJoystickPosition()statement (see FIG-15.71).

FIG-15.69

The Default Virtual
Joystick

Outer
graphic Inner

graphic

FIG-15.70

AddVirtualJoystick()

AddVirtualJoystick (id x fsize)y

Activity 15.19

Start a new project called VirtualJoystick and code main.agc as:

 rem *** Using a virtual joystick ***
 rem *** Add joystick ***
 SetClearColor(255,255,0)
 AddVirtualJoystick(1,50,50,30)
 do
 Sync()
 loop

Test your program by dragging the centre of the joystick to see how it moves.
Save your project.

422 Hands On AGK BASIC: User Input

where:

 id is an integer value giving the ID assigned to the joystick.

 x,y are real numbers giving the coordinates to which the joystick is
 to be moved.

SetVirtualJoystickSize()

Another change that can be made after the joystick has been created is to resize it
using the SetVirtualJoystickSize()statement (see FIG-15.72).

where:

 id is an integer value giving the ID assigned to the joystick.

 fsize is a real number giving the width of the joystick.

SetVirtualJoystickAlpha()

You may have noticed that the outer ring of the joystick is translucent. You can
modify the transparency of both the outer and inner parts of the joystick using the
SetVirtualJoystickAlpha()statement (see FIG-15.73).

where:

 id is an integer value giving the ID assigned to the joystick.

 itrans1 is an integer value giving the transparency setting for the outer
 graphic. This value should be in the range 0 (invisible) to 255
 (opaque).

 itrans2 is an integer value giving the transparency setting for the inner
 graphic. This value should be in the range 0: invisible to 255:
 opaque.

FIG-15.71

SetVirtualJoystickPosition()

SetVirtualJoystickPosition (id)x y

Activity 15.20

Modify VirtualJoystick moving your joystick to the bottom right of the screen.

Test and save project.

FIG-15.72

SetVirtualJoystickSize() SetVirtualJoystickSize (id fsize)

Activity 15.21

Modify VirtualJoystick changing the width of the joystick to 20.

Test and save project.

FIG-15.73

SetVirtualJoystickAlpha() SetVirtualJoystickAlpha (id)itrans1 itrans2

Hands On AGK BASIC: User Input 423

SetVirtualJoystickImageInner() and
SetVirtualJoystickImageOuter()

You can create your own images for the joystick’s inner and outer parts. These must
then be loaded using the standard LoadImage() statement before being assigned to
the joystick using the SetVirtualJoystickImageInner() and
SetVirtualJoystickImageOuter() statements (see FIG-15.74 and FIG-15.75).

where:

 id is an integer value giving the ID assigned to the joystick.

 imgId is an integer giving the ID of the image to be used for the inner
 part of the joystick.

where:

 id is an integer value giving the ID assigned to the joystick.

 imgId is an integer giving the ID of the image to be used for the outer
 part of the joystick.

When creating these two images, bear in mind that the inner image has to take up a
smaller area within its own frame as shown in FIG-15.76.

Activity 15.22

Modify VirtualJoystick so that the inner and outer graphics of the joystick are
opaque.

Test and save project.

FIG-15.74

SetVirtualJoystick-
ImageInner()

SetVirtualJoystickImageInner ()id imgId

FIG-15.75

SetVirtualJoystick-
ImageOuter()

SetVirtualJoystickImageOuter ()id imgId

Activity 15.23

Copy the files JoystickOuter.png and JoystickInner.png from AGKDownloads/
Chapter15 into VirtualJoystick’s media folder.

Use these two images to replace the default ones. Test and save your project.

FIG-15.76

Joystick’s Inner and Outer
Images

The outer
image occupies its

whole frame
The inner

image occupies the
centre of its frame

424 Hands On AGK BASIC: User Input

GetVirtualJoystickX() and GetVirtualJoystickY()

When you move the joystick arm, you affect its offset in the x and y directions from
its central position (see FIG-15.77).

To find the amount of offset applied in the x direction we can use the
GetVirtualJoystickX()statement (see FIG-15.78). The offset in the y direction is
given by GetVirtualJoystickY() (see FIG-15.79).

where:

 id is an integer value giving the ID assigned to the joystick.

The values returned by these functions will lie in the range -1 to 1.

FIG-15.77

Joystick Movement

Joystick Centred:
Xoffset = 0
Yoffset = 0

y=-1

x=+1x=-1

y=+1
Joystick Up:
Xoffset = 0
Yoffset = -0.75

y=-1

x=+1x=-1

y=+1

Joystick to Right:
Xoffset = 0.5
Yoffset = 0

y=-1

x=+1x=-1

y=+1
Joystick Down/Left:
Xoffset = -0.25
Yoffset = 0.70

y=-1

x=+1x=-1

y=+1

GetVirtualJoystickXfloat (id)

FIG-15.78

GetVirtualJoystickX()

GetVirtualJoystickYfloat (id)
FIG-15.79

GetVirtualJoystickY()

Activity 15.24

Modify VirtualJoystick so that it displays the x and y readings from the
joystick. The display should look like that given below:

Hands On AGK BASIC: User Input 425

SetVirtualJoystickDeadZone()

When the joystick arm gets close to the centre position (it doesn’t have to be exactly
at the centre), GetVirtualJoystickX()and GetVirtualJoystickY()both return a
reading of zero. This area close to the centre is known as the dead zone.

In theory, at least, you should be able to get a value of around 0.15 when moving the
joystick before there is a sudden jump to zero. 0.15 is the default value used.

Using the SetVirtualJoystickDeadZone()statement, we can adjust the area of the
dead zone for all virtual joysticks by setting the smallest offset possible before zero
is returned. This statement has the format shown in FIG-15.80.

where:

 fzone is a real number giving the smallest absolute value detectable
 using the joystick. This should be in the range 0 to 1.

The SetVirtualJoystickDeadZone() statement sets the dead zone for all joysticks
being used.

SetVirtualJoystickActive()

You can make a joystick unresponsive to the user (or reactivate it again) using the
SetVirtualJoystickActive() statement (see FIG-15.81).

where:

 id is an integer value giving the ID assigned to the joystick.

 iactive is an integer value (0 or 1). A value of zero makes the specified
 joystick inactive; 1 reactivates it.

Activity 15.25

Rerun VirtualJoystick and find out what lowest absolute value can be achieved
in both the x and y directions before the value zero is displayed.

FIG-15.80

SetVirtualJoystickDeadZone() SetVirtualJoystickDeadZone (fzone)

Activity 15.26

Modify VirtualJoystick so that a value as low as 0.08 can be detected.

Test and save your project.

FIG-15.81

SetVirtualJoystickActive() SetVirtualJoystickActive (id)iactive

Activity 15.27

Modify VirtualJoystick so that the joystick becomes inactive after 5 seconds
and reactivates after 8.

Test and save your project.

426 Hands On AGK BASIC: User Input

In a game environment, you’ll probably want to use a joystick to move an object on
the screen. The program in FIG-15.82 uses the joystick to move the crosshairs of a
weapon sight.

The most important line in the program above is

SetSpritePosition(1,GetSpriteX(1)+GetVirtualJoystickX(1),
 GetSpriteY(1)+GetVirtualJoystickY(1))

which repositions the crosshairs using the values returned by the joystick.

SetVirtualJoystickVisible()

To modify a virtual joystick’s visibility, use SetVirtualJoystickVisible() (see
FIG-15.83).

FIG-15.82

Using a Virtual Joystick

 rem *** Using a virtual joystick ***
 rem *** Load images required ***
 LoadImage(1,”JoystickOuter.png”,0)
 LoadImage(2,”JoystickInner.png”,0)
 LoadImage(3,”Crosshairs.png”,0)
 rem *** Create and position crosshairs sprite ***
 CreateSprite(1,3)
 SetSpriteSize(1,10,-1)
 SetSpritePosition(1,45,45)
 rem *** Add joystick ***
 SetClearColor(255,255,0)
 AddVirtualJoystick(1,50,50,30)
 rem *** Change joystick images ***
 SetVirtualJoystickImageOuter(1,1)
 SetVirtualJoystickImageInner(1,2)
 rem *** Reposition joystick ***
 SetVirtualJoystickPosition(1,85,85)
 rem *** Resize joystick ***
 SetVirtualJoystickSize(1,20)
 rem *** Make joystick opaque ***
 SetVirtualJoystickAlpha(1,255,255)
 do
 rem *** Update crosshairs’ position ***
 SetSpritePosition(1, GetSpriteX(1)+ GetVirtualJoystickX(1),
 GetSpriteY(1)+GetVirtualJoystickY(1))
 Sync()
 loop

Activity 15.28

Create a new project, Crosshairs, which implements the code given in FIG-
15.82. Before testing the program, copy the file AGKDownloads/Chapter15/
Crosshairs.png, JoystickOuter.png and JoystickInner.png into the project’s
media folder. Test the program.

Modify the program so that the crosshairs move only half the distance returned
by the joystick.

FIG-15.83

SetVirtualJoystickVisible() SetVirtualJoystickVisible (id iv),

Hands On AGK BASIC: User Input 427

where:

 id is an integer value giving the ID of the joystick involved.

 iv is an integer value (0 or 1) specifying whether the joystick is to
 be made visible (1) or invisible (0).

GetVirtualJoystickExists()

To check if a joystick with a specific ID currently exists, you can use the
GetVirtualJoystickExists()statement (see FIG-15.84).

where:

 id is an integer value giving the ID to be checked.

The function returns 1 if a joystick of that ID exists, otherwise zero is returned.

DeleteVirtualJoystick()

When a virtual joystick is no longer required, it can be deleted using the
DeleteVirtualJoystick()statement (see FIG-15.85).

where:

 id is an integer value giving the ID of the virtual joystick to be
 deleted.

NOTE: A maximum of four virtual joysticks can exist simultaneously within a
project.

Physical Joysticks
Previously, we looked at the set of commands for creating and handling a virtual
joystick, but AGK also has commands for using a real joystick. Of course, this would
be inappropriate when your game is going to be played on a mobile device; on the
other hand, if you have created your project specifically for a PC or Mac, then you
may want to make use of a physical joystick rather than a virtual one.

But, even when you code assuming the presence of a physical joystick, AGK will
create a virtual joystick replacement for that physical joystick if it is not connected
when the game is executing.

SetJoystickScreenPosition()

Since there is no way of knowing in advance if your program is being run on a
hardware setup that actually has a joystick, it is always wise to execute the
SetJoystickScreenPosition()statement. If no physical joystick or keyboard
(which can be used to emulate a joystick) is connected, this command will create a
virtual joystick on the screen. However, if a real joystick or keyboard is available,
this command will have no effect. The format for SetJoystickScreenPosition()is

FIG-15.84

GetVirtualJoystickExists() GetVirtualJoystickExistsinteger (id)

FIG-15.85

DeleteVirtualJoystick() DeleteVirtualJoystick (id)

428 Hands On AGK BASIC: User Input

given in FIG-15.86.

where:

 x,y are real values giving the coordinates of the virtual joystick.

 rwidth is a real value giving the width of the joystick image.

The virtual joystick created will be assigned an ID of 1. If your program has already
created a virtual joystick (using the AddVirtualJoystick()command) with the same
ID, then that existing virtual joystick will be used.

If a virtual joystick appears, it will use the same default graphics as a virtual joystick
created with the AddVirtualJoystick() statement.

GetJoystickX() and GetJoystickY()

The position of the joystick lever is read using the GetJoystickX() and
GetJoystickY() statements. These statements have the format shown in FIG-15.87
and FIG-15.88.

The values returned by these statements will lie in the range -1 to 1.

If no physical joystick exists, but a physical keyboard is connected, then the keys W
and S will be used to represent up and down movement respectively, while A and D
are used for left and right movement. The W key will return a value in the range 0 to
-1. The value returned increases the longer the key is held down, reaching -1 after the
W key has been held down for about 0.5 seconds. The other keys react in a similar
manner (S: 0 to 1; A: 0 to -1; D: 0 to 1).

FIG-15.86

SetJoystickScreenPosition() SetJoystickScreenPosition (x y), rwidth,

Activity 15.29

Start a new project called Joystick2. Code main.agc as:

 SetJoystickScreenPosition(50,50,20)
 do
 Sync()
 loop

Run the program on your PC without connecting a joystick. Does the virtual
joystick appear on the screen?

Download the app to your tablet or smartphone. Does the virtual joystick
appear?

Save your project.

GetJoystickXfloat ()
FIG-15.87

GetJoystickX()

FIG-15.88

GetJoystickY()

GetJoystickYfloat ()

Hands On AGK BASIC: User Input 429

SetJoystickDeadZone()

The SetJoystickDeadZone() statement sets the dead zone area for the joystick
where the x and y values returned are zero, even though the stick may be shifted
slightly from centre. The default setting for the dead zone is 0.15 in all directions.

This statement has the format shown in FIG-15.89.

where:

 fzone is a real number giving the smallest absolute value detectable
 using the joystick. This should be in the range 0 to 1.

SetButtonScreenPosition()

Most real joysticks have several buttons. These allow players to do things such as
boost speed or fire a weapon.

If the keyboard is being used in place of a real joystick, then the keys Space, E, R, Q,
and Ctrl are used in place of the joystick’s buttons.

When using the joystick commands (as opposed to the virtual joystick commands)
you can ensure that a set of buttons exists on the screen when the player has no
physical joystick and no physical keyboard by using the SetButtonScreenPosition()
statement. If the setup does include a real joystick or keyboard, this command has no
effect. The statement’s format is shown in FIG-15.90.

where:

 ibutton is an integer number identifying the button. This must be in the
 range 1 to 5.

 x,y are real values giving the coordinates of the virtual button.

 rwidth is a real value giving the width of the button image.

GetButtonPressed()

To check if a button on the joystick has been pressed, use the GetButtonPressed()
statement (see FIG-15.91).

where:

FIG-15.89

SetJoystickDeadZone() SetJoystickDeadZone (fzone)

Activity 15.30

Modify Joystick2 so that it controls the movement of the crosshairs (crosshairs.
png) previously used in Activity 15.28.

Test and save your project.

SetButtonScreenPosition (x y),, rwidth,ibutton

FIG-15.90

SetButtonScreenPosition()

FIG-15.91

GetButtonPressed()

GetButtonPressedinteger (ibutton)

430 Hands On AGK BASIC: User Input

 ibutton is an integer number identifying the button to be checked. This
 must be in the range 1 to 5.

The function returns 1 at the moment the button is first pressed; at all other times zero
is returned.

GetButtonReleased()

To check if a joystick has just been released, use the GetButtonReleased() statement
(see FIG-15.92).

where:

 ibutton is an integer number identifying the button to be checked. This
 must be in the range 1 to 5.

The function returns 1 at the moment the button is first released, at all other times
zero is returned.

GetButtonState()

While GetButtonPressed() returns 1 only for an instant as the joystick button is first
pressed, and GetButtonReleased() returns 1 only at the instant the joystick button
is released, GetButtonState() can be used to determine if a joystick button is
currently being held down or is untouched. The statement has the format shown in
FIG-15.93.

where:

 ibutton is an integer value (1 to 5) giving the joystick button to be tested.

The function returns 1 if the specified button is currently being pressed, otherwise
zero is returned.

Summary
± AGK contains instructions to use both virtual and physical joysticks.

± A virtual joystick is constructed from two graphic elements known as the inner
joystick and the outer joystick.

± The inner joystick represents the joystick’s moveable arm; the outer joystick
represents the fixed joystick casing.

± Use AddVirtualJoystick() to create a virtual joystick. This uses the default
graphics.

± Use SetVirtualJoystickPosition() to reposition the virtual joystick on the
screen.

± Use SetVirtualJoystickSize() to resize the virtual joystick.

± Use SetVirtualJoystickAlpha() to adjust the transparency of the virtual

FIG-15.92

GetButtonReleased() GetButtonReleasedinteger (ibutton)

FIG-15.93

GetButtonState()

GetButtonStateinteger (ibutton)

Hands On AGK BASIC: User Input 431

joystick’s image.

± Use SetVirtualJoystickInner() to use a different graphic for the inner part
of the virtual joystick.

± Use SetVirtualJoystickOuter() to use a different graphic for the outer part
of the virtual joystick.

± Use GetVirtualJoystickX() and GetVirtualJoystickY() to determine the
offset from the centre of the joystick arm. Values returned lie in the range -1 to
1.

± A joystick’s dead zone is the area (near the central position) in which the arm
offset is assumed to be zero. By default, the dead zone operates for offsets
whose absolute value is less than 0.15.

± Use SetVirtualJoystickDeadZone() to specify how far the joystick arm
must be moved from its central position before a reading other than zero is
registered.

± Use SetVirtualJoystickActive() to disable/enable the use of the virtual
joystick.

± Use SetVirtualJoystickVisible() to make a joystick visible/invisible.

± Use GetVirtualJoystickExists() to check for the existence of a virtual
joystick with a specified ID.

± Use DeleteVirtualJoystick() to delete a virtual joystick resource.

± Physical joysticks can be used when running the app on a device which allows
for a joystick connection.

± Where no joystick is attached when the app is running, the WSAD keys are
used in place of the joystick lever.

± Use SetJoystickScreenPosition() to specify where a virtual joystick should
be positioned if no physical joystick or keyboard is connected.

± Use GetJoystickX() and GetJoystickY() to determine the offset from the
centre of the joystick arm. The WSAD keys are used where only a keyboard is
attached. Values returned lie in the range -1 to 1.

± Use SetJoystickDeadZone() to specify how far the joystick arm must be
moved from its central position before a reading other than zero is registered.

± If a physical joystick has no buttons, the keys Space, E, R, Q, and Ctrl will be
used as the first five buttons of the joystick.

± Where no joystick buttons are available and no physical keyboard is
connected, then use SetButtonScreenPosition() to create substitute virtual
buttons.

± Use GetButtonPressed() to check if a joystick button has just been pressed.

± Use GetButtonReleased() to check if a joystick button has just been released.

± Use GetButtonState() to determine if a specified joystick button is currently
pressed.

432 Hands On AGK BASIC: User Input

Device Dependent Input

Introduction
Although the main aim of AGK is to create applications that can run on just about
any platform, there are a few statements which only function on specific devices. For
example, there are statements to handle an accelerometer (the hardware that detects
the orientation of your phone or tablet) and to handle real keyboards, mice, or
joysticks. While the accelerometer will not be available on a PC, the keyboard,
mouse and joystick are unlikely to be available on a phone or tablet. By using these
statements, you limit the platforms on which your app will run.

Accelerometer Statements
GetAccelerometerExists()

We can check if the device running your app contains an accelerometer using the
GetAccelerometer() statement (see FIG-15.94).

The function returns 1 if the device running the app contains an accelerometer,
otherwise zero is returned.

The program in FIG-15.95 displays the value returned by the
GetAccelerometerExists() statement.

GetDirectionAngle()

The GetDirectionAngle() returns the angle (0 to 360) at which the device running
the app is being held relative to the inverted portrait orientation (see FIG-15.96).

FIG-15.94

GetAccelerometerExists()

GetAccelerometerExists ()integer

FIG-15.95

Checking for an
Accelerometer

rem *** Using the Accelerometer ***

do
 rem *** Check if accelerometer exists ***
 r = GetAccelerometerExists()
 rem *** Display result ***
 Print(r)
 Sync()
loop

Activity 15.31

Start a new project called Accelerometer and implement the code given in FIG-
15.95.

Run the program on your PC and phone/tablet. What result do you produce
from each device?

Save your project.

Hands On AGK BASIC: User Input 433

The GetDirectionAngle() statement has the format shown in FIG-15.97.

When used on a PC, you can emulate the basic rotation using the arrow keys, although
this only gives results in 90o steps.

GetDirectionX() and GetDirectionY()

The GetDrectionX() and GetDirectionY() statements return (x,y) coordinates
based on the tilt and angle of the device. All values are in the range 0 to 1. On the PC,
the arrow keys can be used to emulate the movement. Typical values are shown in
FIG-15.98.

FIG-15.96

Angle Detection

Rotation
measured about

this line

0o 45o

FIG-15.97

GetDirectionAngle() GetDirectionAngle ()float

Activity 15.32

Modify Accelerometer so that it displays the angle at which your device is
being held.

Run the program on your PC and use the arrow keys to emulate rotation.

Run the program on your phone/tablet. What orientation gives a reading of zero
degrees?

Save your project.

FIG-15.98

Device Coordinates

x= 0, y = 1 x= 1, y = 0 x= 0, y = -1 x= -1, y = 0

434 Hands On AGK BASIC: User Input

The statements’ formats are shown in FIG-15.99.

GetRawAccelX() GetRawAccelY() and GetRawAccelZ()

You can find the orientation in 3D space of any device with an accelerometer. The
statements GetRawAccelX(), GetRawAccelY() and GetRawAccelZ() return values in
the range -1 to 1 based on the orientation of your device. The format for each
statement is given in FIG-15.100.

GetDirectionSpeed()

The GetDirectionSpeed() statement’s name is perhaps a little confusing, since the
output it produces is really a combination of the device’s orientation and the speed at
which it is being moved (shaken). The statement has the format shown in FIG-15.101.

The value returned normally lies between 0 and about 2.9.

FIG-15.99

GetDirectionX()

GetDirectionY()

GetDirectionX ()float

GetDirectionY ()float

Activity 15.33

Modify Accelerometer so that it displays the x and y coordinates of your
device.

Test and save your project.

FIG-15.100

GetRawAccelX()

GetRawAccelY()

GetRawAccelZ()

GetRawAccelX ()float

GetRawAccelY ()float

GetRawAccelZ ()float

Activity 15.34

Modify Accelerometer so that it displays the x, y and z coordinates of your
device. Observe how moving the device relates to the values displayed

Save your project.

FIG-15.101

GetDirectionSpeed()

GetDirectionSpeed ()float

Activity 15.35

Modify Accelerometer so that it displays the “speed” of your device.

Change the code so that the highest value returned is displayed.

Test and save your project.

Hands On AGK BASIC: User Input 435

Mouse Statements
If you are sure your app is going to be run on a device which uses a mouse, many
mouse-specific commands are available. These are listed below.

GetMouseExists()

The GetMouseExists() statement returns 1 if a mouse is attached to the device
running the app, otherwise zero is returned (see FIG-15.102).

GetRawMouseLeftPressed()

The instant the left mouse button is pressed, GetRawMouseLeftPressed() returns 1;
at all other times zero is returned (see FIG-15.103).

GetRawMouseLeftReleased()

The instant the left mouse button is released, GetRawMouseLeftReleased() returns
1; at all other times zero is returned (see FIG-15.104).

GetRawMouseLeftState()

To discover if the left mouse button is currently being pressed, use
GetRawMouseLeftState() which returns 1 when the button is being held down, and
zero at all other times (see FIG-15.105).

GetRawMouseRightPressed()

The instant the right mouse button is pressed, GetRawMouseRightPressed() returns
1; at all other times zero is returned (see FIG-15.106).

GetRawMouseRightReleased()

The instant the right mouse button is released, GetRawMouseRightReleased() returns
1; at all other times zero is returned (see FIG-15.107).

GetRawMouseRightState()

To discover if the right mouse button is currently being pressed, use
GetRawMouseRightState() which returns 1 when the button is being held down, and

FIG-15.102

GetMouseExists() GetMouseExists ()integer

FIG-15.103

GetRawMouseLeft
Pressed()

GetRawMouseLeftPressed ()integer

FIG-15.104

GetRawMouseLeft
Released()

GetRawMouseLeftReleased ()integer

FIG-15.105

GetRawMouseLeftState() GetRawMouseLeftState ()integer

FIG-15.106

GetRawMouseRight
Pressed()

GetRawMouseRightPressed ()integer

FIG-15.107

GetRawMouseRight
Released()

GetRawMouseRightReleased ()integer

436 Hands On AGK BASIC: User Input

zero at all other times (see FIG-15.108).

GetRawMouseX() and GetRawMouseY()

The coordinates of the mouse pointer can be found using the GetRawMouseX() and
GetRawMouseY() statements (see FIG-15.109).

The program in FIG-15.110 makes use of various raw mouse statements, displaying
the state of any mouse found.

SetRawMouseVisible()

You can hide/show the mouse pointer (if one exists) using SetRawMouseVisible()
(see FIG-15.111).

where

 iop is an integer value (0: hide pointer or 1: show pointer).

FIG-15.108

GetRawMouseRightState() GetRawMouseRightState ()integer

FIG-15.109

GetRawMouseX()

GetRawMouseY()

GetRawMouseX ()float

GetRawMouseY ()float

FIG-15.110

Using Raw Mouse
Statements

rem *** Raw Mouse Test ***

rem *** Create text objects ***
CreateText(1,””)
CreateText(2,””)
SetTextPosition(2,0,8)
CreateText(3,””)
SetTextPosition(3,0,16)
do
 rem *** IF mouse exists THEN ***
 if GetMouseExists() = 1
 rem *** Display details ***
 SetTextString(1,”Left mouse button : “+
 Str(GetRawMouseLeftState()))
 SetTextString(2,”Right mouse button : “+
 Str(GetRawMouseRightState()))
 SetTextString(3,”Mouse coordinates : (“+
 Str(GetRawMouseX(),2)+”,”+Str(GetRawMouseY(),2)+”)”)
 else
 rem *** If no mouse, display message ***
 SetTextString(1,”No mouse”)
 endif
 Sync()
loop

Activity 15.36

Start a new project called RawMouse and implement the code in FIG-15.110.

Test the program on your PC and tablet/phone. Save your project.

FIG-15.111

SetRawMouseVisible() SetRawMouseVisible ()iop

Hands On AGK BASIC: User Input 437

Joystick Statements
We have already met statements which can handle real joysticks, but those would
automatically substitute a virtual joystick if the real one is missing. However, a
further set of joystick commands are available which only work when a physical
joystick is present.

CompleteRawJoystickDetection()

It may take a few seconds to detect all of the joysticks attached to a device. The
CompleteRawJoystickDetection() statement should be used to ensure that the
detection process has been completed.

The statement has the format shown in FIG-15.112.

The joysticks must already be connected to the device before this statement is
executed. They will not be detected by the system if added later.

GetRawJoystickExists()

Up to four joysticks can be detected by AGK, each being giving an ID from 1 to 4.
To detect if a joystick of a given ID is present we can use GetRawJoystickExists()
(see FIG-15.113).

where

 id is an integer value (1 to 4) giving the ID to be tested.

GetRawJoystickButtonPressed()

The instant a joystick button is pressed, GetRawJoystickButtonPressed() returns 1;
at all other times zero is returned (see FIG-15.114).

where

 id is an integer value (1 to 4) giving the ID of the joystick.

 ibut is an integer value (1 to 32) giving the number of the button to
 be checked.

GetRawJoystickButtonReleased()

The instant a joystick button is released, GetRawJoystickButtonReleased() returns
1; at all other times zero is returned (see FIG-15.115).

where

FIG-15.112

CompleteRawJoystick
Detection()

CompleteRawJoystickDetection ()

FIG-15.113

GetRawJoystickExists() GetRawJoystickExists ()integer id

FIG-15.114

GetRawJoystickButton
Pressed()

GetRawJoystickButtonPressed ()integer id ibut

FIG-15.115

GetRawJoystickButton
Released()

GetRawJoystickButtonReleased ()integer id ibut

438 Hands On AGK BASIC: User Input

 id is an integer value (1 to 4) giving the ID of the joystick.

 ibut is an integer value (1 to 32) giving the number of the button to
 be checked.

GetRawJoystickButtonState()

To discover if a joystick button is currently being pressed, use
GetRawJoystickButtonState() which returns 1 when the button specified is being
held down, and zero at all other times (see FIG-15.116).

where

 id is an integer value (1 to 4) giving the ID of the joystick.

 ibut is an integer value (1 to 32) giving the number of the button to
 be checked.

GetRawJoystickX(), GetRawJoystickY() and GetRawJoystickZ()

To detect how far a joystick has moved off-centre in the x, y and (where appropriate)
the z directions, we use the statements GetRawJoystickX(), GetRawJoystickY(),
and GetRawJoystickZ() (see FIG-15.117).

where

 id is an integer value (1 to 4) giving the ID of the joystick.

The values returned lie in the range -1 to 1.

Most joysticks will only return x and y readings.

GetRawJoystickRX(), GetRawJoystickRY() and GetRawJoystickRZ()

The angle to which the joystick has been rotated about the x, y and z axes can be
determined using GetRawJoystickRX() , GetRawJoystickRY()and
GetRawJoystickRZ()(see FIG-19.118).

where

FIG-15.116

GetRawJoystickButton
State()

GetRawJoystickButtonState ()integer id ibut

FIG-15.117

GetRawJoystickX()

GetRawJoystickY()

GetRawJoystickZ()

GetRawJoystickX ()float id

GetRawJoystickY ()float id

GetRawJoystickZ ()float id

FIG-15.118

GetRawJoystickRX()

GetRawJoystickRY()

GetRawJoystickRZ()

GetRawJoystickRX ()float id

GetRawJoystickRY ()float id

GetRawJoystickRZ ()float id

Hands On AGK BASIC: User Input 439

 id is an integer value (1 to 4) giving the ID of the joystick.

The values returned lie in the range -1 to 1.

Most joysticks will detect rotation about the z-axis only.

SetRawJoystickDeadZone()

The dead zone is the area near the centred-position of the joystick where the joystick
x and y values are returned as zero. By default this is set to 0.15; as the reading from
GetRawJoystickX() (or GetRawJoystickY()) gets close to ±0.15 and the joystick
heads towards the central position, the value returned will suddenly jump to 0.

You can change the value reached before zero is returned by these functions using
the SetRawJoystickDeadZone() statement (see FIG-15.119).

where

 fv is a real value specifying the absolute minimum value before
 zero is returned when reading the joystick’s x and y positions.

The program in FIG-15.120 gives a live readout for a joystick 1 and button 1.

FIG-15.119

SetRawJoystickDead
Zone()

SetRawJoystickDeadZone ()fv

FIG-15.120

Using Raw Joystick
Statements

rem *** Raw Joystick Test ***

rem *** Create text objects ***
CreateText(1,””)
CreateText(2,””)
SetTextPosition(2,0,8)
CreateText(3,””)
SetTextPosition(3,0,16)

rem *** Test for joysticks ***
CompleteRawJoystickDetection()

do
 rem *** IF joystick exists THEN ***
 if GetRawJoystickExists(1) = 1
 rem *** Display details ***
 SetTextString(1,”Joystick button 1 : “+
 Str(GetRawJoystickButtonState(1,1)))
 SetTextString(2,”Joystick offsets : “+
 Str(GetRawJoystickX(1),2)+”,”+
 Str(GetRawJoystickY(1),2)+”,”+Str(GetRawJoystickZ(1),2))
 SetTextString(3,”Joystick Rotation : “+
 Str(GetRawJoystickRX(1),2)+”,”+Str(GetRawJoystickRY(1),
 2)+”,”+Str(GetRawJoystickRZ(1),2))
 else
 rem *** If no joystick, display message ***
 SetTextString(1,”No joystick”)
 endif
 Sync()
loop

440 Hands On AGK BASIC: User Input

Keyboard Statements
Where a keyboard is attached, the following commands may be used.

GetKeyboardExists()

To check that a keyboard is connected, use the GetKeyboardExists() statement (see
FIG-15.121).

The function returns 1 if a keyboard is connected, otherwise zero is returned.

GetRawKeyPressed()

You can check if a key has just been pressed using the GetRawKeyPressed() statement
(see FIG-15.122).

where

 iascii is the integer ASCII value of the character whose key is to be
 checked.

The function returns 1 the instant the specified key is pressed; at all other times zero
is returned.

For example, the line

 Print(GetRawKeyPressed(65))

would display zero until the “A” key is pressed. At that point the output would change
to 1 - but only for a fraction of a second - before returning to zero again. The value 1
is returned when either the uppercase or lowercase version of the character is entered.

GetRawKeyReleased()

The moment a specified key is released GetRawKeyReleased() returns 1, at all other
times zero is returned. The statement has the format shown in FIG-15.123.

where

 iascii is the integer ASCII value of the character whose key is to be
 checked.

Activity 15.37

Start a new project called RawJoystick and implement the code in FIG-15.120.

Connect a joystick to your PC and test the program. Save your project.

FIG-15.121

GetKeyboardExists() GetKeyboardExists ()integer

FIG-15.122

GetRawKeyPressed() GetRawKeyPressed ()integer iascii

FIG-15.123

GetRawKeyReleased() GetRawKeyReleased ()integer iascii

Hands On AGK BASIC: User Input 441

GetRawKeyState()

When we need to know if a key is currently being pressed down or is untouched, we
can use the GetRawKeyState() statement (see FIG-15.124).

where

 iascii is the integer ASCII value of the character whose key is to be
 checked.

The function returns 1 when the specified key is being held down; zero when the key
is untouched.

GetRawLastKey()

The ASCII code of the last key to be pressed can be discovered using the
GetRawLastKey() statement (see FIG-15.125).

Alphabetic keys always return the ASCII value of the uppercase character; the top
row of keys returns the ASCII for the numeric digit on the key. The program in FIG-
15.126 displays the state of the ‘A’ and also the last key to be pressed.

FIG-15.124

GetRawKeyState()

GetRawKeyState ()integer iascii

FIG-15.125

GetRawLastKey() GetRawLastKey ()integer

FIG-15.126

Using Raw Keyboard
Statements

rem *** Raw Keyboard Test ***

rem *** Create text objects ***
CreateText(1,””)
CreateText(2,””)
SetTextPosition(2,0,8)
do
 rem *** IF keyboard exists THEN ***
 if GetKeyboardExists() = 1
 rem *** Display details ***
 SetTextString(1,”’A’ key state : “+
 Str(GetRawKeyState(65)))
 SetTextString(2,”Last key pressed : “+
 Chr(GetRawLastKey()))
 else
 rem *** If no keyboard, display message ***
 SetTextString(1,”No keyboard”)
 endif
 Sync()
 Sleep(50)
loop

Activity 15.38

Start a new project called RawKeyboard and implement the code in FIG-
15.126.

Check the output when the ‘A’ key is held down. What output is produced
for ‘Last key pressed : ‘ when a non-alphanumeric key is pressed? Save your
project.

442 Hands On AGK BASIC: User Input

Device Identity
Since many of the commands in the previous sections will only execute with the
appropriate hardware setups, it would be useful if we had some way of identifying
exactly which device was running our app.

GetDeviceName()

Although not a complete solution to our problem, the GetDeviceName() statement
can be of some help since it returns a string giving details of the operating system on
which the app is being run. From this we can often identify the device being used.
The statement has the format shown in FIG-15.127.

The string return for some devices is simply the OS name such as “windows” or
“android” but for Apple devices, more detail is supplied. For example, on an iPad 1
the string returned is “ios|iPad1,1”

The program in FIG-15.128 displays the OS details for the app’s platform.

Summary
± Some input statements are device-dependent.

± Using device-dependent statements means your app will not run on all
platforms.

± Use GetAccelerometerExists() to check if the device running the app has an
accelerometer.

± Use GetDirectionAngle() to determine the angle at which a device is being
held.

± Use GetDirectionX() and GetDirectionY() to read the relative position of a
device.

± Use GetRawAccelX(), GetRawAccelY() and GetRawAccelZ() to determine the
device’s rotation about the x, y and z-axes.

FIG-15.127

GetDeviceName() GetDeviceName ()string

FIG-15.128

Check for OS Details

rem *** Device Name ***

rem *** Create text ***
CreateText(1,””)
do
 rem *** Show device name ***
 SetTextString(1,GetDeviceName())
 Sync()
loop

Activity 15.39

Start a new project called DeviceName and implement the code in FIG-15.128.

Test and save your project, checking out the details displayed.

Hands On AGK BASIC: User Input 443

± Use GetDirectionSpeed() to read a value based on the device’s angle and
movement.

± Use GetMouseExists() to check if a mouse is attached to the device.

± Use GetRawMouseLeftPressed() to detect the instant the left mouse button is
pressed.

± Use GetRawMouseLeftReleased() to detect the instant the left mouse button is
released.

± Use GetRawMouseLeftState() to detect the current state of the left mouse
button.

± Use GetRawMouseRightPressed() to detect the instant the right mouse button
is pressed.

± Use GetRawMouseRightReleased() to detect the instant the right mouse button
is released.

± Use GetRawMouseRightState() to detect the current state of the right mouse
button.

± Use GetRawMouseX() and GetRawMouseY() to determine the position of the
mouse pointer.

± Use SetRawMouseVisible() to make the mouse pointer visible/invisible.

± Use CompleteRawJoystickDetection() to ensure a device has finished
checking for joysticks.

± Use GetRawJoystickExists() to check if a joystick of a specified ID exists.

± Use GetRawJoystickButtonPressed() to detect the instant a specific button
on a stated joystick is pressed.

± Use GetRawJoystickButtonReleased() to detect the instant a specific button
on a stated joystick is released.

± Use GetRawJoystickButtonState() to detect the current state of a specific
button on a stated joystick.

± Use GetRawJoystickX(), GetRawJoystickY() and GetRawJoystickZ() to
discover the position of a specified joystick. Usually only x and y are available.

±Use GetRawJoystickRX(), GetRawJoystickRY() and GetRawJoystickRZ() to
discover the rotation of a specified joystick. Usually only z is available.

± Use SetRawJoystickDeadZone() to set the dead zone of a specific joystick.

± Use GetKeyboardExists() to check is a keyboard is currently connected.

± Use GetRawKeyPressed() to detect the instant a specified key is pressed.

± Use GetRawKeyReleased() to detect the instant a specified key is released.

± Use GetRawKeyState() to discover the current state of a specified key.

± Use GetRawLastKey() to discover the ASCII code of the last key pressed.

± Use GetDeviceName() to retrieve details of the OS (and perhaps hardware)
which is running your app.

444 Hands On AGK BASIC: User Input

Solutions
Activity 15.1

Code for UsingVirtualButtons:
rem *** Using Virtual Buttons ***

rem *** Create button ***
AddVirtualButton(1,50,50,10)
do
 Sync()
loop

When the button is selected a different image is displayed to
give the impression of a pressed button.

Activity 15.2
Modified code for UsingVirtualButtons:

rem *** Using Virtual Buttons ***

rem *** Create button ***
AddVirtualButton(1,50,50,10)
rem *** Add text to button ***
SetVirtualButtonText(1,”Yes”)
do
 Sync()

loop

Activity 15.3
Modified code for UsingVirtualButtons:

rem *** Using Virtual Buttons ***

rem *** Create button ***
AddVirtualButton(1,50,50,10)
rem *** Add text to button ***
SetVirtualButtonText(1,”Yes”)
rem *** Colour the button yellow ***
SetVirtualButtonColor(1,255,255,0)
do
 Sync()
loop

Activity 15.4
Modified code for UsingVirtualButtons:

rem *** Using Virtual Buttons ***

rem *** Create button ***
AddVirtualButton(1,50,50,10)
rem *** Add text to button ***
SetVirtualButtonText(1,”Yes”)
rem *** Colour the button yellow ***
SetVirtualButtonColor(1,255,255,0)
rem *** Make button translucent ***
SetVirtualButtonAlpha(1,126)
do
 Sync()
loop

A translucent yellow button on a black background makes the
button appear dull yellow.

Activity 15.5
Modified code for UsingVirtualButtons:

rem *** Using Virtual Buttons ***

rem *** Create button ***
AddVirtualButton(1,50,50,10)
rem *** Add text to button ***
SetVirtualButtonText(1,”Yes”)
rem *** Colour the button yellow ***
SetVirtualButtonColor(1,255,255,0)
rem *** Make button translucent ***
SetVirtualButtonAlpha(1,126)

rem *** record start time ***
time = GetSeconds()
do
 rem *** After 5 seconds, inactivate button ***
 if GetSeconds() - time = 5
 SetVirtualButtonActive(1,0)
 endif
 Sync()
loop

Activity 15.6
No solution required.

Activity 15.7
Modified code for VB2:

rem *** Using Virtual Buttons 2 ***
rem *** Load images used ***
LoadImage(1,”AUp.png”,0)
LoadImage(2,”ADown.png”,0)
rem *** Create button ***
AddVirtualButton(1,50,90,10)
rem *** Add images to button ***
SetVirtualButtonImageUp(1,1)
SetVirtualButtonImageDown(1,2)
rem *** Create text object ***
text$ = “”
CreateText(1,””)
SetTextPosition(1,40,50)
do
 rem *** IF key presses, add an “a” ***
 if GetVirtualButtonPressed(1)=1
 text$=text$+”a”
 SetTextString(1,text$)
 endif
 Sync()
loop

Activity 15.8
No solution required.

Activity 15.9
No solution required.

Activity 15.10
Modified code for KeyboardInput:

StartTextInput()
do
 if GetTextInputCompleted() = 1
 CreateText(1,”Completed”)
 endif
 Sync()
loop

Activity 15.11
Modified code for KeyboardInput:

StartTextInput()
do
 if GetTextInputCompleted() = 1
 CreateText(1,GetTextInput())
 endif
 Sync()
loop

Activity 15.12
Modified code for KeyboardInput:

StartTextInput()
do
 if GetTextInputCompleted() = 1
 if GetTextInputCancelled() = 1
 CreateText(1,”User cancelled”)
 else
 CreateText(1,GetTextInput())
 endif

Hands On AGK BASIC: User Input 445

 endif
 Sync()
loop

Activity 15.13
Modified code for KeyboardInput:

rem *** Record current time ***
time = GetSeconds()
StartTextInput()
do
 if GetTextInputCompleted() = 1
 if GetTextInputCancelled() = 1
 CreateText(1,”User cancelled”)
 else
 CreateText(1,GetTextInput())
 endif
 endif
 rem *** If 8 seconds past ***
 if GetSeconds()-time = 8
 rem *** Stop text input ***
 StopTextInput()
 endif
 Sync()
loop

Activity 15.14
No solution required.

Activity 15.15
No more than 15 characters are accepted from the keyboard.

Activity 15.16
Code for EditBox01:

rem *** Using Edit boxes ***

rem *** Create the edit box ***
CreateEditBox(1)
SetEditBoxSize(1,70,5)
SetEditBoxPosition(1,10,20)

rem *** Set text size ***
SetEditBoxTextSize(1,3.5)

rem *** Assign focus to the edit box ***
SetEditBoxFocus(1,1)
do
 rem *** If the box loses focus, display contents

 if GetEditBoxChanged(1) = 1
 Print(“Text entered was : “
 +GetEditBoxText(1))
 endif
 Sync()
loop

To remove the 15 character restriction, the
SetEditBoxMaxChars() statement has been removed.

When the edit box is filled, the text it contains will scroll
sideways to allow more characters to be entered.

Activity 15.17
Modified code for EditBox01:

rem *** Using Edit boxes ***

rem *** Create the edit box ***
CreateEditBox(1)
SetEditBoxSize(1,70,5)
SetEditBoxPosition(1,10,20)

rem *** Create second edit box ***
CreateEditBox(2)
SetEditBoxSize(2,70,20)

SetEditBoxPosition(2,10,30)
rem *** Max 7 lines ***
SetEditBoxMultiLine(2,1)

SetEditBoxMaxLines(2,7)

rem *** Set text size ***
SetEditBoxTextSize(1,2.5)
SetEditBoxTextSize(2,2.5)
rem *** Assign focus to first edit box ***
SetEditBoxFocus(1,1)
do
 rem *** If first box loses focus, move to second

 if GetEditBoxChanged(1) = 1
 SetEditBoxFocus(2,1)
 endif
 Sync()
loop

Activity 15.18
Modified code for EditBox01:

rem *** Using Edit boxes ***

rem *** Initial text in edit boxes ***
dim initialtext[2] as string =[“”,”Name”,
”Postal Address”]

rem *** Create the name edit box ***
CreateEditBox(1)
SetEditBoxSize(1,70,5)
SetEditBoxPosition(1,10,20)
rem *** Set text size ***
SetEditBoxTextSize(1,2.5)

rem *** Set initial text ***
SetEditBoxText(1,initialtext[1])

rem *** Create address edit box ***
CreateEditBox(2)
SetEditBoxSize(2,70,20)
SetEditBoxPosition(2,10,30)
rem *** Max 7 lines ***
SetEditBoxMultiLine(2,1)
SetEditBoxMaxLines(2,7)
rem *** Set text size ***
SetEditBoxTextSize(2,2.5)

rem *** Set initial text ***
SetEditBoxText(2,initialtext[2])

do
 rem *** Get ID of current edit box ***
 id = GetCurrentEditBox()
 rem *** If an edit box is in focus ***
 if id <> 0
 rem *** If it contains its initial text ***
 if GetEditBoxText(id) = initialtext[id]
 rem *** Remove it ***
 SetEditBoxText(id,””)
 endif
 rem *** Reinstate descriptor in other box if
 empty ***
 if GetEditBoxChanged(3-id)= 1 and
 GetEditBoxText(3-id)=””
 SetEditBoxText(3-id,initialtext[3-id])
 endif
 endif
 Sync()
loop

Since the edit boxes have ID’s 1 and 2, the unfocused box’s
ID can always be calculated as 3 - ID of focused box.

Activity 15.19
No solution required.

Activity 15.20
Modified code for VirtualJoystick:

 rem *** Using a virtual joystick ***
 rem *** Add joystick ***
 SetClearColor(255,255,0)
 AddVirtualJoystick(1,50,50,30)
 rem *** Reposition joystick ***
 SetVirtualJoystickPosition(1,80,80)
 do

446 Hands On AGK BASIC: User Input

 Sync()

 loop

Activity 15.21
Modified code for VirtualJoystick:

 rem *** Using a virtual joystick ***
 rem *** Add joystick ***
 SetClearColor(255,255,0)
 AddVirtualJoystick(1,50,50,30)
 rem *** Reposition joystick ***
 SetVirtualJoystickPosition(1,80,80)
 rem *** Resize joystick ***
 SetVirtualJoystickSize(1,20)
 do
 Sync()

 loop

Activity 15.22
Modified code for VirtualJoystick:

 rem *** Using a virtual joystick ***
 rem *** Add joystick ***
 SetClearColor(255,255,0)
 AddVirtualJoystick(1,50,50,30)
 rem *** Reposition joystick ***
 SetVirtualJoystickPosition(1,80,80)
 rem *** Resize joystick ***
 SetVirtualJoystickSize(1,20)
 rem *** Make joystick opaque ***
 SetVirtualJoystickAlpha(1,255,255)
 do
 Sync()

 loop

Activity 15.23
Modified code for VirtualJoystick:

 rem *** Using a virtual joystick ***
 rem *** Load images required ***
 LoadImage(1,”JoystickOuter.png”,0)
 LoadImage(2,”JoystickInner.png”,0)
 rem *** Add joystick ***
 SetClearColor(255,255,0)
 AddVirtualJoystick(1,50,50,30)
 rem *** Change joystick images ***
 SetVirtualJoystickImageOuter(1,1)
 SetVirtualJoystickImageInner(1,2)
 rem *** Reposition joystick ***
 SetVirtualJoystickPosition(1,80,80)
 rem *** Resize joystick ***
 SetVirtualJoystickSize(1,20)
 rem *** Make joystick opaque ***
 SetVirtualJoystickAlpha(1,255,255)
 do
 Sync()
 loop

Activity 15.24
Modified code for VirtualJoystick:

 rem *** Using a virtual joystick ***
 rem *** Load images required ***
 LoadImage(1,”JoystickOuter.png”,0)
 LoadImage(2,”JoystickInner.png”,0)
 rem *** Create Text objects ***
 CreateText(1,”X: “)
 SetTextColor(1,0,0,0,255)
 CreateText(2,”Y: “)
 SetTextColor(2,0,0,0,255)
 rem *** Position text ***
 SetTextPosition(1,5,5)
 SetTextPosition(2,5,10)
 rem *** Add joystick ***
 SetClearColor(255,255,0)
 AddVirtualJoystick(1,50,50,30)
 rem *** Change joystick images ***
 SetVirtualJoystickImageOuter(1,1)
 SetVirtualJoystickImageInner(1,2)
 rem *** Reposition joystick ***
 SetVirtualJoystickPosition(1,80,80)
 rem *** Resize joystick ***

 SetVirtualJoystickSize(1,20)
 rem *** Make joystick opaque ***
 SetVirtualJoystickAlpha(1,255,255)
 do
 rem *** Update display ***
 SetTextString(1,”X: “+
 Str(GetVirtualJoystickX(1)))
 SetTextString(2,”Y: “+
 Str(GetVirtualJoystickY(1)))
 Sync()

 loop

Activity 15.25
The lowest absolute value in both the x and y directions is
0.1667.

Activity 15.26
To adjust the dead zone, add the lines

rem *** Adjust dead zone to 0.08 along both axes ***
SetVirtualJoystickDeadZone(0.08)

immediately after
AddVirtualJoystick(1,50,50,30)

Activity 15.27
Modified code for VirtualJoystick:

rem *** Using a virtual joystick ***
rem *** Load images required ***
LoadImage(1,”JoystickOuter.png”)
LoadImage(2,”JoystickInner.png”)
rem *** Create Text objects ***
CreateText(1,”X: “)
SetTextColor(1,0,0,0,255)
CreateText(2,”Y: “)
SetTextColor(2,0,0,0,255)
rem *** Position text ***
SetTextPosition(1,5,5)
SetTextPosition(2,5,10)
rem *** Add joystick ***
SetClearColor(255,255,0)
AddVirtualJoystick(1,50,50,30)
rem *** Adjust dead zone to 0.8 along both axes ***
SetVirtualJoystickDeadZone(0.08)
rem *** Change joystick images ***
SetVirtualJoystickImageOuter(1,1)
SetVirtualJoystickImageInner(1,2)
rem *** Reposition joystick ***
SetVirtualJoystickPosition(1,80,80)
rem *** Resize joystick ***
SetVirtualJoystickSize(1,20)
rem *** Make joystick opaque ***
SetVirtualJoystickAlpha(1,255,255)
rem *** set joystick state ***
joystickactive = 1
rem *** start timer ***
time = Timer()
do
 if Timer() - time >= 5 and joystickactive = 1
 SetVirtualJoystickActive(1,0)
 joystickactive = 0
 elseif Timer() - time >= 8 and joystickactive = 0
 SetVirtualJoystickActive(1,1)
 joystickactive = 2
 endif
 rem *** Update display ***
 SetTextString(1,”X: “+Str(GetVirtualJoystickX(1)))
 SetTextString(2,”Y: “+Str(GetVirtualJoystickY(1)))
 Sync()
loop

Activity 15.28
To halve the effect of the joystick on the movement of the
crosshairs, all that is required is that the line

SetSpritePosition(1,GetSpriteX(1)+
GetVirtualJoystickX(1), GetSpriteY(1)+
GetVirtualJoystickY(1))

be changed to

Hands On AGK BASIC: User Input 447

SetSpritePosition(1, GetSpriteX(1)+
GetVirtualJoystickX(1)/2, GetSpriteY(1)+
GetVirtualJoystickY(1)/2)

Activity 15.29
Since you have a keyboard connected to the PC, that will be
used as a substitute for the joystick and so no virtual joystick
will appear.
When you run the app on your tablet, a virtual joystick will
appear at the centre of the screen.

Activity 15.30
Modified code for Joystick2:

rem *** Control crosshairs using joystick ***

rem *** Set screen to grey ***
SetClearColor(120,120,120)
Sync()
rem *** Load image ***
LoadImage(1,”Crosshairs.png”)
rem *** Create and position crosshairs sprite ***
CreateSprite(1,1)
SetSpriteSize(1,10,-1)
SetSpritePosition(1,45,45)
rem *** Allow for virtual joystick if no physical
rem *** joystick or keyboard available ***
SetJoystickScreenPosition(80,80,20)
do
 rem *** Update crosshairs’ position ***
 SetSpritePosition(1, GetSpriteX(1)+
 GetJoystickX()/2, GetSpriteY(1)+GetJoystickY()/2)
 Sync()

loop

Activity 15.31
A PC will display the value zero since no accelerometer will
be present. Most mobile devices should display 1.

Activity 15.32
Modified code for Accelerometer:

rem *** Using the Accelerometer ***
do
 rem *** Get angle***
 r# = GetDirectionAngle()
 rem *** Display result ***
 Print(r#)
 Sync()
loop

On the iPad and ASUS Transformer, the device must be in
inverted portrait mode to return a reading of zero.

Activity 15.33
Modified code for Accelerometer:

rem *** Using the Accelerometer ***
do
 rem *** Get coordinates ***
 x# = GetDirectionX()
 y# = GetDirectionY()
 rem *** Display result ***
 Print(“X: “+Str(x#,2)+”,”+Str(y#,2))
 Sync()
loop

Activity 15.34
Modified code for Accelerometer:

rem *** Using the Accelerometer ***
do
 rem *** Get coordinates ***
 x# = GetRawAccelX()
 y# = GetRawAccelY()
 z# = GetRawAccelZ()
 rem *** Display result ***

 Print(“X: “+Str(x#,2)+” Y: “+Str(y#,2)+” Z: “
 +Str(z#,2))
 Sync()

loop

Activity 15.35
Modified code for Accelerometer:

rem *** Using the Accelerometer ***
do
 rem *** Get speed ***
 speed# = GetDirectionSpeed()
 rem *** Display results ***
 Print(“Speed : “+Str(speed#,2))
 Sync()
loop

Modified code for Accelerometer (highest speed):
rem *** Using the Accelerometer ***
highest# = 0
do
 rem *** Get speed ***
 speed# = GetDirectionSpeed()
 if speed# > highest#
 highest# = speed#
 endif
 rem *** Display result ***
 Print(“Highest speed : “+Str(highest#,2))
 Sync()

loop

Activity 15.36
No solution required.

Activity 15.37
No solution required.

Activity 15.38
Some non-alphanumeric keys display no value (this is
because the ASCII code returned is not in the range (33 to
126); others will return characters that do not match the key
pressed.

Activity 15.39
No solution required.

448 Hands On AGK BASIC: User Input

Hands On AGK BASIC: Images 449

In this Chapter:

T Determining the Dimensions of an Image

T Atlas Texture Images

T The ImageJoiner Utility

T Loading Proportional Fonts

T Capturing an Image from the Screen

T Selecting Part of an Image

T User Image Selection

T Capturing an Image from the Camera

T Using Image Filters and Mipmaps

Images

450 Hands On AGK BASIC: Images

Images

Introduction
In Chapter 7 we covered several commands from various resource types such as
images and sprites. In this chapter we are going to cover the remaining image and
sprite commands as well as look at a few more techniques which make use of these
resources.

Review
We’ll start by listing the image commands covered back in Chapter 7. These were:

LoadImage(id,sfile) id is the ID to be assigned to the image.
 sfile is the name of the file containing the image.

LoadImage(id,sfile,ialpha) id is the ID to be assigned to the image.
 sfile is the name of the file containing the image.
 ialpha is 0 to use image transparency and 1
 to make black pixels invisible.

int LoadImage(sfile) sfile is the name of the image file. The ID assigned
 is returned by the function.

int LoadImage(sfile,ialpha) sfile is the name of the file containing the image.
 ialpha is 0 to use image transparency and 1
 to make black pixels invisible. The function
 returns the ID assigned.

DeleteImage(id) id is the ID of the image to be deleted.

Further Image Statements
GetImageExists()

Although an image may be successfully loaded, we cannot always be sure that it still
exists at some point later in the program, since it may have been deleted using the
DeleteImage()statement. To check that an image of a specified ID still exists, the
GetImageExists() statement can be used. This statement has the format shown in
FIG-16.1.

where:

 id is an integer value giving the ID that was assigned to the image
 by the LoadImage() statement.

The statement returns 1 if the image was successfully loaded, otherwise zero is
returned.

FIG-16.1

GetImageExists()

()idinteger GetImageExists

The term int is used here
as a shortened form of
the word integer.

Hands On AGK BASIC: Images 451

GetImageWidth()

We can discover the width of a loaded image using the GetImageWidth() statement
which has the format shown in FIG-16.2.

 where:

 id is an integer value giving the ID that was assigned to the image.

The statement returns the width of the image in pixels.

GetImageHeight()

The height of an image can be determined using the GetImageHeight() statement
which has the format shown in FIG-16.3.

 where:

 id is an integer value giving the ID that was assigned to the image.

The function returns the height of the image in pixels.

LoadSubImage()

Some programs may make use of a very large number of images. When this is true,
one way of simplifying the situation is to combine all of these images into one large
composite image and then have the program split the large image into the original
smaller ones from which it was constructed. This type of image is known as an atlas
texture image and the images held within it as subimages.

The atlas image itself can be created using a paint package such as Photoshop where
the separate images can be pasted onto a single canvas.

In addition to the atlas texture image, a separate text file is required. This text file
contains the details of the subimages within the atlas image.

For each subimage in the atlas file, the following details are included:

FIG-16.2

GetImageWidth()

()idinteger GetImageWidth

FIG-16.3

GetImageHeight()

()idinteger GetImageHeight

Activity 16.1

Start a new project called ImageProperties. Compile the default code and copy
the file HandsOnAGK/Chapter16/Size.png into the project’s media folder.

Code main.agc so that the image Size.png is loaded and this is followed by a
50% chance of the image being deleted.

If the image still exists, display the message Image found as well as the
dimensions of the image. Have the code display Image not found if the image
no longer exists.

Save your project.

452 Hands On AGK BASIC: Images

± name assigned to the subimage

± the coordinates of the top left corner of the subimage (in pixels)

± the width and height of the subimage (in pixels)

The text file contains one line of data for each subimage and the data elements within
a line are separated by colons.

The text file’s name must be of a specific format, starting with the name of the atlas
file followed by subimages.txt.

The atlas image shown in FIG-16.4 is made up of three separate images and is called
CompositeImage.png.

The accompanying text file must therefore be called:

CompositeImage subimages.txt

Note the required space between the two parts of the filename.

The contents of the text file are:

orchid.png:0:0:523:800
bunny.png:523:0:255:589
rock.png:523:589:255:211

The first line tells us that the atlas file contains a subimage which is to be called
orchid.png and that this subimage’s top left corner is at position (0,0) within the atlas
image. The subimage is 523 pixels wide and 800 pixels high.

FIG-16.4

An Atlas Texture Image

Hands On AGK BASIC: Images 453

From this example we can see the required format for each line of the text file (see
FIG-16.5).

where:

 filename is a string giving the filename to be assigned to the subimage.

 x,y are integer values giving the coordinates (in pixels) of the top
 left-corner of the subimage.

 width is an integer value giving the width of the subimage in pixels.

 height is an integer value giving the height of the subimage in pixels.

The contents of the text file should be created using a simple text editor such as
Microsoft’s Notepad. Using a standard word processor to create the file will result in
unwanted (but hidden) characters being added to your text.

The text file containing this information must be in the project’s media folder and
conform to the required naming rules (see FIG-16.6).

where:

 atlas image filename
 is a string giving the name of the file containing the atlas
 texture image. The atlas image file extension is not included in
 this string. For example, if the atlas image file is called
 ImageCollection.png, this string would be ImageCollection

Once the atlas image and the corresponding text file have been created and copied
into the project’s media folder, the atlas image is loaded using a standard LoadImage()
statement.

We can then extract the subimages using AGK BASIC’s LoadSubImage() statement
This statement has the format shown in FIG-16.7.

where:

 id is an integer value giving the ID to be assigned to the subimage
 being extracted from the atlas image.

 idAtlas is an integer value giving the ID assigned to the atlas image
 when it was loaded.

 sfile is a string giving the name of the file to be extracted from the
 atlas file. This name must appear within the subimages text file

FIG-16.5

Text File Line Format

: xfilename : y : width : height

FIG-16.6

Text File Name Format

atlas image filename subimage.txt

FIG-16.7

LoadSubImage()

()IdAtlas sfileinteger LoadSubImage

(LoadSubImage

Version 1

Version 2

,

id ,)IdAtlas sfile,

454 Hands On AGK BASIC: Images

 which accompanies the atlas file.

FIG-16.8 shows the main steps involved in extracting the subimages from
CompositeImage.png.

A complete program for loading and displaying the images is shown in FIG-16.9.

FIG-16.8

Loading the SubImages

After creating the atlas image and
corresponding text file, we start a new
AGK project and copy the two files to
the project’s media folder.

In the program code we start by loading
the atlas image file using a standard
LoadImage() statement.

Now we extract the subimages from
the atlas file using LoadSubImage()
statements.

The subimages can then be treated
as standard images and assigned to
sprites in order to display them on the
screen.

orchid.png:0:0:523:800
bunny.png:800:0:255:589
rock.png:800:589:255:211

atlasimageID =
LoadImage("CompositeImage.png")

LoadSubImage(1,atlasimageId,"orchid.png")
LoadSubImage(2,atlasimageId,"bunny.png")
LoadSubImage(3,atlasimageID,"rock.png")

CreateSprite(1,1)
CreateSprite(2,2)
CreateSprite(3,3)

CompositeImage.png

CompositeImage
subimages.txt

FIG-16.9

Using an Atlas Texture
Image

rem *** Load atlas image ***
atlasimageID = LoadImage(“CompositeImage.png”)
rem *** Load subimages ***
LoadSubImage(1,atlasimageId,”orchid.png”)
LoadSubImage(2,atlasimageId,”bunny.png”)
LoadSubImage(3,atlasimageID,”rock.png”)
rem *** Assign subimages to sprites ***
CreateSprite(1,1)
CreateSprite(2,2)
CreateSprite(3,3)
rem *** Resize and position sprites ***
SetSpriteSize(1,62,-1)
SetSpriteSize(2,25,-1)
SetSpriteSize(3,25,-1)
SetSpritePosition(2,70,0)
SetSpritePosition(3,70,70)
Sync()
do
loop

Hands On AGK BASIC: Images 455

The ImageJoiner Utility
Since it can be quite time-consuming creating the atlas image and accompanying text
file, the Game Creators have thoughtfully created a utility called ImageJoiner to do
most of the work for you.

ImageJoiner is included in the AGK package. Just find the folder in which AGK has
been installed (probably C:/Program Files/The Game Creators/AGK). In a subfolder
named Utilities you will find the ImageJoiner.exe. Click on this to start up the utility.

But before you start the utility, you need to gather together all the images you want
to have included in the atlas image into a single folder. Once you’ve done this, you
are ready to run the utility. The steps involved in running the utility are shown in
FIG-16.10.

Notice that the composite image created contains a good deal of wasted white space.
You can minimise this by taking the time to calculate the required width and height
values for the atlas file from the dimensions of the images to be included.

FIG-16.10

Using the ImageJoiner
Utility

The images that are to be placed in
the atlas file are first gathered into a
folder which should contain no other
files.

Next the ImageJoiner program can be
executed and the folder containing the
images is selected.

Now for the difficult bit, you have to
give the dimensions of the atlas image,
though it doesn’t matter if you make it
too large.

The software will then create the atlas
image (in png format) and the
corresponding text file in a subfolder
called result.

1200

1200

Face.jpg:0:0:486:576
Dandelion.jpg:0:576:400:379
Birds.jpg:486:0:600:239
Robin.jpg:486:239:330:432

Activity 16.2

Start a new project called UsingAtlasImages. Compile the default code
and copy the files HandsOnAGK/Chapter16/CompositeImage.png and
CompositeImage subimages.txt into the project’s media folder.

Modify main.agc’s code to match that given in FIG-16.9. Test and save your
project.

456 Hands On AGK BASIC: Images

Atlas Texture Files and Proportional Fonts
As we saw at the end of Chapter 14, it is an atlas texture file that is employed when
specifying a new proportional font for use with the Print() statement and text
objects.

It is not absolutely necessary to create an image of every possible character from
ASCII 32 to ASCII 127. The image for any character that is omitted will be
automatically replaced by the space character image.

In this simple example, the atlas file contains only five characters (ABWI and space).
The atlas file and accompanying text file are shown in FIG-16.11.

Note that the filenames within the text file consist of the ASCII value for the character
represented (i.e. 65 for a capital A) but not the .png file extension. So, if you have
used ImageJoiner to create the atlas image, you will have to edit the text file to
remove all of the .png extensions that will have automatically been included in the
filenames.

The program in FIG-16.12 makes use of this image to create a new default font.

Activity 16.3

Create a new subfolder, UsingImageJoiner, within your HandsOnAGK folder.

Copy to this folder the downloaded files Birds.jpg, Dandelion.jpg, Face.jpg
and Robin.jpg from HandsOnAGK/Chapter16.

Examine the dimensions of the four images and determine an optimal size for
the composite image.

Run ImageJoiner and use it to create a composite image from the four images
named above. Examine the resulting composite image and subimages.txt file.

Rename the two files Act16Images.png and Act16Images subimages.txt.

FIG-16.11

Proportional Font Files

The actual image must
use white text on a
transparent background.

87:0:0:98:75
66:98:0:73:75
65:171:0:73:75
32:0:75:73:75
73:0:150:25:75

texture0.png texture0 subimages.txt

FIG-16.12

Using a Proportional Font

rem *** Using a proportional font ***
rem *** Load the atlas image ***
LoadImage(1,”Texture0.png”)
rem *** Set as the default font ***
SetTextDefaultFontImage(1)
rem *** Display some text ***
CreateText(1,”ABXWI”)
SetTextSize(1,10)
Sync()
do
loop

Hands On AGK BASIC: Images 457

Any character not given in the atlas file is replaced by the space character, so the
output will produce a space between the B and W characters.

Manipulating Images
CopyImage()

We can copy part of an existing image and place it in a new image using the
CopyImage() statement (see FIG-16.13).

where

 id is an integer value giving the ID to be assigned to the new image.

 imgId is an integer value giving the ID of the existing image, part of
 which is to be copied.

 x,y are integer values giving the coordinates of the top-left corner of
 the area to be copied. This is given in pixels.

 width is an integer value giving the width of the area to be copied (in
 pixels).

 height is an integer value giving the height of the area to be copied (in
 pixels).

For example, the image in FIG-16.14 shows the Waverley paddle steamer.

Activity 16.4

Start a new project called ProportionalFont. Copy the files texture0.png and
texture0 subimages.txt into the media folder, then implement the text given in
FIG-16.12.

FIG-16.13

CopyImage()

(integer

(

Version 1

Version 2

id)imgId width heightx yCopyImage

CopyImage)imgId width heightx y

FIG-16.14

Specifying a Section of
an Image

Waverley.jpg

146

234

(698,650)

458 Hands On AGK BASIC: Images

We could copy and display the area showing the boy in the water using the program
given in FIG-16.15.

GetImage()

If you want to copy part of screen rather than part of an image, this can be achieved
using the GetImage()statement which will turn the captured area into another image.
The statement’s format is shown in FIG-16.16.

where

 id is an integer value giving the ID to be assigned to the new image.

 x,y are real values giving the coordinates of the top-left corner of the
 area to be copied. Use percentage or virtual pixels as appropriate.

 width is an integer value giving the width of the area to be copied (in
 percentage or virtual pixels).

 height is an integer value giving the height of the area to be copied (in
 percentage or virtual pixels).

For example, the line

 GetImage(2,0,0,100,50)

FIG-16.15

Using CopyImage()

Coordinates and sizes
can be obtained from
paint programs such as
Photoshop.

Activity 16.5

Start a new project called CopyImageSection and implement the code given in
FIG-16.15. Copy AGKDownloads/Chapter16/Waverley.jpg to the media folder.

Test and save your project.

FIG-16.16

GetImage()

(integer

(

Version 1

Version 2

id)width heightx yGetImage

GetImage)width heightx y

rem *** Copy Part of an Image ***

rem *** Load original image ***
LoadImage(1,”Waverley.jpg”)

rem *** Copy a section of the image ***
CopyImage(2,1,698,650,146,234)

rem *** Assigned copied area to a sprite ***
CreateSprite(1,2)
SetSpriteSize(1,50,-1)

do
 Sync()
loop

Hands On AGK BASIC: Images 459

would capture the top half of the screen and store that as an image with its ID set to
2.

SaveImage()

Since an image can be created from part of another image or from capturing screen
output, you may wish to save such an image to a file. This can be achieved using
SaveImage() (see FIG-16.17).

where

 id is an integer value giving the ID of the image to be saved.

 sfile is a string giving the name to be used when saving the file. The
 string may include path information relative to the current folder.

GetImageFilename()

The name of the file from which an image originated can be discovered using
GetImageFilename() (see FIG-16.18).

where

 id is an integer value giving the ID of the image.

The statement returns the name of the file in which the specified image is stored.

PrintImage()

If the device running your app has access to a printer, then you can print an image
using PrintImage() (see FIG-16.19).

where

 id is an integer value giving the ID of the image to be printed.

 fsize is a real number (0 to 100) giving the size of the image on the
 paper. 100 represents maximum size.

SetImageMask()

Images normally have four channels. Three of these channels represent the primary
colours that make up the image: red, green and blue. The final channel is the
transparency channel (also known as the alpha channel).

You can copy a channel from one image to another using the SetImageMask()
statement (see FIG-16.20).

FIG-16.17

SaveImage() ()idSaveImage sfile

FIG-16.18

GetImageFileName()

()idGetImageFilenamestring

FIG-16.19

PrintImage()

()idPrintImage fsize

460 Hands On AGK BASIC: Images

where

 id is an integer value giving the ID of the image to be modified.

 imgId is an integer value giving the ID of the image from which a
 channel is being copied.

 idch is an integer value (1 to 4) giving the channel to be replaced in
 the original image.

 isch is an integer value (1 to 4) giving the channel to be copied.

 xoffset is an integer value giving the horizontal offset of the new channel.

 yoffset is an integer value giving the vertical offset of the new channel.

Perhaps the most obvious use of this statement is to copy an alpha channel from one
image to another.

Starting with two images (see FIG-16.21) the program in FIG-16.22 uses the alpha
channel of the second image to create a jigsaw piece.

FIG-16.20 SetImageMask()

()idSetImageMask imgId imgId idch isch xoff yoff

FIG-16.21

Images Used for Masking Image 1 Image 2 The white

area of image 2 is
transparent

rem *** Copy a Channel ***

rem *** Load original images ***
LoadImage(1,”Clematispiece.png”)
LoadImage(2,”Jigsawpiece.png”)
rem *** Create normal sprite ***
CreateSprite(1,1)
SetSpriteSize(1,25,-1)
SetSpritePosition(1,5,5)
Sync()

rem *** wait 1 second ***
Sleep(1000)

rem *** Copy the alpha channel ***
rem *** from image 2 to image 1 ***
SetImageMask(1,2,4,4,0,0)
do
 Sync()
loop

FIG-16.22

Using SetImageMask()

Hands On AGK BASIC: Images 461

Image Selection from Storage
ShowChooseImageScreen()

Images already stored within a device’s memory can be selected. This is done using
the ShowChooseImageScreen()statement (see FIG-16.23).

Depending on the device being used, the app may continue to run (just as it does
when a sound file is being played) or it may halt while an image is selected.

The function returns 1 if the photo store was successfully opened, otherwise zero is
returned.

Under Microsoft Windows, the folder User/Pictures is opened.

IsChoosingImage()

To discover if the user is currently in the process of selecting an image (initiated by
ShowChooseImageScreen()) use IsChoosingImage() (see FIG-16.24).

The function returns 1 while the selection process is continuing, otherwise zero is
returned.

GetChosenImage()

Once the user has selected an image, we can discover the ID assigned to that image
using GetChosenImage() (see FIG-16.25).

From this point we can save the image to a file in the app’s folder or assign it to a
sprite.

The program in FIG-16.26 demonstrates the use of the previous three statements by
allowing the user to select an image from storage and then displaying it in a sprite.

Activity 16.6

Start a new project called JigsawPiece and implement the code given in FIG-
16.22. Copy files Clematis.png and Jigsawpiece.png to the media folder.

Test and save your project.

FIG-16.23

ShowChooseImageScreen() ShowChooseImageScreen ()integer

FIG-16.24

IsChoosingImage()

IsChoosingImage ()integer

FIG-16.25

GetChosenImage()

GetChosenImage ()integer

FIG-16.26

Selecting an Image

rem *** Select an Image from a Folder ***

rem *** If image folder found ***
if ShowChooseImageScreen() = 1
 rem *** Wait until an image has been selected ***

462 Hands On AGK BASIC: Images

Using a Device’s Camera
Rather than select an existing image, AGK can capture a from your device’s built-in
camera. The following commands are used to handle this situation.

GetCameraExists()

To check if the device running your app has a camera, use GetCameraExists() (see
FIG-16.27).

The function returns 1 if a camera is available, otherwise zero is returned.

ShowImageCaptureScreen()

You can use the built-in camera to capture a photograph using the
ShowImageCaptureScreen() statement (see FIG-16.28).

If the device does not contain a camera or the camera is not operational, this function
returns 0, otherwise 1 is returned.

Depending on the device being used, the app may continue to run while the image is
captured or it may halt during this time.

FIG-16.26
(continued)

Selecting an Image

 rem *** Wait until an image has been selected ***
 repeat
 Print(“Image being selected”)
 Sync()
 until IsChoosingImage() = 0

 rem *** Get ID assigned to selected image ***
 id = GetChosenImage()

 rem *** Display image in a sprite ***
 CreateSprite(1,id)
 SetSpriteSize(1,100,-1)
else
 rem *** Image folder not found ***
 Print(“Image folder not found”)
endif
Sync()
Sleep(2000)
do
 Sync()
loop

Activity 16.7

Start a new project called SelectImage and implement the code given in FIG-
16.26. Test and save your project.

FIG-16.27

GetCameraExists()

GetCameraExists ()integer

FIG-16.28

ShowImageCaptureScreen() ShowImageCaptureScreen ()integer

Hands On AGK BASIC: Images 463

IsCapturingImage()

To check if the app is current performing an image capture from the camera, use
IsCapturingImage(). This function returns 1 if ShowImageCaptureScreen()is
currently being executed, otherwise zero is returned. The statement has the format
shown in FIG-16.29).

GetCapturedImage()

Once the user has captured an image, the ID assigned to the image is returned by the
function GetCapturedImage() (see FIG-16.30).

If the user cancels the image capture operation, this function returns zero.

The code required to capture and display an image, is very similar to the earlier
program which selected an existing image. The new program is shown in FIG-16.31.

FIG-16.29

IsCapturingImage()

IsCapturingImage ()integer

FIG-16.30

GetCapturedImage()

GetCapturedImage ()integer

FIG-16.31

Using a Camera

rem *** Get an Image from the Built-In Camera ***

rem *** If camera exists ***
if GetCameraExists() = 1
 rem *** If camera software operational ***
 if ShowImageCaptureScreen() = 1
 rem *** Wait until an image has been captured ***
 repeat
 until IsCapturingImage() = 0

 rem *** Get ID assigned to selected image ***
 id = GetCapturedImage()

 rem *** Display image in a sprite ***
 CreateSprite(1,id)
 SetSpriteSize(1,100,-1)
 else
 rem *** Camera not operational ***
 Print(“Image folder not found”)
 endif
else
 rem *** No camera exists ***
 Print(“No camera detected”)
endif
Sync()
Sleep(2000)
do
 Sync()
loop

Activity 16.8

Start a new project called CaptureImage and implement the code given in FIG-
16.31. Test your program. Modify the program to save the captured image to a
file called saved.jpg.
Test and save your project.

464 Hands On AGK BASIC: Images

Mapping Images to Sprites
Although it is possible to create a sprite without an associated image, under most
circumstances we will want to use a sprite to display an image. Exactly how that
image is mapped onto the sprite can be controlled by various commands.

SetDefaultMagFilter()

When the image to be mapped to a sprite is larger than the sprite on which it will be
displayed (for example, if the image was 1024 x 1024 pixels and the sprite occupied
128x 128 pixels on the screen), then we can control how the larger image is “squeezed”
onto the sprite using the SetDefaultMagFilter() (see FIG-16.32).

where

 iop is an integer value (0 or 1) specifying the mapping option to be
 used. Option 0 uses a “nearest pixel” mapping which tends to
 give a sharper but block y image; option 1 uses average pixel
 mapping which gives a slightly more blurred image.

Using this function affects all further mapping when the image is larger than the
sprite. By default, your program will use option 1 mapping.

SetDefaultMinFilter()

When the image to be mapped to a sprite is smaller than the sprite, then we can
control how the smaller image is “stretched” onto the sprite using the
SetDefaultMinFilter() (see FIG-16.33).

where

 iop is an integer value (0 or 1) specifying the mapping option to be
 used. Option 0 uses a “nearest pixel” mapping; option 1 uses
 average pixel mapping.

Using this function affects all further mapping when the image is smaller than the
sprite. By default, your program will use option 1 mapping.

SetImageMagFilter()

Although the SetDefaultMagFilter() statement sets the mapping used for all
larger-than-sprite images, you can over ride that mapping for individual images using
the SetImageMagFilter() statement (see FIG-16.34).

where

 id is an integer value giving the ID of the image whose mapping is
 to be set.

FIG-16.32

SetDefaultMagFilter()

SetDefaultMagFilter (iop)

FIG-16.33

SetDefaultMinFilter() SetDefaultMinFilter (iop)

FIG-17.34

SetImageMinFilter()

SetImageMagFilter (iop)id

Hands On AGK BASIC: Images 465

 iop is an integer value (0 or 1) specifying the mapping option to be
 used. Option 0 uses a “nearest pixel” mapping; option 1 uses
 average pixel mapping.

SetImageMinFilter()

When the image to be mapped to a sprite is smaller than the sprite, then we can
control how the smaller image is “stretched” onto the sprite using the
SetDefaultMinFilter() (see FIG-16.35).

where

 id is an integer value giving the ID of the image whose mapping is
 to be set.

 iop is an integer value (0 or 1) specifying the mapping option to be
 used. Option 0 uses a “nearest pixel” mapping; option 1 uses
 average pixel mapping.

The program in FIG-16.36 makes use of the four filter statements and shows how
they affect the final image displayed.

FIG-16.35

SetImageMinFilter() SetImageMinFilter (iop)id

FIG-16.36

Using Image Filters

rem *** Using Image Filters ***

rem *** Set average pixel mapping ***
SetDefaultMagFilter(1) //This is the default
SetDefaultMinFilter(1) //This is the default

rem *** Load small (128x128) image ***
LoadImage(1,”XSmall.png”)
LoadImage(2,”XSmall.png”)
rem *** Load large (1024x1024) image ***
LoadImage(3,”XLarge.png”)
LoadImage(4,”XLarge.png”)

rem *** Override mapping for images 2,4 ***
SetImageMagFilter(2,0)
SetImageMinFilter(4,0)

rem *** Create large sprites for small images ***
CreateSprite(1,1)
SetSpriteSize(1,50,-1)
CreateSprite(2,2)
SetSpriteSize(2,50,-1)
SetSpritePosition(2,50,0)
rem *** Create small sprites for large images ***
CreateSprite(3,3)
SetSpriteSize(3,20,-1)
SetSpritePosition(3,30,50)
CreateSprite(4,4)
SetSpriteSize(4,20,-1)
SetSpritePosition(4,50,50)

do
 Sync()
loop

466 Hands On AGK BASIC: Images

SetGenerateMipmaps()

Start with an image of a given size and then make a copy of that image but at half the
width and height. Now do the same thing to the second image, creating a third even
smaller image and then continue the process until several images have been created.
This is the idea behind a mipmap an example of which is shown in FIG-16.37.

Mipmaps make the job of mapping an image onto a sprite just a little easier since
AGK will choose the image within the mipmap which is closest in size to the sprite
and this reduces the processing requirements. They may be particularly useful when
a sprite changes size during the execution of a program.

AGK will automatically create a mipmap for every image that is loaded if the
SetGenerateMipmaps() statement is executed before any image is loaded. The
format of this statement is shown in FIG-16.38.

where

 iop is an integer value (0 or 1) which determines if mipmaps are to
 be created (0: no mipmaps, 1: create mipmaps).

Using a mipmap increases the storage requirements for any image by about 33%.

 AGK’s default option is not to create mipmaps.

Summary
± Use GetImageExists() to check that an image of a specified ID currently

exists.

± Use GetImageWidth() to discover the width (in pixels) of an image.

± Use GetImageHeight() to discover the height (in pixels) of an image.

Activity 16.9

Start a new project called ImageFilters and implement the code given in FIG-
16.36. Copy the file XLarge.png and XSmall.png to the project’s media folder.

Test your program and observe the effects of each mapping. Save your project.

FIG-16.37

An Example of a Mipmap

FIG-16.38

SetGenerateMipmaps()

SetGenerateMipmaps (iop)

Hands On AGK BASIC: Images 467

± An atlas texture image is a composite of two or more images.

± An atlas texture image must be accompanied by a text file giving details of the
composite images within the atlas image.

± The images within an atlas image can be extracted as standard image
components using the LoadSubImage() statement.

± The ImageJoiner utility (supplied with AGK) can be used to help construct an
atlas image and the accompanying text file.

± If you use ImageJoiner to create an atlas file containing a new font, the
accompanying text file must be edited so that the .png extension is removed
from every filename.

± Use CopyImage() to create a new image from a section of an already loaded
image.

± Use GetImage() to create a new image from a section of the screen display.

± Use SaveImage() to save an image to a file.

± Use GetImageFilename() to discover the name of the file from which an
image has been loaded.

± Use PrintImage() to print an image.

± Use SetImageMask() to copy a channel from one image to another.

± Use ShowChooseImageScreen() to display the images available on a device.

± Use IsChoosingImage() to determine if the user is currently in the process of
selecting a stored image.

± Use GetChosenImage() to load the selected image into an AGK image
resource and assign it an ID.

± Use GetCameraExists() to check if the device running your app has a camera.

± Use ShowImageCaptureScreen() to activate the camera app on your device.

± Use IsCapturingImage() to determine if the user is currently in the process of
capturing an image.

± Use GetCapturedImage() to assign the image taken by the camera to an AGK
image resource and assign it an ID.

± Use SetDefaultMagFilter() to specify how large images should be mapped
to smaller sprites.

± Use SetDefaultMinFilter() to specify how small images should be mapped
to larger sprites.

± Use SetImageMagFilter() to modify the mapping of a specific larger image to
a smaller sprite.

± Use SetImageMagFilter() to modify the mapping of a specific smaller image
to a larger sprite.

± Use SetGenerateMipmaps() to create mipmaps for all images used in a
program.

468 Hands On AGK BASIC: Images

Solutions
Activity 16.1

Code for ImageProperties:
rem *** Image Properties ***

rem *** Load image ***
LoadImage(1,”Size.png”)
rem *** 50% chance of deleting the image ***
if Random(1,2) = 1
 DeleteImage(1)
endif
rem *** IF image loaded ***
if GetImageExists(1)=1
 rem *** Display details ***
 Print(“Image found”)
 Print(“Image width = “+Str(GetImageWidth(1)))
 Print(“Image height = “+Str(GetImageHeight(1)))
else
 rem *** ELSE display message ***
 Print(“Image not found”)
endif
Sync()
do
loop

Activity 16.2
No solution required.

Activity 16.3
No solution required.

Activity 16.4
No solution required.

Activity 16.5
No solution required.

Activity 16.6
No solution required.

Activity 16.7
No solution required.

Activity 16.8
Modified code for :

rem *** Get an Image from the Built-In Camera ***

rem *** If camera exists ***
if GetCameraExists() = 1
 rem *** If camera software operational ***
 if ShowImageCaptureScreen() = 1
 rem *** Wait until an image has been
 captured ***
 repeat
 until IsCapturingImage() = 0

 rem *** Get ID assigned to selected image

 id = GetCapturedImage()

 rem *** Display image in a sprite ***
 CreateSprite(1,id)
 SetSpriteSize(1,100,-1)

 rem *** Save Image to a file ***
 SaveImage(id,”saved.jpg”)
 else
 rem *** Camera not operational ***
 Print(“Image folder not found”)

 endif
else
 rem *** No camera exists ***
 Print(“No camera detected”)
endif
Sync()
Sleep(2000)
do
 Sync()
loop

Activity 16.9
No solution required.

Hands On AGK BASIC: Sprites 469

In this Chapter:

T Adjusting a Sprite’s Attributes

T Modifying How an Image Maps to a Sprite

T Repositioning a Sprite’s Origin

T Grouping Sprites

T Changing a Sprite’s Bounding Area

T Checking for Sprite Collision

T Sprite Groups and Categories

T Handling Moving Sprites at the Edge of the Screen

T Setting a Program’s Frame Rate

T Ray Casting

T A Jigsaw Puzzle Game

Sprites

470 Hands On AGK BASIC: Sprites

Sprites

Introduction
There are many more sprite commands available to us than the few already covered
in Chapter 6. These additional commands allow us to perform various operations
such as rotating a sprite, remapping the image on the sprite’s surface, detecting sprite
collisions and even calculating the distance between two sprites.

Review
The following sprite-related statements were covered in Chapter 6:

CreateSprite(id,imgId) This statement creates a sprite using a previously
 loaded image. id is an integer giving the ID to be
 assigned to the sprite; imgId is the ID previously
 assigned to the image.

int CreateSprite(imgId) This statement creates a sprite using image
 imgId and returns the ID assigned to the sprite.

SetSpriteSize(id,w,h) This statement sets the width and height of sprite,
 id. w and h are real values giving the width and
 height. These are given as percentages or virtual
 pixels depending on the screen setup. Either w or
 h can be set to -1 to ensure that the original aspect
 ratio of the image assigned to the sprite is
 maintained.

SetSpritePosition(id,x,y) This statement positions the sprite, id, on the
 screen. The top left corner of the sprite is positioned
 at coordinates (x,y). x and y are real values given
 as either a percentage or as virtual coordinates.
	 	 	 	 	 When	first	created,	a	sprite’s	top-left	corner	is	at	
 position (0,0) - the top left corner of the screen

SetSpriteDepth(id,idepth) This statement sets the depth of the sprite, id.
 The depth setting determines how overlapping
 sprites appear. A sprite with a lower depth value
 will appear “in front of” a sprite with a larger
 depth value. The default depth setting for all
 sprites is 10. The order of sprites with the same
 depth setting is determined by the order in which
 they were created - newly created sprites appear
 “above” older sprites. The depth setting can range
 from 0 (front) to 10,000 (back).

CloneSprite(id,idcopied) This statement creates an exact copy of an existing
 sprite. id is the ID assigned to the new sprite;
 idcopied is the ID of the sprite to be cloned.

SetSpriteVisible(id,iv) This statement sets the visibility of sprite id. If
 iv is 1 the sprite is visible; if iv is 0, the sprite is
 hidden.

The term int is used here
as a shortened form of
the word integer.

Hands On AGK BASIC: Sprites 471

DeleteSprite(id) This statement deletes the sprite, id. Deleting any
 item when it is no longer required frees up
 resources and may increase a program’s speed.

Other Sprite Statements
Most of the remaining sprite statements cover new features, but a few relate back to
attributes covered in Chapter 6.

GetSpriteExists()

We can determine if a sprite with a given ID currently exists using the
GetSpriteExists() statement (see FIG-17.1).

where:

 id is the integer value giving the ID to be checked.

The function returns 1 if the sprite exists, otherwise zero is returned.

GetSpriteVisible()

To	find	out	if	an	existing	sprite	is	visible,	use	GetSpriteVisble() (see FIG-17.2).

where:

 id is the integer value giving the ID of the sprite to be checked.

The function returns 1 if the sprite is visible, otherwise zero is returned.

Activity 17.1

Start a new project called ControllingSprites. Compile the default code and
copy	the	file	Arrow.png from AGKDownloads/Chapter17 to the media folder.
Place the following code in main.agc.

 rem *** Controlling a sprite ***
 rem *** Load sprite image ***
 LoadImage(1,”Arrow.png”,0)
 rem *** Create sprite ***
 CreateSprite(1,1)
 rem *** Size sprite ***
 SetSpriteSize(1,7,-1)
 rem *** Position sprite ***
 SetSpritePosition(1,50,50)
 Sync()
 do
 loop
Test and save your project.

FIG-17.1

GetSpriteExists()

GetSpriteExistsinteger (id)

FIG-17.2

GetSpriteVisible()

GetSpriteVisibleinteger (id)

472 Hands On AGK BASIC: Sprites

GetSpriteDepth()

GetSpriteDepth() returns the depth setting of a sprite. The statement’s format is
shown in FIG-17.3.

where:

 id is the integer value giving the ID of the sprite to be checked.

The	function	 returns	 the	 layer	on	which	 the	specified	sprite	has	been	placed.	By	
default, all sprites are placed on layer 10. Sprites on a higher layer (layer 0 is the
highest layer, layer 10,000 is the lowest layer) will appear to be positioned on top of
those on a lower layer.

SetSpriteScale()

The best way to set your sprite to the size required is to use the SetSpriteSize()
statement (see Chapter 6), but you can also resize a sprite using the SetSpriteScale()
statement (see FIG-17.4).

where:

 id is the integer value giving the ID of the sprite.

 xscale is a real number giving the multiplication factor to be applied
 along the width of the sprite.

 yscale is a real number giving the multiplication factor to be applied
 along the height of the sprite.

Once the size of a sprite has been set using SetSpriteSize(), this is assumed to be
the sprite’s “normal” size. Using SetSpriteScale() with a scale factor of 1.0 for
both xscale and yscale will leave the image size unchanged. Values smaller than 1
will shrink the sprite; those larger than 1 will increase its size. The position of the
sprite’s	top	left	corner	remains	fixed	during	scaling.	FIG-17.5	shows	a	sprite	with	its	
initial	size	set	to	60%	of	the	screen	width.	The	sprite	is	then	reduced	to	50%	of	its	
size in both the x and y directions.

FIG-17.3

GetSpriteDepth() GetSpriteDepthinteger (id)

FIG-17.4

SetSpriteScale() SetSpriteScale (id xscale yscale)

FIG-17.5

Result of Using
SetSpriteScale()

Sprite after SetSpriteSize(1,60,-1) Sprite after SetSpriteScale(1, 0.5, 0.5)

Original
sprite size

Reduces
towards the top

left corner

Hands On AGK BASIC: Sprites 473

SetSpriteAngle()

A sprite can be rotated by using the SetSpriteAngle() statement which has the
format shown in FIG-17.6.

where:

 id is the integer value previously assigned as the ID of the sprite.

 fangle is a real number giving the angle to which the sprite is to be
 rotated. The angle is given in degrees. The sprite will be rotated
 about its centre.

SetSpriteAngleRad()

When rotating a sprite, the angle may be given in radians, rather than degrees, by
using the SetSpriteAngleRad() statement (see FIG-17.7)

where:

 id is the integer value previously assigned as the ID of the sprite.

 fangle is a real number giving the angle to which the sprite is to be
 rotated. The angle is given in radians. The sprite will be rotated
 about its centre.

GetSpriteAngle() and GetSpriteAngleRad()

To discover a sprite’s current angle of rotation, you can use either GetSpriteAngle()
- which returns the angle in degrees - or GetSpriteAngleRad() which returns the
angle in radians. FIG-17.8 shows the format of both statements.

where:

 id is the integer value previously assigned as the ID of the sprite.

FIG-17.6

SetSpriteAngle()

SetSpriteAngle (id fangle)

Activity 17.2

Modify your ControllingSprites project by deleting the last three lines and
replacing them with the code:
 degrees# = 0
 do
 degrees# = degrees# +1
 SetSpriteAngle(1,degrees#)
 Sync()
 loop
Check that the sprite rotates and then save your project.

FIG-17.7

SetSpriteAngleRad()

SetSpriteAngleRad (id fangle)

FIG-17.8

GetSpriteAngle()

GetSpriteAngleRad() GetSpriteAngleRad (id)

GetSpriteAnglefloat

float

(id)

474 Hands On AGK BASIC: Sprites

SetSpriteColor()

You can set the colour of a sprite - overriding the colour of the image used - by
executing the SetSpriteColor() statement. This statement can also change the
transparency of the sprite. The SetSpriteColor() statement’s format is shown in
FIG-17.9.

where:

 id is the integer value previously assigned as the ID of the sprite.

 ired is an integer value giving the intensity of the red component to
 be used when changing the sprite’s colour. This value should lie
	 	 	 in	the	range	zero	(no	red)	to	255	(full	red).

 igreen is an integer value giving the intensity of the green component to
	 	 	 be	used.	This	value	should	lie	in	the	range	zero	to	255.

 iblue is an integer value giving the intensity of the blue component to
	 	 	 be	used.	This	value	should	lie	in	the	range	zero	to	255.

 itrans is an integer value giving the transparency setting for the sprite.
	 	 	 This	value	should	lie	in	the	range	zero	(invisible)	to	255	(opaque).

SetSpriteColorRed(), SetSpriteColorGreen(), SetSpriteColorBlue() and
SetSpriteColorAlpha()

Rather than set all the colour attributes of a sprite using the SetSpriteColor()
statement, individual attributes can be changed using one of four commands:
SetSpriteColorRed(), SetSpriteColorGreen(), SetSpriteColorBlue() and
SetSpriteColorAlpha().

The format for each of these four commands is shown in FIG-17.10.

where:

 id is the integer value previously assigned as the ID of the sprite.

 ired is an integer value giving the intensity of the red component to
 be used when changing the sprite’s colour. This value should lie
	 	 	 in	the	range	zero	(no	red)	to	255	(full	red).

 igreen is an integer value giving the intensity of the green component to
	 	 	 be	used.	This	value	should	lie	in	the	range	zero	to	255.

FIG-17.9

SetSpriteColor()

SetSpriteColor (id), ired , igreen , iblue itrans,

FIG-17.10

SetSpriteColorRed()
SetSpriteColorGreen()
SetSpriteColorBlue()
SetSpriteColorAlpha()

SetSpriteColorRed (id), ired

SetSpriteColorGreen (id), igreen

SetSpriteColorAlpha (id), itrans

SetSpriteColorBlue (id), iblue

Hands On AGK BASIC: Sprites 475

 iblue is an integer value giving the intensity of the blue component to
	 	 	 be	used.	This	value	should	lie	in	the	range	zero	to	255.

 itrans is an integer value giving the transparency setting for the sprite.
	 	 	 This	value	should	lie	in	the	range	zero	(invisible)	to	255	(opaque).

GetSpriteColorRed(), GetSpriteColorGreen(), GetSpriteColorBlue()
and GetSpriteColorAlpha()

To discover the current colour settings for a sprite, you can use the commands
GetSpriteColorRed(), GetSpriteColorGreen(), GetSpriteColorBlue(), and
GetSpriteColorAlpha().

The format for each of these commands is shown in FIG-17.11.

where:

 id is the integer value previously assigned as the ID of the sprite.

Each	function	returns	a	value	in	the	range	0	to	255.

GetSpriteHitTest()

To	find	out	if	a	specified	point	on	the	screen	is	within	the	area	of	a	specific	sprite,	you	
can use the GetSpriteHitTest() statement. The statement has the format shown in
FIG-17.12.

where:

 id is the integer value previously assigned as the ID of the sprite.

 x,y are a pair of real numbers giving the coordinates of the point to
 be tested. This should be in percentage or virtual coordinates
 depending on the system being used.

If point (x,y) lies within the area of the sprite id, then the function returns 1, otherwise
zero is returned.

Activity 17.3

Modify ControllingSprites, changing the red component of the sprite to 0.

Test and save your project.

FIG-17.11

GetSpriteColorRed()
GetSpriteColorGreen()
GetSpriteColorBlue()
GetSpriteColorAlpha()

GetSpriteColorRedinteger

integer

integer

integer

(id)

GetSpriteColorGreen (id)

GetSpriteColorAlpha (id)

GetSpriteColorBlue (id)

FIG-17.12

GetSpriteHitTest() GetSpriteHitTestinteger (x y)id

476 Hands On AGK BASIC: Sprites

GetSpriteHit()

When	several	sprites	appear	on	screen	at	the	same	time,	finding	out	which	sprite	has	
been hit using GetSpriteHitTest() will involve using a for loop to cycle through
each sprite ID (this assumes the ID values are contiguous). For example, a typical
code snippet would be:

for c = lowestID to highestID
 if GetSpriteHitTest(c, GetPointerX(), GetPointerY()) = 1
 rem *** do something ***
 endif
next c

This is a long and awkward approach.

As an alternative, we can make use of the GetSpriteHit() statement which returns
the	ID	of	the	sprite	at	a	specified	point.	The	GetSpriteHit() statement has the format
shown in FIG-17.13.

where:

 x,y are a pair of real values giving the coordinates of the screen
 position to be checked.

If	the	specified	point	(x,y)	is	over	a	sprite,	then	the	ID	of	that	sprite	is	returned.	If	no	
sprite is under the point, then zero is returned. If more than one sprite is at the
specified	point,	then	the	“top-most”	sprite’s	ID	is	returned.

Used in conjunction with GetPointerX() and GetPointerY(), we can use the
GetSpriteHit() statement to detect user clicks/presses on a sprite using code of the
form:

 if GetSpriteHit(GetPointerX(),GetPointerY()) <> 0
 rem *** Do something ***
 endif

The program in FIG-17.14 uses three sprites (these could represent buttons in a
game) which change colour when pressed and revert to their original colour when
released. The program makes use of the following logic:

 Load images
 Create, resize and position sprites
	 Get	the	current	red	setting	for	the	first	sprite
 DO
 IF pointer pressed THEN
 IF pointer over a sprite THEN
 Change sprite’s red tint
 Set oldID to sprite’s ID
 Update screen
 ENDIF
 ELSE
 IF oldID isn’t zero THEN
 Reset sprite’s red tint
 Set oldID to zero
 Update screen
 ENDIF
 ENDIF
 LOOP

FIG-17.13

GetSpriteHit()

GetSpriteHitinteger (x y)

Hands On AGK BASIC: Sprites 477

SetSpriteX()
Although we can use SetSpritePosition() to place a sprite at any point on the
screen, when we wish to move a sprite horizontally we can make use of the

FIG-17.14

Using GetSpriteHit()

Activity 17.4

Create a new project called ShootingGame. Compile the default code and copy
the	files	Right.png, Left.png and Fire.png from AGKDownloads/Chapter17 to
the projects’s media folder. Enter and test the code given in FIG-17.14. Save
your project.

rem *** Button Sprites ***
rem *** Grey background ***
SetClearColor(200,200,200)
rem *** Load sprite images ***
LoadImage(1,”Right.png”,0)
LoadImage(2,”Left.png”,0)
LoadImage(3,”Fire.png”,0)
rem *** Create sprites ***
CreateSprite(1,1)
CreateSprite(2,2)
CreateSprite(3,3)
rem *** Size sprite ***
SetSpriteSize(1,12,-1)
SetSpriteSize(2,12,-1)
SetSpriteSize(3,12,-1)
rem *** Position sprite ***
SetSpritePosition(1,87,92)
SetSpritePosition(2,72,92)
SetSpritePosition(3,1,92)
rem *** Get red tint for first sprite ***
red = GetSpriteColorRed(1)
do
 rem *** IF pointer down ***
 if GetPointerState() = 1
 rem *** IF press if over a sprite ***
 id = GetSpriteHit(GetPointerX(),GetPointerY())
 if id <> 0
 rem *** Set sprite’s tint ***
 SetSpriteColorRed(id,200)
 rem *** Remember sprite’s ID ***
 oldid = id
 rem *** Update screen ***
 Sync()
 endif
 else
 rem *** IF a sprite is tinted ***
 if oldid <> 0
 rem *** Reset its tint ***
 SetSpriteColorRed(oldid,red)
 rem *** No sprite currently tinted ***
 oldid = 0
 rem *** Update screen ***
 Sync()
 endif
 endif
 Sync()
loop

478 Hands On AGK BASIC: Sprites

SetSpriteX() statement (see FIG-17.15).		 	 	 	 	

where:

 id is the integer value previously assigned as the ID of the sprite.

 x is a real number giving the new x-coordinate of the sprite’s top
 left corner. Coordinates are given as a percentage or in virtual
 coordinates depending on the screen setup.

SetSpriteY()

To set only the y-coordinate of a sprite (allowing vertical movement) use the
SetSpriteY() statement (see FIG-17.16).

where:

 id is the integer value previously assigned as the ID of the sprite.

 y is a real number giving the new y-coordinate of the sprite’s top
 left corner. Coordinates are given as a percentage or in virtual
 coordinates depending on the screen setup.

GetSpriteX() and GetSpriteY()

The current position of a sprite can be obtained using the GetSpriteX() and
GetSpriteY() statements which return the x and y coordinates respectively. The
format for each of these statements is shown in FIG-17.17.

where:

 id is the integer value previously assigned as the ID of the sprite.

SetSpriteX (id x)FIG-17.15

SetSpriteX()

FIG-17.16

SetSpriteY()

SetSpriteY (id y)

FIG-17.17

GetSpriteX()
GetSpriteY()

GetSpriteXfloat (id)

GetSpriteYGetSpriteYfloat (id)

Activity 17.5

Make	the	following	modifications	to	your	ShootingGame project:

Add a sprite containing Arrow.png with a width setting of 6. The arrow should be
pointing upwards and the sprite positioned at 46,80.

When the right button is pressed, the arrow should move 1 place to the right;
when the left button is pressed, the arrow should move one place to the left.

Test your code. What happens when the arrow reaches the edge of the screen?
Modify the code so that the arrow cannot move off the edge of the app window.

Hands On AGK BASIC: Sprites 479

GetSpriteWidth() and GetSpriteHeight()

We can also determine the width and height of a sprite using the GetSpriteWidth()
and GetSpriteHeight() statements (see FIG-17.18). The value returned by each of
these functions is given as a percentage or in virtual pixels as appropriate.

where:

 id is the integer value previously assigned as the ID of the sprite.

GetSpriteImageID()

The ID of the image that has been assigned to a sprite can be discovered using the
GetSpriteImageID() statement (see FIG-17.19).

where:

 id is the integer value previously assigned as the ID of the sprite.

SetSpriteImage()

The	image	used	by	a	sprite	 is	set	up	when	the	sprite	 is	first	created,	but	you	can	
change the image at a later stage in the program using the SetSpriteImage()
statement (see FIG-17.20).

where:

 id is the integer value previously assigned as the ID of the sprite.

 imgId is an integer value giving the ID of the image to be assigned to
 the sprite.

The program in FIG-17.21 displays a sprite then changes its image if the pointer is
pressed while over the sprite.

FIG-17.18

GetSpriteWidth()

GetSpriteHeight()

GetSpriteWidthfloat (id)

GetSpriteHeightfloat (id)

FIG-17.19

GetSpriteImageID()

GetSpriteImageIDinteger (id)

FIG-17.20

SetSpriteImage()

SetSpriteImage (id imageId,)

FIG-17.21

Using SetSpriteImage() rem *** Swap sprite image ***

rem *** Load Images ***
LoadImage(1,”Round.png”)
LoadImage(2,”Square.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,12,-1)
do
 rem *** If pointer pressed and over sprite ***

480 Hands On AGK BASIC: Sprites

When the new image to be placed within the sprite has a different width to height
ratio	from	the	first	image,	then	the	new	image	will	be	distorted	in	order	to	fit	the	
sprite’s original space; the sprite will not be resized to accommodate the new image.

To overcome the distortion problem, all that is required is a subsequent call to
SetSpriteSize().

Normally, the best way to handle a sprite which displays different images at different
times, is to create an animated sprite (see next chapter) but using SetSpriteImage()
may be useful when those images are of different sizes.

SetSpriteTransparency()

Normally, transparency is set up when an image is being loaded, with the option to
use a transparent background in the original image or make black pixels transparent.

FIG-17.21
(continued)

Using SetSpriteImage()

 if GetSpriteHit(GetPointerX(),GetPointerY()) and
 GetPointerPressed()
 rem *** Change to other image ***
 SetSpriteImage(1,2)
 endif
 Sync()
loop

Activity 17.6

Start a new project called SwapImage.	Copy	the	files	Round.png and Square.
png from AGKDownloads/Chapter17 and paste them to the new project’s
media folder.

Implement and test the code given in FIG-17.21.

Modify the code so that the sprite switches between the two images each time
it is pressed.

Activity 17.7

Copy	the	file	FourCircles.png from AGKDownloads/Chapter17 to your
SwapImage project’s media folder.

Open the image to see its contents.

Modify SwapImage so that the FourCircles image is used in place of Square.
png.

What happens when the four circle image is displayed?

Activity 17.8

Copy the SetSpriteSize() used near the start of SwapImage and duplicate it
immediately after the SetSpriteImage() statement.

What happens this time when the four circle image is displayed?

Hands On AGK BASIC: Sprites 481

However, the parts of an image which are normally transparent can be made opaque
using the SetSpriteTransparency() statement (see FIG-17.22).

where:

 id is the integer value previously assigned as the ID of the sprite.

 itrans is an integer value (0 or 1) setting the transparency mode of the
 image. 0: no transparency; 1: transparency (as determined by the
 original sprite image).

For a truly rectangular image, transparency is not required and having transparency
switched off will give a boost to performance.

The program in FIG-17.23 shows a sprite with transparency off and then, after two
seconds, it is switched on.

SetSpriteFlip()

We	can	reflect	the	image	shown	in	a	sprite	vertically,	horizontally,	or	both	using	the	
SetSpriteFlip() statement (see FIG-17.24).

where:

SetSpriteTransparency (id itrans,)FIG-17.22

SetSpriteTransparency()

FIG-17.23

Using
SetSpriteTransparency()

rem *** Sprite transparency ***
rem *** Set grey background ***
SetClearColor(120,120,120)
Sync()
rem *** Load Image ***
LoadImage(1,”Round.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,12,-1)
SetSpritePosition(1,50,50)
rem *** Sprite transparency off ***
SetSpriteTransparency(1,0)
Sync()
Sleep(2000)
rem *** Sprite transparency on ***
SetSpriteTransparency(1,1)
Sync()
Sleep(2000)
do
loop

Activity 17.9

Start a new project called SpriteTransparency.	Copy	the	file	Round.png (which
you used in the last project) to the project’s media folder.

Implement and test the code given in FIG-17.23.

FIG-17.24

SetSpriteFlip()

SetSpriteFlip (id ihorz, ivert,)

482 Hands On AGK BASIC: Sprites

 id is the integer value previously assigned as the ID of the sprite.

 ihorz is an integer value (0 or 1) which determines if the image is to be
	 	 	 reflected	about	the	horizontal	(0:	do	not	reflect,	1:	reflect).	

 ivert is an integer value (0 or 1) which determines if the image is to be
	 	 	 reflected	about	the	vertical	(0:	do	not	reflect,	1:	reflect).	

The	results	of	reflecting	an	image	in	each	direction	are	shown	in	FIG-17.25.

The	program	in	FIG-17.26	shows	a	sprite	using	each	reflection	with	accompanying	
descriptive text.

FIG-17.25

Flip Options Original Image

Reflected about
the Horizontal

Reflected about
the Vertical

Reflected about the
Horizontal and Vertical

FIG-17.26

Using SetSpriteFlip()

rem *** Flipping Sprites ***
rem *** Load Image ***
LoadImage(1,”Triangle.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,12,-1)
SetSpritePosition(1,44,50)
rem *** Create descriptive text ***
CreateText(1,”Original Image”)
SetTextAlignment(1,1)
SetTextPosition(1,50,40)
Sync()
Sleep(2000)
rem *** Reflect about the horizontal ***
SetTextString(1,”Reflected about Horizontal”)
SetSpriteFlip(1,1,0)
Sync()
Sleep(2000)
rem *** Reset sprite ***
SetTextString(1,”Original Image”)
SetSpriteFlip(1,0,0)
Sync()
Sleep(2000)
rem *** Reflect about the vertical ***
SetTextString(1,”Reflected about Vertical”)
SetSpriteFlip(1,0,1)
Sync()
Sleep(2000)
rem *** Reset sprite ***
SetTextString(1,”Original Image”)
SetSpriteFlip(1,0,0)
Sync()
Sleep(2000)
rem *** Reflect about the horizontal and vertical ***
SetTextString(1,”Reflected about”+chr(10)+”Horizontal and
Vertical”)
SetSpriteFlip(1,1,1)
Sync()
do
loop

Hands On AGK BASIC: Sprites 483

SetSpriteUVScale()

When an image is placed within a sprite, we might think of this as something akin to
pasting	a	picture	(the	image)	onto	a	piece	of	card	(the	sprite).	Normally,	when	we	fix	
the image to the card, the top left of the image is placed at the top-left of the sprite
and the bottom-right of the image at the bottom right of the sprite. When we describe
exactly how the image is “mapped” onto the sprite, we use the coordinates (0,0) to
represent the top left of the image and (1,1) to represent the bottom right. These
values are used irrespective of the image’s actual size or width to height ratio. Since
we already use the letters X and Y to represent positions in normal two-dimensional
space, we use U and V to represent width and height within the image. FIG-17.27
demonstrates this idea.

As you can see from FIG-17.27, (0,0) on the image is mapped to corner 1 of the
sprite; (0,1) to corner 2; (1,0) to corner 3; and (1,1) to corner 4.

AGK contains various commands that affect how this mapping of the image to the
sprite is performed.

Using the SetSpriteUVScale() we can modify how the image is stretched over the
sprite. With the correct parameter values, we can shrink the image so it occupies only
part of the surface of the sprite or enlarge it so that only part of the image is used on
the sprite. SetSpriteUVScale() has the format shown in FIG-17.28.

where:

 id is the integer value previously assigned as the ID of the sprite.

 Uscale is a real value giving the width of the image on the sprite.

Activity 17.10

Create a new projected called FlippingSprites and copy AGKDownloads/
Chapter17/Triangle.png to the project’s media	file.
Implement, test and save the code given in FIG-17.26 above.

FIG-17.27

How an Image is Mapped
to a Sprite

Image Sprite

(U:1,V:1)

(U:0, V:0)

Image
mapped onto

sprite

1

2

3

4

FIG-17.28

SetSpriteUVScale()

SetSpriteUVScale (id Uscale, Vscale,)

484 Hands On AGK BASIC: Sprites

	 	 	 0:	 no	width;	 0.5:	 image	 stretches	 over	 half	 the	width	 of	 the	
 sprite); 1: normal (image over full width of sprite); 2: image is
 twice the width of the sprite (only half the image is seen).

 Vscale is a real value which determines the height of the image
 on the sprite.

FIG-17.29 shows the result of various scale options on the appearance of a sprite. The
dotted outline indicates the size and position of the sprite.

The program in FIG-17.30 demonstrates the use of UV scaling.

FIG-17.29

UV Scaling Effects

Uscale : 1.0
Yscale : 1.0

Uscale : 0.5
Yscale : 0.5

Uscale : 2.0
Yscale : 2.0

Complete image
covers complete

sprite

Complete image
covers quarter of

sprite Image
half normal width

and height

Quarter of image
covers complete

sprite Image
double normal width

and height

FIG-17.30

Using SetSpriteUVScale()

rem *** UV Scaling ***
rem *** Grey screen ***
SetClearColor(120,120,120)
Sync()
rem *** Load image ***
LoadImage(1,”DS.png”)
rem *** Create, size and position sprite ***
CreateSprite(1,1)
SetSpriteSize(1,30,-1)
SetSpritePosition(1,35,35)
rem *** Normal UV scaling ***
SetSpriteUVScale(1,1,1)
Sync()
Sleep(2000)
rem *** Half scaling ***
SetSpriteUVScale(1,0.5,0.5)
Sync()
Sleep(2000)
rem *** Double scaling ***
SetSpriteUVScale(1,2,2)
Sync()
do
loop

Activity 17.11

Start a new project named UVScaling and implement the code given in FIG-
17.30. Remember to copy AGKDownloads/Chapter17/DS.png to the media
folder.

Test and save your project.

Hands On AGK BASIC: Sprites 485

SetSpriteUVOffset()

Another option available when mapping an image to a sprite is to offset the image so
that the top-left of the image does not appear at the top-left of the sprite. This is
achieved using the SetSpriteOffset() statement (see FIG-17.31).

where:

 id is the integer value previously assigned as the ID of the sprite.

 Uoffset, Voffset
 are a set of real values giving the coordinates of the part of the
 image that is to map to the top-left corner of the sprite.

For example, the line

 SetSpriteUVOffset(1,0.5,0.5)

would map the middle of the image to the top left corner of the sprite (see FIG-
17.32).

You can also use negative numbers for the Uoffset and Voffset values. For example,
the line

 SetSpriteUVOffset(1,-0.5,-0.5)

has the effect shown in FIG-17.33.

FIG-17.31

SetSpriteUVOffset()

SetSpriteUVOffset (id Uoffset, Voffset,)

FIG-17.32

UV Offset Effects 1

Original Image

Image
midpoint

Midpoint of
image mapped to

top-left of sprite

FIG-17.33

UV Offset Effects 2

486 Hands On AGK BASIC: Sprites

FIG-17.34 explains how this mapping is created.

SetImageWrapU() and SetImageWrapV()

The part of the image which falls outside the surface of the sprite is not shown when
we use a UV offset, but we can change this using the SetImageWrapU() and

FIG-17.34

UV Offsets Explained

The image is exactly 1 unit in width
and 1 unit in height using UV notation
even if the actual width and height are
different.

Position (0,0) is the top-left of the
image, so the point (-0.5,-0.5) would
be above and to the left.

If we now map the image to the sprite
so that point (-0.5, -0.5) is at the top-
left of the sprite...

...we get the effect shown earlier.

U = 1

V = 1

1
U

V
1

-1

(0,0)

(-0.5,-0.5)

1
U

V
1

-1 Sprite
outline(-0.5,-0.5)

Activity 17.12

Start a new project called UVOffset and create a program using image DS.png
which places the image on a sprite with the UV offset value changing every
five	seconds.

The following offset values should be used:

 0,0 (the default)
	 0.25,	0
	 0.5,	0.5
	 0.7,	0.25
	 -0.25,	0
	 -0.5,	-0.25

Display the offset values used at each stage.

Hands On AGK BASIC: Sprites 487

SetImageWrapV() statements. These cause the image to “wrap round” back onto the
sprite’s surface. Using SetImageWrapU() causes wrapping on the left and right edges
of the sprite; SetImageWrapV() wraps the top and bottom edges.

The format of the two statements are shown in FIG-17.35	and	FIG-17.36.

where:

 id is an integer value giving the ID of the image. Wrapping will be
 applied to any sprite using this image.

 iwrap is an integer value (0 or 1) which sets horizontal wrapping off (0)
 or on (1). Zero is the default value.

where:

 id is an integer value giving the ID of the image. Wrapping will be
 applied to any sprite using this image.

 iwrap is an integer value (0 or 1) which sets vertical wrapping off (0)
 or on (1). Zero is the default value.

If you also use UV scaling in combination with image wrapping, you will get a
repeating image on the sprite. For example, the line

SetSpriteUVScale(1,0.25,0.25)

creates the result shown in FIG-17.37.

FIG-17.35

SetImageWrapU()

SetImageWrapU (id , iwrap)

FIG-17.36

SetImageWrapV()

SetImageWrapV (id , iwrap)

Activity 17.13

Modify UVOffset by switching on image wrapping in the U direction only and
observe changes to the sprite’s image.

Make a second change to the program so that wrapping occurs in both the U
and V directions and observe the sprites created.

FIG-17.37

Combine Scaling and
Wrapping

488 Hands On AGK BASIC: Sprites

The program in FIG-17.38 creates a continually changing UV offset value.

SetSpriteUVBorder()

Sometimes there can be problems when an image is mapped to a sprite. Since the
actual number of pixels in an image are unlikely to be an exact match for the number
of pixels allocated to a sprite on-screen, there can be a subtle problem with exactly
how much of the image will appear on the sprite. This can manifest itself by a small
part of the image being missing from the sprite or, when using an atlas image, by
“stealing” a pixel from the next image.

AGK	handles	this	by	creating	a	small	offset	to	the	mapping	of	0.5	pixels.	This	is	
known as the sprite border.

You can eliminate this offset using SetSpriteUVBorder() whose format is shown in
FIG-17.39).

where:

FIG-17.38

Using UV Wrapping

rem *** Changing UV Offsets ***

rem *** Grey screen ***
SetClearColor(120,120,120)
Sync()
rem *** Load image and allow wrapping ***
LoadImage(1,”DS.png”)
SetImageWrapU(1,1)
SetImageWrapV(1,1)
rem *** create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,30,-1)
SetSpritePosition(1,35,35)
rem *** Scale the UV mapping ***
SetSpriteUVScale(1,0.25,0.25)
rem *** Set UV offset value ***
offset# = 0
do
 rem *** Change UV offset ***
 SetSpriteUVOffset(1,offset#,offset#)
 Sync()
 Sleep(100)
 rem *** Change offset Value ***
 offset# = offset# + 0.05
 if offset# > 1
 offset# = 0
 endif
loop

Activity 17.14

Start a new project called ScaledWrap and implement the code given in FIG-
17.38.

What effect is created by the code?

FIG-17.39

SetSpriteUVBorder()

SetSpriteUVBorder (id , iborder)

Hands On AGK BASIC: Sprites 489

 id is the integer value previously assigned as the ID of the sprite.

 iborder	 is	an	integer	value	(0	or	1)	which	leaves	the	0.5	pixel	offset	(0)	
 or removes the offset (1).

FIG-17.40 shows how the border effect changes the mapping of an image to a sprite.

The difference in the mappings is quite a subtle one but you may notice (even in
greyscale) that the left and right edges of the two sprite mappings differ slightly. This
is also true for the top and bottom edges but is not so obvious from this example.

The program in FIG-17.41 demonstrates the effect of the UV border by displaying a
sprite which uses the standard border setting and then, after two seconds, switching
to the zero offset option.

SetSpriteUV()

For ultimate control over how an image is mapped onto a sprite use SetSpriteUV().
This allows you to state which part of the image is mapped to each corner of the
sprite. The format of the statement is shown in FIG-17.42.

FIG-17.40

The	Border	Shift	Effect

Original Image 0.5 Pixel Border No Border

FIG-17.41

Using	Border	Shifting

rem *** UV Border ***

LoadImage(1,”Colours.png”)
rem *** create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,60,-1)
SetSpritePosition(1,20,20)
rem *** 0.5 UV offset ***
rem *** this is the default ***
rem *** so the statement below ***
rem *** isn’t really required! ***
SetSpriteUVBorder(1,0)
Sync()
Sleep(5000)
rem *** Change to no UV offset ***
SetSpriteUVBorder(1,1)
Sync()
do
loop

Activity 17.15

Start a new project called UVBorder and implement the code given in FIG-
17.41. You need to copy AGKDownloads/Chapter17/Colours.png to the
project’s media folder.

Observe the effect on the sprite as the border changes. Save your project.

490 Hands On AGK BASIC: Sprites

where

 id is an integer value giving the ID of the sprite.

 u1,v1 are real values giving the UV coordinates within the image that
 are to map to the top-left corner of the sprite.

 u2,v2 are real values giving the UV coordinates within the image that
 are to map to the bottom-left corner of the sprite.

 u3,v3 are real values giving the UV coordinates within the image that
 are to map to the top-right corner of the sprite.

 u4,v4 are real values giving the UV coordinates within the image that
 are to map to the bottom-right corner of the sprite.

The	program	in	FIG-17.43	fixes	corners	2	 to	4	with	 their	normal	 image	to	sprite	
mapping, but chooses a changing random value for the top-left corner.

A typical display from the program is shown in FIG-17.44.

FIG-17.42 SetSpriteUV()

SetSpriteUV (id , u1 , v1 , u2 , v2 u3 , v3 , u4 , v4,)

FIG-17.43

Using SetSpriteUV

rem *** Setting a Sprite’s UV Mapping ***

rem *** Load image ***
LoadImage(1,”UVTest.png”)

rem *** Create a sprite ***
CreateSprite(1,1)
SetSpriteSize(1,50,-1)
SetSpritePosition(1,25,25)

do
 rem *** Create random UV values ***
 u1# = Random(0,1000)/1000.0
 v1# = Random(0,1000)/1000.0

 rem *** Remap the image on the sprite ***
 SetSpriteUV(1,u1#,v1#,0,1,1,0,1,1)
 Sync()
 rem *** Wait 0.5 seconds ***
 Sleep(500)
loop

FIG-17.44

A Sample Display

Hands On AGK BASIC: Sprites 491

ResetSpriteUV()

If you have been adjusting the UV mapping of a sprite’s image, you can set it back
to its default value using ResetSpriteUV() (see FIG-17.45).

where

 id is an integer value giving the ID of the sprite whose texture
 mapping is to be reset.

GetSpritePixelFromX()

Normally, the image that is assigned to a sprite will be much larger than the sprite
itself.	For	example,	we	might	place	a	256x128	pixel	image	to	a	sprite	that	covers	10%	
of	the	width	of	the	app	screen.	So,	in	effect,	there	are	25.6	pixels	of	the	image	width	
squeezed into one tenth of the sprite’s width. The idea is visualised in FIG-17.46.

So a point one tenth of the way along the sprite would correspond to one tenth of the
way along the original image which is (allowing for rounding to the nearest pixel) 26
pixels in from the left (see FIG-17.47).

Activity 17.16

Start a new project called SetUV and implement the code given in FIG-17.43.
Copy	the	file	UVTest.png to the media folder.

Test and save your project.

FIG-17.45

ResetSpriteUV()

ResetSpriteUV (id)

Original Image App Screen

Image
maps onto

sprite256 pixels

10%
of app width

FIG-17.46

Sprite to Image Mapping 1

FIG-17.47

Sprite to Image Mapping 2

Original Image

256 pixels

Sprite
1/10 width

1/2 width

26 pixels 128 pixels

492 Hands On AGK BASIC: Sprites

The GetSpritePixelFromX() statement will return which part of the image maps to
a given part of the sprite to which it has been assigned. The statement’s format is
shown in FIG-17.48).

where:

 id is the integer value previously assigned as the ID of the sprite.

 xoffset is a real number giving the distance in from the left edge of the
 sprite. This distance is measured in percentage or virtual pixels
 depending on the system being used.

For	example,	if	we	create	a	sprite	which	is	based	on	a	256	pixel	wide	image	and	is	
10% the width of the app window, with the lines

CreateImage(1,”Hexagons.png”)
CreateSprite(1,1)
SetSpriteSize(1,10,-1)

then the line

 Print(GetSpritePixelFromX(1,1))

would display the value 26.

For a sprite which is 10% the width of the app window, the second parameter of
GetSpritePixelFromX() would lie in the range 0 to 10.

The program in FIG-17.49 displays a sprite showing three hexagons. A vertical line
shows the position in the sprite being tested and the image pixel equivalent is shown
in text form.

FIG-17.48

GetSpritePixelFromX()

GetSpritePixelFromX (xoffsetid ,)integer

FIG-17.49

GetSpritePixelFromX()

rem *** main image ***
LoadImage(1,”Hexagons.png”)
rem *** Vertical line ***
LoadImage(2,”VerticalLine.png”)
rem *** Create sprite to be used ***
CreateSprite(1,1)
SetSpriteSize(1,20,-1)
rem *** Create text to show position ***
CreateText(1,””)
SetTextPosition(1,10,10)
rem *** Create vertical line to show position ***
CreateSprite(2,2)
SetSpriteSize(2,0.2,-1)
rem *** Step through sprite ***
for c# = 0 to 20 step 0.5
 rem *** Show pixel equivalent ***
 SetTextString(1,Str(GetSpritePixelFromX(1,c#)))
 rem *** Show position within sprite ***
 SetSpritePosition(2,c#,0)
 Sync()
 Sleep(500)
next c
do
loop

Hands On AGK BASIC: Sprites 493

GetSpritePixelFromY()

We can do the same sprite-to-original-image conversion, but this time horizontally,
using the GetSpritePixelFromY()	statement	(see	FIG-17.50).

where:

 id is the integer value previously assigned as the ID of the sprite.

 yoffset is a real number giving the distance in from the top edge of the
 sprite. This distance is measured in percentage or virtual pixels
 depending on the system being used.

GetSpriteXFromPixel() and GetSpriteYFromPixel()

As	well	as	finding	which	pixel	is	equivalent	to	a	given	position	on	the	sprite,	we	can	
reverse	the	process	and	find	which	position	on	the	sprite	 is	equivalent	 to	a	given	
position on the image. This is achieved using GetSpriteXFromPixel() and
GetSpriteYFromPixel(). The format for each statement is given in FIG-17.51.	

where:

 id is the integer value previously assigned as the ID of the sprite.

 ipixelx is an integer value giving the number of pixels in from the left of
 the image.

 ipixely is an integer value giving the number of pixels down from the
 top of the image.

SetSpriteSnap()

When a sprite is moving, the theoretical position of the sprite may not map exactly
to	a	pixel.	This	may	cause	the	sprite	to	flicker	as	it	adjusts	itself	to	the	nearest	physical	
pixel.

You can force a sprite to map exactly to a screen pixel using SetSpriteSnap() (see
FIG-17.52).

Activity 17.17

Start a new project called SpriteImageMapping and implement the code given
in	FIG-17.49.	Copy	the	files	Hexagons.png and VerticalLine.png to the media
folder.		Resize	the	app	window	to	500	x	500.	

Test and save your project.

FIG-17.50

GetSpritePixelFromY() GetSpritePixelFromYinteger (yoffsetid)

FIG-17.51

GetSpriteXFromPixel()

GetSpriteYFromPixel()

GetSpriteXFromPixelfloat (ipixelxid ,)

GetSpriteYFromPixelfloat (ipixelyid ,)

FIG-17.52

SetSpriteSnap()

SetSpriteSnap (id , iop)

494 Hands On AGK BASIC: Sprites

where

 id is an integer value giving the ID to be assigned to be snapped to
 the nearest screen pixel.

 iop is an integer value (0 or 1) specifying if the sprite is to snap to
 the nearest pixel (1) or not (0).

SetSpriteScissor()

You can perform clipping on a sprite so that any part of the sprite that falls outside a
specified	 rectangular	 area	 is	 not	 drawn	 on	 the	 screen.	 This	 is	 done	 using	 the	
SetSpriteScissor() statement (see FIG-17.53).

 id is an integer value giving the ID of the sprite to be clipped.

 x1,y1 are real values giving the coordinates of the top-left corner of the
 rectangular area.

 x2,y2 are real values giving the coordinates of the bottom-right corner
 of the rectangle.

The Sprite Offset Feature
All	sprites	are	created	with	a	fixed	point	about	which	they	rotate.	This	point	defaults	
to	the	exact	centre	of	the	sprite.	Because	most	operations	on	sprites	work	from	the	
top-left corner of the sprite (for example, SetSpritePosition()), this point of
rotation is measured relative to that top-left corner and is known as the sprite’s offset.

SetSpriteOffset()

By	using	 the	SetSpriteOffset() statement we can change this offset point and
make the sprite rotate about a different position. The statement’s format is shown in
FIG-17.54.

where:

 id is the integer value previously assigned as the ID of the sprite.

 xoffset, yoffset
 are real numbers giving the new position around which the
 sprite is to rotate. This offset is measured from the top-left
 corner of the sprite.

If the rotation point is to be within the body of the sprite, then xoffset should lie in the
range 0 to GetSpriteWidth() and yoffset in the range 0 to GetSpriteHeight().

The	program	in	FIG-17.55	displays	two	arrowed	lines	on	a	grid	background.	The	
arrows	are	first	rotated	about	their	centre	and	then	about	the	top-left	corner	of	their	
sprite.

FIG-17.53

SetSpriteScissor() SetSpriteScissor ()id x1 y1 x2 y2

We’ll see later that other
sprite commands also
make use of this offset
point.

FIG-17.54

SetSpriteOffset()

SetSpriteOffset (id , xoffset , yoffset)

Hands On AGK BASIC: Sprites 495

A sprite can be rotated about any point on or off the screen. The only thing to
remember is that the offsets given must always be measured from the top-left corner
of the sprite being rotated. For example, the line

FIG-17.55

Using SetSpriteOffset()

rem *** Sprite Offsets ***

rem *** Grey background ***
SetClearColor(100,100,100)
Sync()

rem *** Background grid image ***
LoadImage(1,”Grid.png”)
rem *** Test Image ***
LoadImage(2,”Arrows.png”)

rem *** Create grid in background ***
CreateSprite(1,1)
SetSpriteSize(1,100,100)
rem *** Add Sprite ***
CreateSprite(2,2)
SetSpriteSize(2,20,-1)
SetSpritePosition(2,40,40)
Sync()
Sleep(1000)

rem *** Rotate sprite about its centre ***
for c = 0 to 360
 SetSpriteAngle(2,c)
 Sync()
next c
Sleep(1000)
Sync()

rem *** Move rotation point to
rem *** top-left corner of sprite ***
SetSpriteOffset(2,0,0)
SetSpritePosition(2,40,40)
Sync()
Sleep(1000)

rem *** Rotate sprite about new point ***
for c = 0 to 360
 SetSpriteAngle(2,c)
 Sync()
next c
do
loop

Activity 17.18

Start a new project called SpriteOffset and implement the code given in
FIG-17.55.	The	images	Grid.png and Arrows.png must be copied from
AGKDownloads/Chapter17 to the project’s media folder.

Test the code and observe how the sprite rotates.

Modify the code so that the sprite rotates about its bottom-right corner instead
of the top-left corner. Save your project.

496 Hands On AGK BASIC: Sprites

SetSpriteOffset(2,-15,-15)

would rotate the arrowed sprite about the point shown in FIG-17.56.	

GetSpriteXByOffset() and GetSpriteYByOffset()

You	 can	 find	 the	 screen	 coordinates	 of	 a	 sprite’s	 point	 of	 rotation	 using	 the	
GetSpriteXByOffset() and GetSpriteYByOffset(). The format for each of these
statements is shown in FIG-17.57.

where:

 id is the integer value previously assigned as the sprite’s ID.

As you can see from the results of this latest version of the SpriteOffset project, the
coordinates returned are measured from the top-left of the app screen area.

SetSpritePositionByOffset()

Normally, when we position a sprite, it is the top-left corner of the sprite that is placed
at	the	specified	position.	However,	we	can	position	the	sprite	using	its	offset	point,	
rather than the sprite’s top-left corner, by calling the SetSpritePositionByOffset()

FIG-17.56

Rotation about the Offset
Point

Point
of rotation

Path
of rotation

Sprite
to be rotated

-15

-15

Activity 17.19

Modify SpriteOffset so that the arrows rotate about the point shown in FIG-
17.56.

Test your code and observe how the sprite rotates. Save your project.

FIG-17.57

GetSpriteXByOffset()
GetSpriteYByOffset()

GetSpriteXByOffsetfloat (id)

GetSpriteYByOffsetfloat (id)

Activity 17.20

Modify SpriteOffset so that the arrows’ offset values are displayed in a single
text resource before and during each rotation. Save your project.

Hands On AGK BASIC: Sprites 497

statement	(see	FIG-17.58	for	the statement’s format).

where:

 id is the integer value previously assigned as the ID of the sprite.

 x,y are real values giving the position on the screen where the sprite
 is to be positioned.

If we use SetSpritePositionByOffset() to place a sprite and, assuming the sprite’s
offset remains at its default centre position, then it is the centre of the sprite that is
placed	at	the	specified	point.	For	example,	SetSpritePositionByOffset(2,80,60)
would move sprite 2 so that its centre was at position (80,60).

The	 program	 in	 FIG-17.59	 positions	 the	Arrows	 sprite	 at	 (50,50).	 It	 then	 uses	
SetSpriteOffset() to create an offset centred on the middle of the sprite before
using SetSpritePositionByOffset() to place the middle of the sprite at position
(50,50).

FIG-17.58

SetSpritePositionByOffset()

SetSpritePositionByOffset (x y,)id ,

FIG-17.59

Using
SetSpritePositionBy
Offset()

rem *** Sprite Offset Positioning ***

rem *** Grey background ***
SetClearColor(100,100,100)
Sync()

rem *** Background grid image ***
LoadImage(1,”Grid.png”)
rem *** Test Image ***
LoadImage(2,”Arrows.png”)

rem *** Create grid in background ***
CreateSprite(1,1)
SetSpriteSize(1,100,100)

rem *** Add Sprite ***
CreateSprite(2,2)
SetSpriteSize(2,20,-1)
SetSpritePosition(2,50,50)
Sync()
Sleep(5000)
SetSpritePositionByOffset(2,50,50)
Sync()
do
loop

Activity 17.21

Start a new project called OffsetPositioning and implement the code given in
FIG-17.59.	Copy	the	necessary	files	to	the	media folder.

Observe the change of position of the sprite.

What happens if the SetSpritePositionByOffset() statement is replaced by a
SetSpritePosition() statement? Why do we obtain this effect?

498 Hands On AGK BASIC: Sprites

SetSpriteScaleByOffset()

We already have a SetSpriteScale() statement which allows use to resize a sprite,
but	this	command	always	keeps	the	top-left	of	the	sprite	as	a	fixed	point	as	the	image	
changes	size.	If	we	would	rather	keep	the	sprite’s	offset	point	fixed	when	scaling	a	
sprite then we can use the SetSpriteScaleByOffset() statement (see FIG-17.60).

where:

 id is the integer value previously assigned as the ID of the sprite.

 xscale is a real value giving the scaling factor in the x direction (width).
	 	 	 0.5	will	half	the	width;	2.0	will	double	it.

 yscale is a real value giving the scaling factor in the y direction (height).

By	default,	using	this	statement	will	scale	towards	the	middle	of	the	sprite	since	all	
sprites have an initial offset value at that position.

The	 program	 in	 FIG-17.61	 demonstrates	 the	 effects	 of	 scaling	 using	 first	 the	
SetSpriteScale() statement (scales to top-left of sprite), then
SetSpriteScaleByOffset()(scales to centre of sprite). Finally, the offset point is
moved to the bottom right of the sprite and SetSpriteScaleByOffset() is used
again with scaling moves towards that point.

FIG-17.60

SetSpriteScaleByOffset()

SetSpriteScaleByOffset (xscale yscale,)id ,

FIG-17.61

Using
SetSpriteScaleByOffset()

rem *** Sprite Offset Positioning ***
rem *** Grey background ***
SetClearColor(100,100,100)
Sync()
rem *** Background grid image ***
LoadImage(1,”Grid.png”)
rem *** Test Image ***
LoadImage(2,”Arrows.png”)
rem *** Create grid in background ***
CreateSprite(1,1)
SetSpriteSize(1,100,100)
rem *** Add Sprite ***
CreateSprite(2,2)
SetSpriteSize(2,20,-1)
SetSpritePosition(2,50,50)
Sync()
Sleep(2000)
rem *** Use SetSpriteScale() ****
rem *** Scales towards top-left of sprite ***
rem *** Decrease scale ***
for c# = 1 to .1 step -0.05
 SetSpriteScale(2,c#,c#)
 Sync()
next c#
Sleep(2000)
rem *** Increase scale ***
for c# = .1 to 1.005 step 0.05
 SetSpriteScale(2,c#,c#)
 Sync()
next c#

Hands On AGK BASIC: Sprites 499

Sprite Bounding Areas
When	a	sprite	is	first	created,	it	is	surrounded	by	an	invisible	bounding area. It is
this bounding area that is used to determine if sprites have been selected or have
collided; the actual visible shape of the sprite is not involved in these calculations.

This initial bounding area is always rectangular in shape for all sprites. The bounding
areas of various sprites are made visible in FIG-17.62.

FIG-17.61
(continued)

Using
SetSpriteScaleByOffset()

Sleep(2000)

rem *** Use SetSpriteScaleByOffset() ***
rem *** Scales towards centre ***
rem *** Decrease scale ***
for c# = 1 to .1 step -0.05
 SetSpriteScaleByOffset(2,c#,c#)
 Sync()
next c#
Sleep(2000)

rem *** Increase scale ***
for c# = .1 to 1.005 step 0.05
 SetSpriteScaleByOffset(2,c#,c#)
 Sync()
next c#

rem *** Move offset to bottom-right of sprite ***
SetSpriteOffset(2,GetSpriteWidth(2),GetSpriteHeight(2))
SetSpritePosition(2,50,50)
Sleep(2000)

rem *** Reduce scale ***
for c# = 1 to .1 step -0.05
 SetSpriteScaleByOffset(2,c#,c#)
 Sync()
next c#
Sleep(2000)

rem *** Increase scale ***
for c# = .1 to 1.005 step 0.05
 SetSpriteScaleByOffset(2,c#,c#)
 Sync()
next c#
Sync()

do
loop

Activity 17.22

Start a new project called OffsetScaling and implement the code given in FIG-
17.61.	Copy	the	files	Grid.png and Arrows.png to the media folder.

Resize the app window to 768 x 1024.

Test and save your project.

500 Hands On AGK BASIC: Sprites

As you can see, a rectangular bounding area is an accurate representation of the sprite
only when the sprite image is itself rectangular in nature. An inaccurate bounding
area can result in unsatisfactory simulations of various events such as collisions or
selections.

SetSpriteShape()

We can change the type of bounding area assigned to a sprite using the
SetSpriteShape() statement (see FIG-17.63).

where:

 id is an integer value giving the ID previously assigned to the
 sprite.

 ishape is an integer value (0 to 3) giving the bounding shape to be
 assigned to the sprite. 0: No bounding area; 1: circle; 2: rectangle;
 3: polygon.

Assigning a new bounding area will remove any existing one. If option zero is chosen
and no bounding area assigned, then the sprite will not be detected by operations such
as selection or collision, although the sprite itself will remain visible.

The new shapes are calculated automatically by AGK. FIG-17.64 shows the new
bounding areas for the original four sprites after sprite 2 has been changed to a circle
and sprites 3 and 4 to polygons.

The circle is a perfect match, and the polygons, although certainly not perfect, are
more accurate than the previous rectangle.

The downside to changing the bounding area is that the calculations the AGK engine
has to perform when detecting collisions and selections becomes more complex.

FIG-17.62

Default	Bounding	Areas	

Bounding areas

Sprite 1 Sprite 2 Sprite 3 Sprite 4

FIG-17.63

SetSpriteShape() SetSpriteShape (ishapeid ,)

FIG-17.64

Sprite	Boundary	
Examples

Sprite 1
(rectangle)

Sprite 2
(circle)

Sprite 3
(polygon)

Sprite 4
(polygon)

Hands On AGK BASIC: Sprites 501

SetSpriteShapeBox()

If you wish to create your own bounding area for a sprite, one of the three commands
available is SetSpriteShapeBox() which allows you to specify your own rectangle.

The format for SetSpriteShapeBox() is shown in FIG-17.65.

where:

 id is an integer value giving the ID previously assigned to the
 sprite.

 x1,y1 are a pair of real values giving the coordinates of the top-
 left corner of the bounding box.

 x2,y2 are a pair of real values giving the coordinates of the
 bottom-right corner of the bounding box.

 fangle is a real number giving the angle to which the bounding
 box is to be rotated. The angle is given in radians.

The positions (x1,y1) and (x2,y2) are measured relative to the sprite’s top-left corner.

If we assume we have created a sprite using the commands

CreateSprite(1,1)
SetSpriteSize(1,15,-1)
SetSpritePosition(1,42,10)

then we can create our own bounding box using the line:

SetSpriteShapeBox(1,0,0,GetSpriteWidth(1),GetSpriteHeight(1),0)

This would create exactly the same bounding box as the default one, so the statement
would be rather a waste of time! On the other hand, if you wanted to make the
bounding	box	larger	than	the	sprite	(perhaps	to	emulate	a	force	field)	then	we	could	
use the line

SetSpriteShapeBox(1,-1,-1,GetSpriteWidth(1)-1,
GetSpriteHeight(1)-1,0)

which would create a bounding box exactly 1 unit larger all round (see FIG-17.66).

If the sprite is rotated before you add your own bounding box, AGK will automatically
rotate your new bounding box too - there is no need for you to supply an angle of
rotation when calling SetSpriteShapeBox() (see FIG-17.67).

FIG-17.65

SetSpriteShapeBox()

SetSpriteShapeBox (id ,)x1 y1 x2 y2 fangle

FIG-17.66

An	Expanded	Bounding	
Box

502 Hands On AGK BASIC: Sprites

Only if you wish the bounding box to be at an angle to the sprite itself, do you need
to supply an angle of other than zero as an argument to SetSpriteShapeBox(). For
example, the line

 SetSpriteShapeBox(1,0,0,GetSpriteWidth(1),GetSpriteHeight(1),1.0)

would create the setup shown in FIG-17.68.

SetSpriteShapeCircle()

If you want to create your own bounding circle, use SetSpriteShapeCircle() (see
FIG-17.69).

where:

 id is an integer value giving the ID previously assigned to the
 sprite.

 x,y are a pair of real values giving the coordinates of the centre of
 the bounding circle.

 fradius is a real number giving the radius of the bounding circle.

Unlike SetSpriteShapeBox(), where coordinates are measured from the top-left
corner of the sprite, the coordinates here are measured from the sprite’s current offset
position (which by default is at the centre of the sprite), so, assuming you want the
circle to share the same centre as the sprite, x and y would both have a value of zero.

SetSpriteShapePolygon()

The	final	option	for	creating	your	own	bounding	area	is	to	create	a	bounding	polygon	
using the SetSpriteShapePolygon() statement (see FIG-17.70).

FIG-17.67

The	Bounding	Box	
Adjusts for Rotated
Sprites

If you rotate your sprite
SetSpriteAngle(1,45) and
then create a bounding
box, the angle of the box
is adjusted automatically.

FIG-17.68

Rotating	the	Bounding	
Box	Independently	of	the	
Sprite

Bounding Box

FIG-17.69

SetSpriteShapeCircle()

SetSpriteShapeCircle (id ,)x y fradius

FIG-17.70

SetSpriteShapePolygon()

SetSpriteShapePolygon (id ,)icount index x y

Hands On AGK BASIC: Sprites 503

where:

 id is an integer value giving the ID previously assigned to the
 sprite.

 icount is an integer value (3 to 12) giving the number of vertices in the
 polygon.

 index is	an	integer	value	giving	the	index	of	this	specific	vertex.	The	
	 	 	 first	vertex	has	an	index	setting	of	zero.

 x,y are a pair of real values giving the coordinates of the vertex. The
 coordinates are measured from the sprite’s offset.

The statement has to be called once for each vertex in the polygon.

If we assume we want to set up a polygon for the shape shown in FIG-17.71, then we
would need to call SetSpriteShapePolygon() ten times - once for each vertex.

Since	it	would	be	impractical	to	figure	out	the	coordinates	of	the	polygon’s	vertices	
manually, a simple example of how you might create a program to do this is shown
in FIG-17.72.

FIG-17.71

Identifying the Vertices
on a Polygon

Polygon’s
outline

(x0,y0)

(x1,y1)
(x2,y2)

(x3,y3)

(x4,y4)

(x5,y5)
(x6,y6)

(x7,y7)

(x8,y8)
(x9,y9)

FIG-17.72

Using
SetSpriteShapePolygon()

rem *** Set Points for a Bounding Polygon ***

rem *** Main Variables ***
spritewidth as float
spriteheight as float
spriteCentreX as float
spriteCentreY as float
dim vertices[24] as float

rem *** Load images ***
LoadImage(3,”Point.png”)
LoadImage(2,”Finished.png”)
LoadImage(1,”Sprite4.png”)
rem *** Set background colour ***
SetClearColor(120,120,120)
Sync()

rem *** Create sprites ***
CreateSprite(1,1)
SetSpriteSize(1,50,-1)
SetSpritePosition(1,5,25)

504 Hands On AGK BASIC: Sprites

The program shows the sprite for which the bounding polygon is to be produced. You

FIG-17.72
(continued)

Using
SetSpriteShapePolygon()

CreateSprite(2,2)
SetSpriteSize(2,15,-1)
SetSpritePosition(2,80,2)
SetSpriteDepth(2,9)
CreateSprite(3,3)
SetSpriteSize(3,3,-1)

rem *** Assign main variables values ***
spritewidth = GetSpriteWidth(1)
spriteheight = GetSpriteHeight(1)
spriteCentreX = GetSpriteXByOffset(1)
spriteCentreY = GetSpriteYByOffset(1)

rem *** Set next sprite number to be used ***
nextSprite = 4
rem *** All points entered flag ***
done = 0
rem *** Count of entries in array ***
count = 0

rem *** Mark each apex ***
repeat
 rem *** Move vertex marker to pointer position ***
 SetSpritePositionByOffset(3,GetPointerX(),GetPointerY())
 rem *** If pointer pressed ***
 if GetPointerPressed() = 1
 rem *** If over button, process is complete ***
 if GetSpriteHit(GetPointerX(),GetPointerY())=2
 done = 1
 else
 rem *** Clone vertex marker sprite ***
 CloneSprite(nextsprite,3)
 rem *** Save position of marker ***
 vertices[count] = GetPointerX()-spriteCentreX
 vertices[count+1] = GetPointerY()-spriteCentreY
 rem *** Add to
 count = count + 2
 inc nextsprite
 endif
 endif
 Sync()
until done = 1

rem *** Construct the bounding polygon ***
vcount = count / 2
for c = 0 to vcount-1
 SetSpriteShapePolygon(1,vcount, c,vertices[c*2],
 vertices[c*2+1])
next c

rem *** Use physics option to show bounding polygon ***
SetSpritePhysicsOn(1,2)
SetPhysicsDebugOn()
SetPhysicsGravity(0,0)

do
 Sync()
loop

Hands On AGK BASIC: Sprites 505

can then click on each of the sprite’s vertices, leaving a marker sprite at each point.
When all the vertices have been marked, pressing the button in the top-right corner
will end the process and then display the new bounding polygon around the sprite. A
snapshot from the program is shown in FIG-17.73.

In order to display the outline of the sprite, the program in FIG-17.72 makes use of
three physics statements near the end of the code. These statements are covered in
Chapter 20.

Sprite Groups
SetSpriteGroup()

Sprites can be grouped. Each sprite belonging to the same group is given an identical
group ID. For example, if we were writing a chess program, we might want all of the
black pieces to belong to one group and the white pieces to a second group. Grouping
can be useful since we can then control the detection of hits and collisions according
to these groups.

You	can	assign	a	sprite	to	a	specific	group	using	the	SetSpriteGroup() statement
(see FIG-17.74).

 where

 id is an integer value giving the ID of the sprite.

FIG-17.73

Program Display

Activity 17.23

Start a new project called BoundingPolygon and implement the code given in
FIG-17.72.	Copy	the	files	Point.png, Finished.png and Sprite4.png into the
project’s media folder. Test and save your project.

What line of code positions the marker sprites when the mouse button is
clicked?

Where are the coordinates for each vertex stored? Which lines of code set up
the bounding polygon?

FIG-17.74

SetSpriteGroup()

SetSpriteGroup ()id igroup

506 Hands On AGK BASIC: Sprites

 igroup is an integer value representing the group to which the sprite is
 to be assigned

By	default,	all	sprites	are	assigned	to	group	zero.

Grouping sprites also affects how they behave during collisions.

GetSpriteGroup()

To determine which group a sprite has been assigned to, use GetSpriteGroup() (see
FIG-17.75).

 where

 id is an integer value giving the ID of the sprite.

The function will return the group to which the sprite has been assigned.

GetSpriteHitGroup()

When sprites have been grouped, we have the option to detect sprite hits belonging
to	a	specific	group	only.	For	example,	if	we	have	displayed	a	menu	which	has	been	
implemented using several grouped sprites, we might want to ignore any hits on
sprites outside this group until that menu has been closed.

To	check	for	hits	 in	a	specific	sprite	group,	use	GetSpriteHitGroup() (see FIG-
17.76).

 where

 igroup is an integer value representing the group to be checked.

 x,y are real values giving the coordinates of the point to be checked
 for a hit.

If position (x,y)	lies	on	a	sprite	in	the	specified	group,	the	ID	of	that	sprite	is	returned	
by the function, otherwise zero is returned.

FIG-17.77 shows part of an imaginary board game. The dark pieces in the game have
been assigned to group 1 and the white pieces to group 2; the board itself remains in
the default group 0.

FIG-17.75

GetSpriteGroup()

GetSpriteGroup ()idinteger

FIG-17.76

GetSpriteHitGroup() GetSpriteHitGroup ()integer igroup x y

FIG-17.77

Grouping Playing Pieces

Hands On AGK BASIC: Sprites 507

The player moves a piece by clicking on an appropriate sprite. As you can see, with
the pieces in such close proximity to each other, it would be easy for a player to touch
an opponent’s piece. We can use grouping to avoid any problems. The program in
FIG-17.78 demonstrates piece selection using groups (note that the piece selected is
highlighted but doesn’t move).

FIG-17.78

Grouped Playing Pieces

rem *** Using Sprite Groups to ***
rem *** Limit User Selection ***

rem *** Load images ***
LoadImage(1,”Board.png”)
LoadImage(2,”PieceRed.png”)
LoadImage(3,”PieceWhite.png”)

rem *** Create board ***
CreateSprite(1,1)
SetSpriteSize(1,100,-1)

rem *** Create red sprites ***
CreateSprite(2,2)
SetSpriteSize(2,8,-1)
SetSpritePosition(2,27,23)
CloneSprite(3,2)
SetSpritePosition(3,39,23)
CloneSprite(4,2)
SetSpritePosition(4,39,15)
rem *** Place in group 1 ***
for c = 2 to 4
 SetSpriteGroup(c,1)
next c

rem *** Create white sprites ***
CreateSprite(5,3)
SetSpriteSize(5,8,-1)
SetSpritePosition(5,27,15)
CloneSprite(6,5)
SetSpritePosition(6,15,23)
CloneSprite(7,5)
SetSpritePosition(7,27,31)
rem *** Place in group 2 ***
for c = 5 to 7
 SetSpriteGroup(c,2)
next c

rem *** Set active group ***
activegroup = 1
rem *** Set pressed state ***
pressed = 0
do
 rem *** If changes to pressed ***
 if GetPointerState()=1 and pressed = 0
 rem *** Record as pressed ***
 pressed = 1
 rem *** Get ID of any sprite from the correct group ***
 rem *** that has been hit ***
 id = GetSpriteHitGroup(activegroup,GetPointerX(),
 GetPointerY())
 rem *** If a sprite was selected ***
 if id <> 0
 rem *** Change its colour ... ***

508 Hands On AGK BASIC: Sprites

SetSpriteCategoryBits()

As well as belonging to a group, a sprite can also be assigned to one or more of 16
categories. We can think of these as alternate groupings or sub-groupings. We can
use these categories to gain greater control over which sprites can be hit.

To set the categories to which a sprite is to belong, use SetSpriteCategoryBits()
(see FIG-17.79).

where

 id is an integer value giving the ID of the sprite.

 icats is an integer value representing the categories to which a sprite
 is to belong.

The categories are stored as a 16 bit value (see FIG-17.80) and hence, icats is
normally stated as a hexadecimal or binary number.

FIG-17.78
(continued)

Grouped Playing Pieces

 SetSpriteColorRed(id,0)
 Sync()
 Sleep(500)
 rem *** ... then change it back ***
 SetSpriteColorRed(id,255)
 Sync()
 rem *** Change to other sprite group ***
 activegroup = 3 - activegroup
 endif
 else
 rem *** Record as not pressed ***
 pressed = 0
 endif
 Sync()
loop

Activity 17.24

Start a new project called ControlledHits and implement the code given in FIG-
17.78.	Copy	the	files	Board.png, PieceRed.png and PieceWhite.png into the
project’s media folder. Set the app window size to 768 x 1024.

Check that pieces must be selected in a red-white order and that the board itself
cannot be selected. Save your project.

FIG-17.79

SetSpriteCategoryBits()

SetSpriteCategoryBits ()id icats

FIG-17.80

How Sprite Categories are
Recorded

Caregory Bits

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0:
not member

1:
member

Hands On AGK BASIC: Sprites 509

By	default,	every	sprite	is	a	member	of	category	1.

To	make	sprite	1	a	member	of	categories		13,	12,	5,	4,	3	and	2	we	would	use	either	
of the following statements:

SetSpriteCategoryBits(1,0X181E) // Hexadecimal
SetSpriteCategoryBits(1,%0001100000011110) //Binary

A sprite’s categories can be changed at any time.

SetSpriteCategoryBit()

If you want to modify just a single bit in a sprite’s category value without changing
the other category settings, then you can use SetSpriteCategoryBit() (see FIG-
17.81).

where

 id is an integer value giving the ID of the sprite.

 index is an integer value (1 to 16) giving the category whose value is
 to be set.

 iflag is an integer value (0 or 1) giving the category setting.
 (0: not member ; 1: member).

For example, we could have sprite 1 become a member of category 9 using the line

 SetSpriteCategoryBit(1,9,1)

GetSpriteHitCategory()

Just as we could use groups to control sprite hits, so we can also use categories in the
same	way	allowing	hits	only	for	sprites	in	specified	categories.	This	is	done	using	the	
GetSpriteHitCategory() statement (see FIG-17.82).

where

 icats is an integer value representing the group to be checked.

 x,y are real values giving the coordinates of the point to be checked
 for a hit.

If position (x,y)	lies	on	a	sprite	belonging	to	any	of	the	specified	categories,	the	ID	of	
that sprite is returned by the function, otherwise zero is returned.

The program in FIG-17.83 is a variation on the previous program. In this version,
categories rather than groups are used to identify the pieces. In addition, two pieces
are placed off the board and therefore cannot be selected.

FIG-17.81

SetSpriteCategoryBit() SetSpriteCategoryBit ()id index iflag

FIG-17.82

GetSpriteHitCategory() GetSpriteHitCategory ()integer icats x y

510 Hands On AGK BASIC: Sprites

FIG-17.83

Using Categories

rem *** Using Sprite Categories to ***
rem *** Limit User Selection ***

rem *** Categories ***
rem *** 1 - all sprites (bit value 1)
rem *** 2 - red piece on board (bit value 2)
rem *** 3 - white piece on board (bit value 4)
rem *** 4 - any piece off board (bit value 8)

rem *** Load images ***
LoadImage(1,”Board.png”)
LoadImage(2,”PieceRed.png”)
LoadImage(3,”PieceWhite.png”)

rem *** Create board ***
CreateSprite(1,1)
SetSpriteSize(1,100,-1)

rem *** Create red sprites ***
CreateSprite(2,2)
SetSpriteSize(2,8,-1)
SetSpritePosition(2,27,23)
CloneSprite(3,2)
SetSpritePosition(3,39,23)
CloneSprite(4,2)
SetSpritePosition(4,39,75)
rem *** Place in category 2 ***
for c = 2 to 4
 SetSpriteCategoryBits(c,0X0002)
next c
rem *** Sprite 4 is off-board, remove from cat 2 ***
SetSpriteCategoryBit(4,2,0)
SetSpriteCategoryBit(4,4,1) //Off-board

rem *** Create white sprites ***
CreateSprite(5,3)
SetSpriteSize(5,8,-1)
SetSpritePosition(5,27,15)
CloneSprite(6,5)
SetSpritePosition(6,15,23)
CloneSprite(7,5)
SetSpritePosition(7,27,75)
rem *** Place in category 3 ***
for c = 5 to 7
 SetSpriteCategoryBits(c,0X0004)
next c
rem *** Sprite 7 off board, remove from cat 3 ***
SetSpriteCategoryBit(7,3,0)
SetSpriteCategoryBit(7,4,1) //Off-board

rem *** Set active category ***
activecategory = 2 //On-board red
rem *** Set pressed state ***
pressed = 0
do
 rem *** If changes to pressed ***
 if GetPointerState()=1 and pressed = 0

Hands On AGK BASIC: Sprites 511

Sprite groups and categories can also be used to control collisions, as we will see
later.

Moving Sprites
In many games we will want at least some of the sprites being displayed to move
about the screen. Perhaps such a sprite represents a ball, a missile, or a character.

A moving character has velocity. That is to say, it has speed and a direction in which
it moves. When movement is either horizontal or vertical, then the data required is
trivial. We need only set a speed with a line such as

 speed = 1

and then move the sprite by this amount on each iteration:

 do
 SetSpritePosition(id,GetSpriteX(id)+speed,GetSpriteY(id))
 Sync()
 loop

FIG-17.83
(continued)

Using Categories

 rem *** Record as pressed ***
 pressed = 1
 rem *** Get ID of any sprite from the correct group ***
 rem *** that has been hit ***
 id = GetSpriteHitCategory(activecategory,GetPointerX(),
 GetPointerY())
 rem *** If a sprite was selected ***
 if id <> 0
 rem *** Change its colour ... ***
 SetSpriteColorRed(id,0)
 Sync()
 Sleep(500)
 rem *** ... then change it back ***
 SetSpriteColorRed(id,255)
 Sync()
 rem *** Change to other sprite category ***
 activecategory = 6 - activecategory //Swap
 between red and white onboard
 endif
 else
 rem *** Record as not pressed ***
 pressed = 0
 endif
 Sync()
loop

Activity 17.25

Modify ControlledHits to match the code given in FIG-17.83 and check that
the off board pieces cannot be selected.

Change the code so that off board pieces can always be selected, irrespective of
which player is to move (red and white pieces on board should still alternate).

Save your project.

512 Hands On AGK BASIC: Sprites

The program in FIG-17.84 demonstrates the effect achieved by using this code on a
ball sprite.

When the ball travels in a direction which is at an angle to the vertical and horizontal,
then things get a little more complicated (see FIG-17.85).

FIG-17.84

Moving a Sprite
Horizontally

rem *** Moving a sprite ***

rem *** Load image ***
LoadImage(1,”Ball.png”)

rem *** Create, size and position sprite ***
id = CreateSprite(1)
SetSpriteSize(id,5,-1)
SetSpritePosition(id,47.5,47.5)

rem *** Set Speed ***
speed = 1

rem *** Move sprite ***
do
 SetSpritePosition(id,GetSpriteX(id)+speed, GetSpriteY(id))
 Sync()
loop

Activity 17.26

Start a new project called MovingBall and implement the code given in
FIG-17.84. (Remember to copy AGKDownloads/Chapter17/Ball.png to the
project’s media folder.)

Run the program. In which direction does the ball travel?

Modify the program so that the ball travels in the opposite direction.

Modify the program again so that the ball travels vertically down and change
the speed of the ball to 2.

Save your project.

The diagram shown
here makes use of
conventional math layout
which assumes that the
positive y-axis points in an
upward direction and that
angles are measured in a
counterclockwise direction.
On a computer screen,
the positive y-axis points
downwards and angles are
measured in a clockwise
direction.

FIG-17.85

Calculating a Sprite’s x
and y Offsets from its
Velocity

Since a sprite must always be placed
using x and y coordinates...

...when it has a velocity (speed and
direction) that is not parallel to the x-
or y-axis...

(12,40)
Sprite’s position

The length
of the line gives

the speed

θ

The angle
the line makes with

the x-axis gives
the direction

Hands On AGK BASIC: Sprites 513

In practice, it is more likely that we will simply calculate a value for the x and y
offsets directly rather than the speed and angle.

As you have seen when running the MovingBall program, a speed of 2 is fairly fast,
so typical offset values would be calculated with lines such as:

 xoffset# = Random(0,10)/5.0
 yoffset# = Random(0,10)/5.0

which will give offsets in the range 0.0 to 2.0 in steps of 0.2.

Values in this range will always result in a left-downward movement, since both
offsets will always be positive. To achieve values in the range -2 to +2 (thereby
allowing movement in any direction, we could use the lines:

 xoffset# = Random(0,20)/5.0 -2
 yoffset# = Random(0,20)/5.0 -2

In some games, when a sprite reaches the edge of the screen, it simply reappears at
the same position on the opposite edge. For example, we could check if our ball sprite
has reached the right-hand edge of the app window using the line:

FIG-17.85
(continued)

Calculating a Sprite’s x
and y Offsets from its
Velocity

...then we need to work out the x and
y offsets involved.

If we know the speed and direction
then the x and y offsets can be
calculated as:

x-offset

y-offset
speed = 2

60o

y-offset = speed * sin(60o)

x-offset = speed * cos(60o)

Activity 17.27

Modify MovingBall so that the ball’s velocity has a speed of 2% at an angle of
60o.

Test and save your project.

Activity 17.28

Modify MovingBall so that the x and y offsets are randomly generated and lie
in the range -2 to +2 with a step size of 0.1.

Run your program several times to check that the direction of the ball varies.

Save your program.

514 Hands On AGK BASIC: Sprites

 if GetSpriteX(id) >= 100

When the condition is true we need to reset the x-coordinate of the sprite to zero,
leaving the y value unchanged:

 if GetSpriteX(id) >= 100
 SetSpritePosition(id,0,GetSpriteY(id))

For a moment, you might be tempted to assume that we can check if the sprite has
moved off the left edge of the screen using the line

 if GetSpriteX(id) <= 0

but, in fact, the sprite will still be on-screen when its x-coordinate is equal to zero
(see FIG-17.86).

If we know the width of the sprite, we can use that to modify the condition in the if
statement.	Since	we	created	the	ball	to	have	a	width	of	5%,	then	the	ball	will	be	off	
the left edge of the screen when the statement

 if GetSpriteX(id) <= -5

is true, so we can bring the sprite back in on the right edge with the lines:

 if GetSpriteX(id) <= -5
 SetSpritePosition(id,100,GetSpriteY(id))

To achieve the same effect for the top and bottom edges, the tests are

 if GetSpriteY(id) >= 100 // bottom edge

and

 if GetSpriteY(id) <= -GetSpriteHeight(id) // top edge

Note that, to check if the sprite has moved off the top edge, we needed to get the
sprite’s	height.	Although	we	set	the	width	of	the	sprite	to	5	when	it	was	created,	the	
height value was given as -1, allowing AGK to calculate the sprite’s height in such a
way as to maintain the correct width to height ratio, so we cannot be sure of the exact
height of the sprite without calling the GetSpriteHeight() function.

In	the	final	code,	it’s	best	if	we	don’t	allow	two	off-edge	moves	to	be	reset	during	the	
same iteration, since this can lead to a deadlock situation in a few, rare circumstances.
So,	the	final	code	for	resetting	off-edge	moves	is:

if GetSpriteX(id) >= 100
 SetSpritePosition(id,0,GetSpriteY(id))
elseif GetSpriteX(id) <= -5

FIG-17.86

When a Sprite Disappears
from the Screen

App Window App Window

A sprite’s position is
measured from its
top-left corner, so
when its x-coordinate
is equal to zero, the
sprite is still fully
visible.

It is only when the
sprite’s right edge
has moved out of the
window, that the sprite
is no longer visible.

Hands On AGK BASIC: Sprites 515

 SetSpritePosition(id,100,GetSpriteY(id))
elseif GetSpriteY(id) >= 100
 SetSpritePosition(id,GetSpriteX(id),0)
elseif GetSpriteY(id) <= -GetSpriteHeight(id)
 SetSpritePosition(id,GetSpriteX(id),100)
endif

You may have noticed that the overall effect does not seem quite right for some
trajectories (see FIG-17.87).

When the sprite follows Path 1, it disappears off the left edge and re-enters along
Path 2. And, although this might seem logical when we came up with the code for
the edge checks, in practice it doesn’t look natural.

A better way to think of the app window is as an unwrapped sphere. If we imagine
an object orbiting a sphere, then if we watch it appear over one horizon and disappear
off another, some time later we would expect it to reappear at its original position
over	the	first	horizon.	Relating	this	idea	to	FIG-17.87,	if	the	ball	follows	Path	1,	we	
would expect it to leave the left edge and then reappear at the same spot at the bottom
of the screen and follow exactly the same path (Path 1).

Since the path of the ball is a straight line, this is where another bit of the math you
ignored at school is actually useful. The equation of any straight line is given as:

 y = mx + c

where

 x and y represent the coordinates of a point on the line

 m is the gradient of the line

 c is the point at which the line intersects the y-axis

Activity 17.29

Modify MovingBall so that the ball reappears at the opposite edge when it
leaves the screen.

Run the program several times before saving your project.

FIG-17.87

A Typical Sprite Path

App Window

Path 1

Path 2

516 Hands On AGK BASIC: Sprites

FIG-17.88 shows three examples of lines.

If we want the ball sprite in our program to follow the same path as it disappears off
an edge of the screen and reappears on another, then we need to know the equation
of the line the ball is following.

We can work out the gradient of the line easily, because this is just the yoffset# value
divided by the xoffset# value:

 m# = yoffset#/xoffset#

However, there is a problem. If a line is parallel to the y-axis, the xoffset# value
would	be	zero	and	the	line	would	have	an	infinite	gradient	-	a	value	that	the	computer	
cannot handle. So, when we code the calculation, we must take this possibility into
account, which we can do with the lines:

 if xoffset# = 0
 m# = 999999
 else
 m# = yoffset#/xoffset#
 endif

Notice that we have set the value of m#	to	a	very	large	(but	not	infinite)	number	when	
the line is parallel to the y-axis. This will be a good enough approximation for our
line.

Now we have to calculate the value of c. We can do this if we know at least one point
that lies on the line. Luckily, we do. In the code

SetSpritePosition(id,47.5,47.5)

we	started	 the	ball	at	position	 (47.5,47.5)	 so	we	know	 that	 this	point	 lies	on	 the	
trajectory of our line.

If

 y = mx + c

then it follows that

 c = y - mx

So we can calculate c# in our program using the line

FIG-17.88

Lines

x-axis

y-axis

Line A

Line B

Lin
e C

Any line not parallel
to the y-axis must

intersect that y-axis
at some point

Hands On AGK BASIC: Sprites 517

 c# = 47.5 - m#*47.5

When the sprite disappears off the right edge of the screen (x >= 100) and we want
to bring it back on at the left edge of the screen (x = 0) then the value of y at that point
is

y = m#*0 + c#

which, of course, is simply

y = c#

and when the ball moves off the left edge (x <= -ball’s width) and returns at the right
edge, the value for y this time is

 y = m#*100+c#

If the ball moves off the bottom edge (y >= 100) and reappears at the top, then, this
time, it is the value of x we need to calculate. Again starting with

 y = mx +c

it follows that

 x = (y-c)/m

so, when the ball reappears at the top of the screen y = 0, meaning that

 x = -c#/m#

and when the ball reappears at the bottom of the screen (where y = 100)

 x = 100-c#/m#

The updated version of MovingBall is shown in FIG-17.89.

FIG-17.89

Maintaining a Sprite’s
Trajectory

rem *** Moving a sprite ***

rem *** Load image ***
LoadImage(1,”Ball.png”)

rem *** Create, size and position sprite ***
id = CreateSprite(1)
SetSpriteSize(id,5,-1)
SetSpritePosition(id,47.5,47.5)

rem *** Set velocity ***
xoffset# = Random(0,40)/10.0 -2
yoffset# = Random(0,40)/10.0 -2

rem *** Calculate gradient ***
if xoffset# = 0
 m# = 999999
else
 m# = yoffset#/xoffset#
endif

rem *** Calculate intersection with y-axis ***
c# = 47.5 - m# * 47.5

518 Hands On AGK BASIC: Sprites

Not all programs allow a sprite to move off-screen. Some treat the the edges of the
screen or window as a barrier which approaching sprites simply “bounce off”.

To achieve this effect, we need only negate either the xoffset or yoffset value. Which
one is negated depends on which edge is reached. When the left or right edges are
reached, it is the xoffset that must be changed (see FIG-17.90); for the top and bottom
edges, the yoffset must be changed.

The code for this version of MovingBall is given in FIG-17.91.

FIG-17.89
(continued)

Maintaining a Sprite’s
Trajectory

rem *** Move the sprite ***
do
 SetSpritePosition(id,GetSpriteX(id)+xoffset#,
 GetSpriteY(id)+yoffset#)
 if GetSpriteX(id) >= 100
 SetSpritePosition(id,0,c#)
 elseif GetSpriteX(id) <= -5
 SetSpritePosition(id,100,m#*100+c#)
 elseif GetSpriteY(id) >= 100
 SetSpritePosition(id,-c#/m#,0)
 elseif GetSpriteY(id) <= -GetSpriteHeight(id)
 SetSpritePosition(id,(100-c#)/m#,100)
 endif
 Sync()
loop

Activity 17.30

Modify MovingBall to match the code given in FIG-17.89.

Run the program several times and check that the ball follows the same path as
it moves across the screen.

Save your project.

FIG-17.90

Sprite	Bounce

Trajectory
before reaching

the edge

θ

θ

The angle between the
trajectory and the edge
is maintained before and
after the change of
direction.

Trajectory
after reaching

the edge

yoffset1
xoffset1
xoffset2

yoffset2

Changing Trajectory How the Offset Values Change

When the ball changes
direction after hitting the
right edge, the yoffset
remains unchanged but
the xoffset reverses direction.

Hands On AGK BASIC: Sprites 519

In the code, you can see that as an edge is reached either the xoffset# or yoffset#
variable is negated making the ball move in a new direction. Also note that the
boundary values are changed slightly from the previous version of MovingBall since
we don’t want the ball to move off-screen before changing direction.

GetSpriteCollision()

With bounding areas in place around each sprite, AGK makes use of these to detect
when one sprite comes into contact with another. In a game context, such a collision
may represent something as simple as a ball hitting a bat or a missile hitting a
spaceship.

The GetSpriteCollision() statement returns 1 when the bounding areas of two
specified	sprites	overlap.	The	statement	has	the	format	shown	in	FIG-17.92.

where:

 id1	 	 is	an	integer	value	giving	the	ID	of	the	first	sprite.

FIG-17.91

Implementing Sprite
Bounce

rem *** Moving a sprite ***

rem *** Load image ***
LoadImage(1,”Ball.png”)

rem *** Create, size and position sprite ***
id = CreateSprite(1)
SetSpriteSize(id,5,-1)
SetSpritePosition(id,47.5,47.5)

rem *** Set velocity ***
xoffset# = Random(0,40)/10.0 -2
yoffset# = Random(0,40)/10.0 -2

do
 rem *** Place ball ***
 SetSpritePosition(id,GetSpriteX(id)+xoffset#,
 GetSpriteY(id)+yoffset#)
 rem *** If ball hits left or right edge, negate xoffset ***
 if GetSpriteX(id) >= (100-GetSpriteWidth(id)) or
 GetSpriteX(id) <= 0
 xoffset# = -xoffset#
 rem *** If ball hits top or bottom edge, negate yoffset ***
 elseif GetSpriteY(id) >= (100-GetSpriteHeight(id)) or
 GetSpriteY(id) <= 0
 yoffset# = -yoffset#
 endif
 Sync()
loop

Activity 17.31

Start a new project named MovingBall2 and implement the code given in FIG-
17.91. Test and save your project.

FIG-17.92

GetSpriteCollision() GetSpriteCollisioninteger (id1)id2

520 Hands On AGK BASIC: Sprites

 id2 is an integer value giving the ID of the second sprite.

If the sprites overlap, the function returns 1, otherwise zero is returned.

The next program demonstrates collision detection by dropping a ball onto a bat and
making the ball bounce back when a collision is detected. The setup for the
demonstration is shown in FIG-17.93.

The program code is shown in FIG-17.94.

FIG-17.93

Bat	and	Ball	Program	
Display

FIG-17.94

Bat	and	Ball	Program	
Code

rem *** Bat and ball ***

rem *** Load images ***
LoadImage(1,”Ball.png”)
LoadImage(2,”Bat.png”)

rem *** Create Sprites ***
CreateSprite(1,1)
SetSpriteSize(1,4,-1)
SetSpritePosition(1,48,5)
CreateSprite(2,2)
SetSpriteSize(2,15,-1)
SetSpritePosition(2,42.5,90)
Sync()

rem *** Wait for 2 seconds ***
Sleep(2000)

rem *** Set ball’s speed in y direction ***
bally = 1

do
 rem *** if ball hits bat ***
 if GetSpriteCollision(1,2)
 rem *** Reverse ball’s direction ***
 bally = - bally
 endif
 rem *** Redraw ball’s position ***
 SetSpritePosition(1,GetSpriteX(1),GetSpriteY(1)+bally)
 Sync()
loop

Hands On AGK BASIC: Sprites 521

GetSpriteDistance()

You can determine the distance between the bounding areas of two sprites using the
GetSpriteDistance() statement (see FIG-17.95).

where

 id1	 	 is	an	integer	giving	the	ID	of	the	first	sprite.

 id2 is an integer giving the ID of the second sprite.

The function returns the shortest distance between the bounding areas of the two
sprites.

If the sprites are overlapping, then a value of less than zero will be returned. The
distance will be given in the units being used by the app (percentage or virtual pixels).

A typical setup is shown in FIG-17.96.

Activity 17.32

Start a new project called BatandBall and implement the code given in FIG-
17.94 copying Ball.png and Bat.png from AGKDownloads/Chapter17 to the
media folder.

Test and save your project.

Activity 17.33

Modify BatandBall so that the ball starts at the top of the screen with a random
velocity (make the yoffset	lie	in	the	range	0.5	to	2.0	and	the	xoffset lie in the
range -2 to +2, both in increments of 0.1).

If the ball hits the left, right, or top edges, make it bounce off the edge, but if it
reaches the bottom edge, the game is over.

Create a physical joystick option to allow the bat to be moved left or right. If
you are running this on a standard PC without a physical joystick, you can use
the A and D keys to move the bat.

If you are running the program on your tablet or phone, a virtual joystick will
appear and this can be used to control the bat.

Using the virtual joystick on a phone or tablet doesn’t work too well. Modify
your program to use invisible virtual buttons to control the movement of the
bat.

Test and save your project.

FIG-17.95

GetSpriteDistance()

GetSpriteDistancefloat (id1)id2

522 Hands On AGK BASIC: Sprites

After making a call to GetSpriteDistance(), the coordinates of the closest points
on each of the sprites can be found using the GetSpriteDistancePoint1X(),
GetSpriteDistancePoint1Y(), GetSpriteDistancePoint2X(), and
GetSpriteDistancePoint2Y() statements. The formats of these statements are
shown in FIG-17.97.

One scenario where the distance between two sprites might be of interest is where
one	sprite	 represents	a	motion	sensor.	The	program	in	FIG-17.98	causes	 the	first	
sprite to “light up” when a second sprite is dragged close to it.

FIG-17.96

How Distance is
Calculated

Sprite 1

Sprite 2

Bounding area
(rectangle)

Bounding area
(circle)

Distance
between sprites

Closest
point on first

sprite

Closest
point on second

sprite

FIG-17.97

GetSpriteDistancePoint1X()
GetSpriteDistancePoint1Y()
GetSpriteDistancePoint2X()
GetSpriteDistancePoint2Y()

GetSpriteDistancePoint1Xfloat ()

GetSpriteDistancePoint1Yfloat ()

GetSpriteDistancePoint2Xfloat ()

GetSpriteDistancePoint2Yfloat ()

FIG-17.98

Using the Distance
Between	Sprites

rem *** Checking Sprite Distance ***

rem *** Load images ***
LoadImage(1,”Detector.png”)
LoadImage(2,”Triangle.png”)
rem *** Create Detector ***
CreateSprite(1,1)
SetSpriteSize(1,12,-1)
SetSpritePositionByOffset(1,50,50)

rem *** Create moveable sprite ***
CreateSprite(2,2)
SetSpriteSize(2,6,-1)
SetSpritePositionByOffset(2,GetPointerX(),GetPointerY())

do
 rem *** Move sprite to mouse position ***
 SetSpritePositionByOffset(2,GetPointerX(),GetPointerY())
 rem *** IF sprites close, show red ***
 if GetSpriteDistance(1,2) < 10
 SetSpriteColorRed(1,255)
 else
 SetSpriteColorRed(1,0)
 endif
 Sync()
loop

Hands On AGK BASIC: Sprites 523

Controlling Speed
When your app is run on various devices, the speed at which it executes is likely to
vary depending on the hardware used. This could be a problem if a game ends up
running so fast that the player can’t control it! AGK offers various commands to help
with this problem.

GetFrameTime()

The GetFrameTime()returns the time in seconds between calls to Sync(). The
statement has the format shown in FIG-17.99.

The program in FIG-17.100 is a variation on the earlier bouncing ball project, but this
time displaying the time taken to construct each frame.

Activity 17.34

Start a new project called SpriteDistance and implement the code given in
FIG-17.98 copying Detector.png and Triangle.png	files	from	AGKDownloads/
Chapter17 to the media folder.

Test and save your project.

FIG-17.99

GetFrameTime() GetFrameTimefloat ()

FIG-17.100

Displaying Frame Time

rem *** Frame Time ***

rem *** Create text object ***
CreateText(1,””)

rem *** Load image ***
LoadImage(1,”Ball.png”)

rem *** Create, size and position sprite ***
id = CreateSprite(1)
SetSpriteSize(id,5,-1)
SetSpritePosition(id,47.5,47.5)

rem *** Set velocity ***
xoffset# = Random(0,40)/10.0 -2
yoffset# = Random(0,40)/10.0 -2

do
 SetSpritePosition(id,GetSpriteX(id)+xoffset#,
 GetSpriteY(id)+yoffset#)
 if GetSpriteX(id) >= (100-GetSpriteWidth(id)) or
 GetSpriteX(id) <= 0
 xoffset# = -xoffset#
 elseif GetSpriteY(id) >= (100-GetSpriteHeight(id)) or
 GetSpriteY(id) <= 0
 yoffset# = -yoffset#
 endif
 SetTextString(1,Str(GetFrameTime(),3))
 Sync()
loop

524 Hands On AGK BASIC: Sprites

ScreenFPS()

In a complex program, the time taken between Sync() calls may vary considerably
depending	on	the	program	logic,	so	finding	the	time	between	calls	may	not	give	us	
an accurate picture of the time taken to build the screen display.

An estimate of the number of frames displayed every second (based on the time taken
to show the last few frames) can be discovered using the ScreenFPS() statement (see
FIG-17.101).

SetSyncRate()

Perhaps the easiest way to control the speed of your game is to explicitly set the
frame rate. This can be used to reduce all possible devices to the same speed.

To set the number of frames shown per second, use SetSyncRate() (see FIG-17.102).

where

 ifps is an integer value giving the display rate in frames per second.

 iop is an integer value (0 or 1) used to decide how any delays that
 need to be introduced to achieve the desired frame rate are to be
 handled. (0: sleep mode - save CPU and battery; 1: loop until
 required time has passed - uses CPU but may be more accurate).

Ray Casting
Determining if there is a line-of-sight between two or more objects can be an
important consideration in some games. For example, when you are creating code
which determines how a non-human opponent is to react to a player’s character,

Activity 17.35

Modify your earlier MovingBall2 project to match the code given in FIG-
17.100. Test and save your project.

FIG-17.101

ScreenFPS()

ScreenFPSfloat ()

Activity 17.36

Modify MovingBall2 to display the frame rate rather than the time between
Sync() calls. Test and save your project.

FIG-17.102

SetSyncRate() SetSyncRate ()ifps iop

The CPU (Central
Processing Unit)
hardware is
responsible for
executing all
program code. Activity 17.37

Modify MovingBall2		setting	the	frame	rate	to	50	fps.	Try	using	both	the	0	
and 1 options for the parameter and observe any differences between the two
settings when the program runs. Save your project.

Hands On AGK BASIC: Sprites 525

determining if there is a line-of-sight between the two characters will help decide if
the	opponent	should	fire	a	weapon.	This	type	of	situation	is	shown	in	FIG-17.103.

To help with this type of problem, AGK offers various ray cast instructions. You can
think	of	a	ray	cast	as	a	projected	beam	of	invisible	light	starting	at	a	specific	point	
(usually from the position of a sprite). If that light hits another object, then that object
must be “visible” to anything positioned at the start of the beam.

SpriteRayCast()

To initiate a ray cast between two points, use the SpriteRayCast() statement. The
statement has the format shown in FIG-17.104.

where:

 x1,y1 are a pair of real values giving the coordinates of the starting
 point of the ray cast.

 x2,y2	 	 are	a	pair	of	real	values	giving	the	coordinates	of	the	finishing	
 point of the ray cast.

In fact, the ray cast detects the sprite’s bounding area and not the actual sprite itself.
The command will not work with the default bounding area assigned to a sprite. This
allows sprites to be invisible to the ray cast if you wish. Instead, you must use a
bounding area assignment statement such as SetSpriteShape() to assign a bounding
area to any sprite that you wish to detect using ray casting.

The	program	in	FIG-17.105	sets	up	three	sprites	and	displays	the	result	of	a	call	to	
RayCast()with	the	ray	starting	in	the	centre	of	the	first	object	and	ending	at	the	top	
of the app window.

FIG-17.103

Using Ray Casting

Computer’s
Character

Human Player’s
Character

Li
ne

 o
f s

ig
ht

Computer’s
Character

Human Player’s
Character

Lin
e o

f s
ig

ht

Scenario 1 Scenario 2

A line-of-sight exists between the two
characters allowing the computer’s character
to �re.

No line-of-sight exists between the characters
so the computer’s character will not �re.

FIG-17.104

SpriteRayCast()

SpriteRayCastinteger ()x1 y1 x2 y2

FIG-17.105

Ray Cast Example

rem *** Ray casting ***

rem ** Set screen colour ***
SetClearColor(120,120,120)
Sync()

rem *** Create text ***
CreateText(1,””)
SetTextSize(1,3)

526 Hands On AGK BASIC: Sprites

The setup created by this program is shown in FIG-17.106.

FIG-17.105
(continued)

Ray Cast Example

rem *** Load Images ***
LoadImage(1,”Turret.png”)
LoadImage(2,”Tile.png”)
LoadImage(3,”Cherry.png”)

rem *** Create Sprites ***
rem *** Turret ***
CreateSprite(1,1)
SetSpriteSize(1,15,-1)
SetSpritePosition(1,42.5,42.5)
rem *** Tile ***
CreateSprite(2,2)
SetSpriteSize(2,10,-1)
SetSpritePosition(2,45,5)
SetSpriteShape(2,2) //Bounding box
rem *** Cherry ***
CreateSprite(3,3)
SetSpriteSize(3,10,-1)
SetSpritePosition(3,45,20)
SetSpriteShape(3,1) //Bounding circle

rem *** Raycast from turret to top of screen ***
hit = SpriteRayCast(GetSpriteXByOffset(1),
GetSpriteYByOffset(1),50,0)
rem *** Display result of raycast ***
SetTextString(1,Str(hit))

do
 Sync()
loop

FIG-17.106

The Ray Cast by the
Program

Ray cast

Activity 17.38

Start a new project called RayCasting and implement the code shown in FIG-
17.105.

Run the program. Notice that the text displays a “1” to indicate that the ray has
intersected at least one sprite. Save your project.

Hands On AGK BASIC: Sprites 527

GetRayCastSpriteID()

If	the	element	intersected	by	the	ray	cast	is	a	sprite,	then	we	can	find	its	ID	using	the	
GetRayCastSpriteID() statement (see FIG-17.107).

The	returned	value	is	the	ID	of	the	first	sprite	intersected	by	the	ray	cast. If no sprite
is encountered, zero is returned.

GetRayCastX() and GetRayCastY()

You can determine the point at which the ray cast and sprite intersect using the
GetRayCastX() and GetRayCastY() statements (see FIG-17.108).

Between	 them,	 the	 two	 functions	 return	 the	 coordinates	 of	 the	 intersection. The
coordinates are given in percentage or virtual pixels as determined by the initial app
window setup.

We can see the actual position of the ray intersection if we were to place a small circle
at the coordinates given.

FIG-17.107

GetRayCastSpriteID()

GetRayCastSpriteIdinteger ()

Activity 17.39

Modify RayCasting so that the ID of the intersected sprite is displayed. Test
your program. What value is displayed?

Comment out the SetSpriteShape() statement for the cherry and see how this
changes the result obtained.

Remove the comment characters from the SetSpriteShape() statement so that
the original result is displayed.

Test and save your project.

FIG-17.108

GetRayCastX()

GetRayCastY()

GetRayCastXfloat ()

GetRayCastYfloat ()

Activity 17.40

Modify RayCasting so that the coordinates of the intersection are displayed in
addition to the sprite ID.

See how this changes when you comment out the SetSpriteShape() for the
cherry. Remove the comment.

Test and save your project.

Activity 17.41

In Raycasting, load the image Spot.png into a sprite (size 1x1) and place it so
that its centre is at the point where the ray intersects with the cherry sprite.

Test and save your program.

528 Hands On AGK BASIC: Sprites

The point at which the ray cast hits the sprite can be of use if we wanted to create an
effect at the point of impact. For example, if we had used the ray cast as the trajectory
for a bullet, we could use this intersection point to position an image of a dust cloud.

GetRayCastFraction()

Another piece of information that can be retrieved about a ray cast is how far along
the line the intersection occurred. This is given as a fraction of the length of the line
specified	in	SpriteRayCast(). This type of information may be useful to determine
if	the	detected	sprite	is	within	firing	range	of	a	weapon.	The	statement	that	returns	
this information is GetRayCastFraction() (see FIG-17.109).

The value returned will lie between 0 (start of line) and 1 (end of line).

GetRayCastNormalX() and GetRayCastNormalY()

In	2D	space	we	can	define	a	normal as a line perpendicular to one edge of a shape.
In	AGK	we	can	discover	details	about	the	normal	to	the	first	bounding	area	edge	of	
any sprite hit by a ray cast. FIG-17.110 shows the concept.

AGK will give us the offset values from the point at the start of a normal (where the
ray cast meets the bounding edge) to the other end of the normal (see FIG-17.111).

FIG-17.109

GetRayCastFraction()

GetRayCastFractionfloat ()

Activity 17.42

Change RayCasting so that the distance from the start of the ray cast to the
point of intersection with the cherry is displayed. Remember the length of the
full	ray	cast	is	50.	No	other	data	need	be	displayed.

Save your project.

FIG-17.110

Ray Cast Normal

Normal...
...to

this edge

Ray cast

Bounding
area perimeter

Sprite

End point

FIG-17.111

Ray Cast Offsets

y-o�set

x-o�set

Hands On AGK BASIC: Sprites 529

To discover the x and y offsets of the normal, use the statements GetRayCastNormalX()
and GetRayCastNormalY() (see FIG-17.112).

By	adding	the	x and y offsets to the intersection point of the ray cast and bounding
edge, you can discover the coordinates of the other end of the normal.

So the only question remaining is: what can we do with these details about the
normal? The normal allows us to calculate the angle at which an object travelling
along the ray cast line would “bounce off” the sprite being hit. This also allows us to
adjust the angle of any effect we wish to create (see FIG-17.113).

The program in FIG-17.114 makes use of the angle of the ray cast between the centre
of two sprites to rotate a turreted cannon so that it is always pointed at the target
sprite. It also makes use of the point at which the ray hits the target to position a cloud
of dust symbolising a hit from the cannon.

FIG-17.112

GetRayCastNormalX()

GetRayCastNormalY()

GetRayCastNormalXfloat ()

GetRayCastNormalYfloat ()

FIG-17.113

Ray Cast Angles If we know the point where a ray cast

starts (x1,y1) and where it intersects
the sprite (x2,y2), we can calculate the
angle a as tan-1((x2-x1)/(y2-y1).

Using the normal, which is at 90o to
the sprite’s edge, we can calculate
angle b as tan-1(x-offset/y-offset).

Knowing angles a and b, angle c is
just a - b and angle d is 90 - c.
Angle d is the angle at which the
ray cast strikes the sprite’s edge.

We can now make use of these angles
to rotate any effect placed at the point
of contact or “bounce” an object off the
sprite.

a
(x1,y1)

(x2,y2)

x2-x1

y2-y1

b
(x2,y2)

y-offset

x-offset

b

a
c

d

ray

no
rm

al

d

dobject’s path

This angle is
tan-1(y2-y1)/(x2-x1)

530 Hands On AGK BASIC: Sprites

FIG-17.114

Using Ray Cast Angle
and Collision Point

rem *** Ray Cast Angle ***

rem ** Set screen colour ***
SetClearColor(120,120,120)
Sync()

rem *** Load Images ***
LoadImage(1,”Turret2.png”) //Firing turret
LoadImage(2,”Shape.png”) //Target
LoadImage(3,”Cloud.png”) //Hit dust

rem *** Create Sprites ***
rem *** Turret ***
CreateSprite(1,1)
SetSpriteSize(1,10,-1)
SetSpritePosition(1,42.5,42.5)
rem *** Target ***
CreateSprite(2,2)
SetSpriteSize(2,25,-1)
SetSpritePosition(2,40,20)
SetSpriteShape(2,3) //Bounding polygon
rem *** Hit Dust ***
CreateSprite(3,3)
SetSpriteSize(3,5,-1)
SetSpriteOffset(3,GetSpriteWidth(3),GetSpriteHeight(3)/2)

do
 rem *** Move target to pointer ***
 SetSpritePositionByOffset(2,GetPointerX(),GetPointerY())

 rem *** Ray trace turret centre to target centre ***
 hit = SpriteRayCast(GetSpriteXByOffset(1),
 GetSpriteYByOffset(1),GetSpriteXByOffset(2),
 GetSpriteYByOffset(2))

 rem *** If sprite hit (which it must be) ***
 if hit = 1
 rem *** Get ID of sprite hit ***
 id = GetRaycastSpriteID()
 rem *** Get point of collision ***
 x# = GetRayCastX()
 y# = GetRayCastY()
 rem *** Angle turret to point at target ***
 xoffset# = x#-GetSpriteXByOffset(1)
 yoffset# = y#-GetSpriteYByOffset(1)
 rem *** Adjustment for angles outside -90 to +90 ***
 if xoffset# < 0
 bias = 180
 else
 bias = 0
 endif
 rem *** Calculate angle for turret ***
 angle# = ATan(yoffset#/xoffset#)+bias
 rem *** Angle turret to point at target ***
 SetSpriteAngle(1,angle#)
 rem *** Show hit dust (at same angle ***
 SetSpritePositionByOffset(3,x#,y#)
 SetSpriteAngle(3,angle#)
 endif
 Sync()
loop

Hands On AGK BASIC: Sprites 531

A screenshot of the program is shown in FIG-17.115.

There are a few points to note about the program:

The offset of the dust cloud is set to the top-middle. This makes positioning the sprite
over the point of collision more accurate. The line required to reposition the offsets
is:

SetSpriteOffset(3,GetSpriteWidth(3),GetSpriteHeight(3)/2)

The line

SetSpritePositionByOffset(2,GetPointerX(),GetPointerY())

positions the target sprite at the pointer location so it can be dragged to any position
on the screen.

The arctan function, ATan(), only gives results in the range -90o to +90o so we need
to	adjust	this	figure	when	the	true	angle	is	outside	this	range.	This	happens	when	the	
xoffset# value is negative, at which time we need to add 180o	to	the	figure	returned	
by ATan(). The angle correcting code is

rem *** Adjustment for angles outside -90 to +90 ***
if xoffset# < 0
 bias = 180
else
 bias = 0
endif

FIG-17.115

Program Screen Dump

532 Hands On AGK BASIC: Sprites

rem *** Calculate angle for turret ***
angle# = ATan(yoffset#/xoffset#)+bias

SpriteRayCastSingle()

If you want to know if a ray cast passes through one particular sprite, then you can
use SpriteRayCastSingle() which has the format shown in FIG-17.116.

where:

 id is an integer value giving the ID of the sprite to be checked.

 x1,y1 are a pair of real values giving the coordinates of the starting
 point of the ray cast.

 x2,y2	 	 are	a	pair	of	real	values	giving	the	coordinates	of	the	finishing	
 point of the ray cast.

If the ray between the points (x1, y1), (x2, y2) passes through sprite id, then the
statement	returns	1,	otherwise	zero	is	returned.	The	sprite	need	not	be	the	first	sprite	
encountered by the ray.

Summary
± Use GetSpriteExists()	to	check	that	a	sprite	of	a	specified	ID	exists.

± Use GetSpriteVisible() to check on the visibility of a sprite.

± Use GetSpriteDepth() to check on the layer on which a sprite is positioned.

± Use SetSpriteScale() to resize a sprite in both dimensions. The top-left
corner	of	the	sprite	remains	at	a	fixed	position	on	the	screen.

± Use SetSpriteAngle() or SetSpriteAngleRad() to rotate a sprite.

± Use GetSpriteAngle() or GetSpriteAngleRad()to discover the current
rotation of a sprite.

± Use SetSpriteColor() to set the red, green, blue and transparency of a sprite.

± Use SetSpriteRed(), SetSpriteGreen(), SetSpriteBlue() or
SetSpriteAlpha() to modify a colour of a sprite or its transparency.

± Use GetSpriteRed(), GetSpriteGreen(), GetSpriteBlue() or
GetSpriteAlpha() to discover the current value of a sprite’s colour
component or its transparency.

± Use GetSpriteHitTest()	to	discover	if	a	specified	sprite	covers	a	given	point.

Activity 17.43

Start a new project called CannonFire, and implement the code given in FIG-
17.114.	Copy	the	required	files	to	the	project’s	media folder.

Test and save your project.

FIG-17.116

SpriteRayCastSingle()

SpriteRayCastSingleinteger ()x1 y1id x2 y2

Hands On AGK BASIC: Sprites 533

± Use GetSpriteHit() to discover the ID of any sprite covering a given point.

± Use SetSpriteX() and SetSpriteY() to set the x and y coordinates of a sprite
separately.

± Use GetSpriteX() and GetSpriteY() to discover the x and y coordinates of a
sprite.

± Use GetSpriteWidth() and GetSpriteHeight() to discover the dimensions of
a	specified	sprite.

± Use GetSpriteImageID() to discover the ID of the image used by a sprite.

± Use SetSpriteImage() to change the image displayed by a sprite.

± Use SetSpriteTransparency() to set the transparency of a sprite.

± Use SetSpriteFlip()	to	flip	the	image	shown	on	a	sprite	either	vertically	or	
horizontally.

± Use SetSpriteUVScale() to shrink or enlarge the image displayed by a sprite.
The size of the sprite itself is unaffected.

± Use SetSpriteUVOffset() to modify the positioning of the image displayed
on a sprite. That is, the top-left corner of the image need not be placed at the
top-left corner of the sprite.

± Use SetImageWrapU() and SetImageWrapV() to state how parts of the image
which fall outside the area of the sprite are to be handled. This gives the option
to wrap the image round onto the opposite edge.

± Use SetSpriteUVBorder()	to	fine-tune	how	an	image	is	mapped	to	the	edges	
of a sprite.

±Use SetSpriteUV() to gain complete control over how an image is mapped to
a sprite.

± Use ResetSpriteUV() to reset sprite mapping to normal.

± Use GetSpritePixelFromX() and GetSpritePixelFromY() to relate a position
on a sprite to a position on the original image used by the sprite.

± Use GetSpriteXFromPixel() and GetSpriteYFromPixel() to relate a position
on the original image to a point on the sprite displaying that image.

± Use SetSpriteOffset() to modify the point about which a sprite rotates.

± Use GetSpriteXByOffset() and GetSpriteYByOffset() to determine the
screen coordinates of the point about which a sprite rotates.

± Use SetSpritePositionByOffset() to use a sprite’s point of rotation when
positioning the sprite. Using the default settings, that would mean that the
centre	of	a	sprite	is	moved	to	the	specified	position	rather	than	its	top-left	
corner.

± Use SetSpriteScaleByOffset() to scale a sprite with its offset point
remaining	fixed	on	screen.

± Use SetSpriteShape() to set the bounding area shape of a sprite.

± Use SetSpriteShapeBox() to set the bounding area of a sprite to be a
rectangle.

534 Hands On AGK BASIC: Sprites

± Use SetSpriteShapeCircle() to set the bounding area of a sprite to be a
circle.

± Use SetSpriteShapePolygon() to set the bounding area of a sprite to be a
polygon.

± Grouping sprites allows easier control over sprite hits.

± Use SetSpriteGroup()	to	assign	a	sprite	to	a	specific	group.

± Use GetSpriteGroup() to determine to which group a sprite belongs.

± Use GetSpriteHitGroup()	to	detect	only	sprite	hits	belonging	to	a	specific	
group.

± Use SetSpriteCategoryBits() to set the categories to which a sprite belongs.

± Use SetSpriteCategoryBit() to modify a single bit within a sprite’s category
setting.

± Use GetSpriteHitCategory()	to	detect	sprite	hits	belonging	to	specific	
categories.

± In some applications, when a sprite exits the screen on one edge, it
automatically re-enters the screen on the opposite edge.

± Re-entry can be achieved by resetting the appropriate coordinate (x or y) or by
calculating the trajectory of the sprite.

± When the edge of the screen acts as a barrier, moving sprites rebound off the
edge and this is achieved by negating the x or y component of the trajectory as
appropriate.

± Use GetSpriteCollision()	to	determine	if	two	specified	sprites	have	
collided.

± Use GetSpriteDistance() to calculate the distance between two sprites.

± Use GetFrameTime() to determine the time between calls to the Sync()
function.

± Use ScreenFPS()	to	find	out	the	number	of	frames	per	second	being	produced	
by a program.

± Use SetSyncRate() to set the number of frames created every second.

± Use SpriteRayCast() to cast a ray between two points.

± Use GetRayCastSpriteID()	to	determine	the	ID	of	the	first	sprite	hit	by	a	ray	
cast.

± Use GetRayCastX() and GetRayCastY()	to	find	the	point	at	which	a	ray	cast	
strikes the bounding perimeter of a sprite.

± Use GetRayCastFraction() to discover a strike’s distance along the ray cast
line.

± Use GetRayCastNormalX() and GetRayCastNormalY() to discover the offsets
of the normal to the strike point.

± Use SetRayCastSingle()	to	discover	if	a	ray	cast	strikes	a	specific	sprite.		

Hands On AGK BASIC: Sprites 535

A Jigsaw Puzzle Game

Introduction
An	atlas	texture	file	format	can	be	put	to	good	use	even	when	the	file	in	question	
actually contains a single image. In the jigsaw game that follows, we will treat a
single	image	as	if	it	were	an	atlas	texture	image,	making	the	accompanying	text	file	
split the image into the pieces of our puzzle.

The Game
Again we have a game based on an existing non-computerised pastime. The game
consists of simply positioning the randomly placed parts of an image into their
correct positions to reconstruct the original image.

This is not designed as a complete and polished game, but merely to show how little
code is required to implement the basic idea.

The Data Files
The picture used in the jigsaw (Cat.png) is shown in FIG-17.117.

The image, which is 700 pixels by 1000 pixels, contains a blue border to help the
player position the pieces.

Although	the	file	contains	only	a	single	image,	it	is	treated	in	the	program	as	an	atlas	
texture	file	and	therefore	has	an	accompanying	text	file	(Cat subimages.txt) which
splits the image into pieces each measuring 100x100 pixels.

A	section	of	the	text	file	is	shown	in	FIG-17.118.

FIG-17.117

Jigsaw Image

536 Hands On AGK BASIC: Sprites

The subimages are named 00.png through to 96.png	(the	second	digit	of	the	filename	
is never greater than 6), so there are 70 sub images in total, giving us 70 pieces in the
jigsaw.

Game Layout
The game starts with the pieces scattered randomly about the screen (see FIG-
16.119).

The player can then drag each piece into position.

Since	it	is	difficult	to	position	a	piece	exactly,	the	program	snaps	each	piece	to	the	
closest	100x100	position,	ensuring	an	exact	fit.

FIG-17.118

The SubImage Text File
(part of)

00.png:0:0:100:100
01.png:100:0:100:100
02.png:200:0:100:100
03.png:300:0:100:100
04.png:400:0:100:100
05.png:500:0:100:100
06.png:600:0:100:100
10.png:0:100:100:100
11.png:100:100:100:100
12.png:200:100:100:100
13.png:300:100:100:100
14.png:400:100:100:100
15.png:500:100:100:100
17.png:600:100:100:100
20.png:0:200:100:100

FIG-17.119

Jigsaw Start-Up Screen

Hands On AGK BASIC: Sprites 537

The Game Code
The main program logic calls routines to perform each part of the game:

rem *** Main program logic ***
SetUpScreen()
LoadImageUsed()
SplitImageIntoPieces()
CreateSprites()
AllowPlayerToMovePieces()
end

As you can see, using appropriately named functions allows us to easily understand
the main steps of the program.

This logic is preceded by a few named constants and a single global variable:

rem **********************************
rem *** Jigsaw Game ***
rem **********************************

rem *** Rows and columns in jigsaw ***
#constant NO_OF_ROWS = 10
#constant NO_OF_COLUMNS = 7
rem *** Name of file containing image ***
#constant filename = “Cat.png”
//subimage text file needs to be renamed too
rem *** Global variables ***
rem *** Image ID ***
global id as integer

The	number	of	rows	and	columns	are	defined	as	named	constants,	as	is	the	name	of	
the	file	containing	the	image.	This	allows	the	values	to	be	easily	changed,	but	you	
must	remember	to	place	any	new	image	and	its	subimage	text	file	in	the	media folder
of the game.

The only global variable (id) is the ID assigned to the image. This is needed in more
than one routine.

SetUpScreen()

This function sets up the screen’s aspect ratio and sets the background colour to grey.
It has the following code:

function SetUpScreen()
 rem *** Set aspect ration ***
 SetDisplayAspect(768.0/1024.0)
 rem *** Grey background ***
 SetClearColor(125,125,125)
endfunction

LoadImageUsed()

This function contains only a single line and, as such, it might be argued that it should
not be a function at all. The only reason the function has been created is to eliminate
any code, other than function calls, from the main program logic. This gives the main
logic a neater and more easily understood appearance.

538 Hands On AGK BASIC: Sprites

Code for function:

function LoadImageUsed()
 rem *** Load full image ***
 id = LoadImage(filename)
endfunction

ImageIntoPieces()

This function extracts the subimages from the original picture. The code is:

function ImageIntoPieces()
 rem *** Split image into subimages ***
 pieceid = 0
 for row = 0 to NO_OF_ROWS-1
 for col = 0 to NO_OF_COLUMNS-1
 inc pieceid
 LoadSubImage(pieceid,id,str(row)+str(col)+”.png”)
 next col
 next row
endfunction

Notice how the name of each subimage is generated automatically from the phrase

str(row)+str(col)+”.png”

The IDs for the sub images are determined by the variable pieceid and will range
from 1 to 70 (NO_OF_ROWS x NO_OF_COLUMNS).

CreateSprites()

This function turns each subimage into a sprite and randomly positions it on the
screen. The code is:

function CreateSprites()
 rem *** Create sprite for each sub image ***
 for spriteid = 1 to NO_OF_ROWS * NO_OF_COLUMNS
 CreateSprite(spriteid,spriteid)
 SetSpriteSize(spriteid,12,-1)
 rem *** Set centre of sprite as positioning point ***
 SetSpriteOffset(spriteid,GetSpriteWidth(spriteid)/2.0,
 GetSpriteHeight(spriteid)/2.0)
 SetSpritePosition(spriteid, Random(1,90), Random(1,90))
 next c
 Sync()
endfunction

The sprite IDs match those of the corresponding subimage and so lie in the range 1
to 70. Each sprite is made 12% of the screen width. Since there are 7 pieces in each
row, a row of pieces will occupy 84% of the screen width, leaving a little space along
the edge for pieces that have not yet been placed in position.

AllowPlayerToMovePiece()

The	final	routine	called	from	the	main	program	logic	allows	the	player	to	select	and	
drag a piece of the jigsaw. Its code is:

function AllowPlayerToMovePieces()
 rem *** Allow player to move pieces ***

Hands On AGK BASIC: Sprites 539

 do
 id = GetPieceSelected()
 if id <> 0
 MovePiece(id)
 endif
 Sync()
 loop
endfunction

As you can see, this contains a do loop structure which means that the routine will
never be exited. It’s actually up to the player to shut down the app when all the pieces
are in place (or when he gives up). Two other functions to do the bulk of the work.
These are described below.

GetPieceSelected()

This routine returns the ID of any sprite being pressed/clicked on. If no sprite is
currently selected, zero is returned. The function’s code is:

function GetPieceSelected()
 if GetPointerState()= 1
 spriteid = GetSpriteHit(GetPointerX(),GetPointerY())
 else
 spriteid = 0
 endif
endfunction spriteid

MovePiece()

The	final	function	allows	the	selected	subimage	to	be	dragged	to	a	new	position.	Its	
code is:

function MovePiece(id)
 rem *** Calculate how far the touched part of the ***
 rem *** sprite is from the centre of the sprite ***
 diffx = GetPointerX()-GetSpriteX(id)
 diffy = GetPointerY()-GetSpriteY(id)
 rem *** Bring the sprite to the front layer ***
 SetSpriteDepth(id,0)
 rem *** Allow sprite to be dragged ***
 repeat
 rem *** Take into account how far the touched area
 rem *** is from the centre of the sprite when moving
 rem *** the sprite ***
 SetSpritePosition(id,GetPointerX()-diffx,
 GetPointerY()-diffy)
 Sync()
 until GetPointerState() = 0
 rem *** When the sprite is dropped round off its position
 rem *** to a multiple of the sprite’s size ***
 SetSpritePosition(id, Round(GetSpriteX(id)/
 GetSpriteWidth(id))*GetSpriteWidth(id),
 Round(GetSpriteY(id) / GetSpriteHeight(id))*
 GetSpriteHeight(id))
 rem *** Return sprite to original depth ***
 SetSpriteDepth(id,10)
endfunction

There are several points of interest in this function. Firstly, the distance from the
point touched to the centre of the sprite is calculated with the lines:

540 Hands On AGK BASIC: Sprites

 diffx = GetPointerX()-GetSpriteX(id)
 diffy = GetPointerY()-GetSpriteY(id)

Exactly what is being calculated here is made clearer in FIG-17.120.

In the CreateSprites() function, we added an offset to each sprite so that when a
sprite	 is	moved	it	 is	always	the	centre	of	 the	sprite	 that	 is	placed	at	 the	specified	
position. However, if we were to move the sprite directly to the position touched
when the player selects a piece of the jigsaw to be moved, then it would be the centre
of the sprite that would be placed at this position. This would cause a sudden “jump”
of	the	selected	sprite	when	the	screen	is	first	touched.	To	avoid	this	jump,	we	calculate	
the xdiff and ydiff	values	when	the	screen	is	first	touched	and	maintain	this	difference	
between the touched point and the sprite centre while the image is dragged, thereby
creating a much smoother effect.

While the sprite is being dragged, it is repositioned on layer zero. This ensures that
it will not disappear behind some other piece while it is being dragged. Once it is
dropped, the piece is returned to the default layer 10.

When	the	sprite	is	finally	dropped,	it	will	shift	position	slightly	so	that	its	centre	is	
positioned at an exact multiple of the sprite’s width and height. This ensures that the
pieces	of	the	jigsaw	fit	exactly	without	requiring	an	unrealistic	effort	from	the	player.	
The line of code that achieves this effect is:

 SetSpritePosition(id, Round(GetSpriteX(id)/
 GetSpriteWidth(id))*GetSpriteWidth(id),
 Round(GetSpriteY(id) / GetSpriteHeight(id))*
 GetSpriteHeight(id))

FIG-17.120

Touched Point’s Offset
from the Sprite Centre

Point
touched

Centre
of spriteydiff

xdiff Sprite

Activity 17.44

Start a new project called Jigsaw and implement the code given over the last
few pages. Remember to copy the Cat.png and Cat subimages.txt	files	into	the	
project’s media folder.

Test and save your project.

Hands On AGK BASIC: Sprites 541

Solutions
Activity 17.1

No solution required.

Activity 17.2
Modified	code	for	ControllingSprites:

rem *** Controlling a sprite ***
SetClearColor(255,255,255)
rem *** Load sprite image ***
LoadImage(1,”Arrow.png”,0)
rem *** Create sprite ***
CreateSprite(1,1)
rem *** Size sprite ***
SetSpriteSize(1,7,-1)
rem *** Position sprite ***
SetSpritePosition(1,50,50)
degrees# = 0
do
 degrees# = degrees# +1
 SetSpriteAngle(1,degrees#)
 Sync()
loop

Activity 17.3
rem *** Controlling a sprite ***
SetClearColor(255,255,255)
rem *** Load sprite image ***
LoadImage(1,”Arrow.png”,0)
rem *** Create sprite ***
CreateSprite(1,1)
rem *** Size sprite ***
SetSpriteSize(1,7,-1)
rem *** Position sprite ***
SetSpritePosition(1,50,50)
rem *** Change red tint ***
SetSpriteColorRed(1,0)
degrees# = 0
do
 degrees# = degrees# +1
 SetSpriteAngle(1,degrees#)
 Sync()
loop

Activity 17.4
No solution required.

Activity 17.5
Modified	code	for	ShootingGame:

rem *** Button Sprites ***
rem *** Grey background ***
SetClearColor(200,200,200)
rem *** Load sprite images ***
LoadImage(1,”Right.png”,0)
LoadImage(2,”Left.png”,0)
LoadImage(3,”Fire.png”,0)
LoadImage(4,”Arrow.png”,0)
rem *** Create sprites ***
CreateSprite(1,1)
CreateSprite(2,2)
CreateSprite(3,3)
CreateSprite(4,4)
rem *** Size sprites ***
SetSpriteSize(1,12,-1)
SetSpriteSize(2,12,-1)
SetSpriteSize(3,12,-1)
SetSpriteSize(4,6,-1)
rem *** Position sprites ***
SetSpritePosition(1,87,92)
SetSpritePosition(2,72,92)
SetSpritePosition(3,1,92)
SetSpritePosition(4,46,80)
red = GetSpriteColorRed(1)
do
 if GetPointerState() = 1
 id = GetSpriteHit(GetPointerX(),

 GetPointerY())
 if id <> 0
 SetSpriteColorRed(id,200)
 oldid = id
 Sync()
 rem *** If right button, move right ***
 if id = 1
 SetSpriteX(4,GetSpriteX(4)+1)
 endif
 rem *** If left button, move left ***
 if id = 2
 SetSpriteX(4,GetSpriteX(4)-1)
 endif
 endif
 else
 if oldid <> 0
 SetSpriteColorRed(oldid,red)
 oldid = 0
 Sync()
 endif
 endif
 Sync()
loop

The arrow moves off the edge of the screen if you continue to
press the direction keys

The do..loop code within the program is changed as follows:
do
 if GetPointerState() = 1
 id = GetSpriteHit(GetPointerX(),GetPointerY())
 if id <> 0
 SetSpriteColorRed(id,200)
 oldid = id
 Sync()
 rem *** IF right button, move right ***
 if id = 1 and GetSpriteX(4) < 94
 SetSpriteX(4,GetSpriteX(4)+1)
 endif
 rem *** IF left button, move left ***
 if id = 2 and GetSpriteX(4) > 0
 SetSpriteX(4,GetSpriteX(4)-1)
 endif
 endif
 else
 if oldid <> 0
 SetSpriteColorRed(oldid,red)
 oldid = 0
 Sync()
 endif
 endif
 Sync()
loop

Activity 17.6
Modified	code	for	SwapImage:

rem *** Swap sprite image ***
rem *** Load Images ***
LoadImage(1,”Round.png”)
LoadImage(2,”Square.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,12,-1)
imageID = 1
do
 rem *** If pointer pressed and over sprite ***
 if GetSpriteHit(GetPointerX(),GetPointerY()) and
 GetPointerPressed()
 rem *** Change to other image ***
 imageID = 3 - imageID
 SetSpriteImage(1,imageID)
 endif
Sync()
loop

Activity 17.7
The only change required in the program code is that the
second LoadImage() statement is changed to:

LoadImage(2,”FourCircles.png”)

The four circles image is distorted making the circles appear
as ellipses.

542 Hands On AGK BASIC: Sprites

Activity 17.8
Modified	code	for	SwapImage:

rem *** Swap sprite image ***

rem *** Load Images ***
LoadImage(1,”Round.png”)
LoadImage(2,”FourCircles.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,12,-1)
imageID = 1
do
 rem *** If pointer pressed and over sprite ***
 if GetSpriteHit(GetPointerX(),GetPointerY()) and
 GetPointerPressed()
 rem *** Change to other image ***
 imageID = 3 - imageID
 SetSpriteImage(1,imageID)
 SetSpriteSize(1,12,-1)
 endif
 Sync()
loop

The image now displays the correct ratio (the circles appear
as	circular)	but	has	less	height	than	the	first	image.

Activity 17.9
No solution required.

Activity 17.10
No solution required.

Activity 17.11
No solution required.

Activity 17.12
Code for UVOffset:

rem *** Offset values ***
dim offsets[12] as float = [0,0,0,0.25,0,0.5,0.5,
0.7,0.25,-0.25,0,-0.5,-0.25]
rem *** Grey screen ***
SetClearColor(120,120,120)
Sync()
rem *** Text resource ***
CreateText(1,””)
rem *** Load image and create sprite ***
LoadImage(1,”DS.png”)
CreateSprite(1,1)
SetSpriteSize(1,30,-1)
SetSpritePosition(1,35,35)
for c = 1 to 12 step 2
 rem *** Set string ***
 SetTextString(1, “Offsets U:”+Str(offsets[c])+
 ” V:”+Str(offsets[c+1]))
 rem *** Change offset ***
 SetSpriteUVOffset(1,offsets[c],offsets[c+1])
 Sync()
 Sleep(5000)
next c
do
loop

Activity 17.13
Modified	code	for	UVOffset:

rem *** Offset values ***
dim offsets[12] as float = [0,0,0,0.25,0,0.5,0.5,
0.7,0.25,-0.25,0,-0.5,-0.25]
rem *** Grey screen ***
SetClearColor(120,120,120)
Sync()
rem *** Text resource ***
CreateText(1,””)
rem *** Load image and create sprite ***
LoadImage(1,”DS.png”)
rem *** Set U and V wrap ***
SetImageWrapU(1,1)

SetImageWrapV(1,1)
CreateSprite(1,1)
SetSpriteSize(1,30,-1)
SetSpritePosition(1,35,35)
for c = 1 to 12 step 2
 rem *** Set string ***
 SetTextString(1, “Offsets U:”+Str(offsets[c])+
 ” V:”+Str(offsets[c+1]))
 rem *** Change offset ***
 SetSpriteUVOffset(1,offsets[c],offsets[c+1])
 Sync()
 Sleep(5000)
next c
do

loop

Activity 17.14
The program produces a sprite with the image repeated
several times in the horizontal and vertical directions. Those
images scroll diagonally from bottom-right to top-left.

Activity 17.15
You should see a subtle shift of the image on the sprite after
5	seconds.

Activity 17.16
No solution required.

Activity 17.17
No solution required.

Activity 17.18
To have the sprite rotate about is bottom-right corner, the line

SetSpriteOffset(2,0,0)

must be changed to
SetSpriteOffset(2,GetSpriteWidth(2),
GetSpriteHeight(2))

Activity 17.19
To have the sprite rotate about a point above and to its left,
the line

SetSpriteOffset(2,GetSpriteWidth(2),
GetSpriteHeight(2))

must be changed to

SetSpriteOffset(2,-15,-15)

Activity 17.20
Modified	code	for	SpriteOffset:

rem *** Sprite Offsets ***
rem *** Create text resource ***
CreateText(1,””)
SetTextSize(1,3)
rem *** Grey background ***
SetClearColor(100,100,100)
Sync()
rem *** Background grid image ***
LoadImage(1,”Grid.png”)
rem *** Test Image ***
LoadImage(2,”Arrows.png”)
rem *** Create grid in background ***
CreateSprite(1,1)
SetSpriteSize(1,100,100)
rem *** Add arrows sprite ***
CreateSprite(2,2)
SetSpriteSize(2,20,-1)
SetSpritePosition(2,40,40)
Sync()
Sleep(1000)

Hands On AGK BASIC: Sprites 543

rem *** Display offset location ***
SetTextString(1,”Rotation offset X: “
+Str(GetSpriteXByOffset(2))+” Y: "
+Str(GetSpriteYByOffset(2)))
rem *** Rotate sprite about its centre ***
for c = 0 to 360
 SetSpriteAngle(2,c)
 Sync()
next c
Sleep(1000)
Sync()
rem *** Move rotation point to
rem *** above and left of sprite ***
SetSpriteOffset(2,-15,-15)
SetSpritePosition(2,40,40)
rem *** Display offset location ***
SetTextString(1,”Rotation offset X: "
+Str(GetSpriteXByOffset(2))+” Y: "
+Str(GetSpriteYByOffset(2)))
Sync()
Sleep(1000)
rem *** Rotate sprite about new point ***
for c = 0 to 360
 SetSpriteAngle(2,c)
 Sync()
next c
do
loop

Initially, the sprite rotates about its own centre giving the
result (40,40). In the second part of the program, the sprite’s
offset	is	moved	15	units	up	and	15	units	to	the	left	(measured	
from the top-left of the sprite). This position is outside the
area	of	the	sprite.	It	is	this	point	(25,25)	which	the	sprite	then	
rotates about.

Activity 17.21

Using SetSpritePosition() places the sprite’s top-left corner
at	position	(50,50);	using	SetSpritePositionByOffset()
places	the	sprite’s	centre	at	(50,50).

Activity 17.22
No solution required.

Activity 17.23
The vertex marker sprite is always at the pointer’s current
position. This is done with the line:

 SetSpritePositionByOffset(3,GetPointerX(),
 GetPointerY())

When the mouse button is clicked, a new copy of the sprite
is created and the previous sprite left at its current position.
This is done by the line:

CloneSprite(nextsprite,3)

Each vertex’s coordinates are stored in the vertices array.

The bounding polygon is set up with the lines:
vcount = count / 2
for c = 0 to vcount-1
 SetSpriteShapePolygon(1,vcount, c,vertices[c*2],
 vertices[c*2+1])

next c

Activity 17.24
No solution required.

Activity 17.25
To allow off-board pieces to be selected at any time change
the following lines:

Old: activecategory = 2 //On-board red

New: activecategory = 10 //Red and off-board

Old: activecategory = 6 - activecategory

New: activecategory = 22 - activecategory

Activity 17.26
Modified	code	for	MovingBall (move to left):

rem *** Moving a sprite ***

rem *** Load image ***
LoadImage(1,”Ball.png”)
rem *** Create, size and position sprite ***
id = CreateSprite(1)
SetSpriteSize(id,5,-1)
SetSpritePosition(id,47.5,47.5)
rem *** Set Speed ***
speed = -1
rem *** Move sprite ***
do
 SetSpritePosition(id,GetSpriteX(id)+speed,
 GetSpriteY(id))
 Sync()
loop

Modified	code	for	MovingBall (move down):
rem *** Moving a sprite ***

rem *** Load image ***
LoadImage(1,”Ball.png”)
rem *** Create, size and position sprite ***
id = CreateSprite(1)
SetSpriteSize(id,5,-1)
SetSpritePosition(id,47.5,47.5)
rem *** Set Speed ***
speed = 2
rem *** Move sprite ***
do
 SetSpritePosition(id,GetSpriteX(id),
 GetSpriteY(id)+speed)
 Sync()
loop

Original Position

After SetSpritePositionByO�set()

After SetSpritePosition()

Centre of sprite at
(50,30)

Top-left of sprite at
(50,30)

544 Hands On AGK BASIC: Sprites

Activity 17.27
Modified	code	for	MovingBall (speed 2 angle 60o):

rem *** Moving a sprite ***
rem *** Load image ***
LoadImage(1,”Ball.png”)
rem *** Create, size and position sprite ***
id = CreateSprite(1)
SetSpriteSize(id,5,-1)
SetSpritePosition(id,47.5,47.5)
rem *** Set velocity ***
speed = 2
xoffset# = speed * cos(60)
yoffset# = speed * sin(60)
rem *** Move sprite ***
do
 SetSpritePosition(id,GetSpriteX(id)+xoffset#,
 GetSpriteY(id)+yoffset#)
 Sync()
loop

Activity 17.28
Modified	code	for	MovingBall:

rem *** Moving a sprite ***
rem *** Load image ***
LoadImage(1,”Ball.png”)
rem *** Create, size and position sprite ***
id = CreateSprite(1)
SetSpriteSize(id,5,-1)
SetSpritePosition(id,47.5,47.5)
rem *** Set velocity ***
speed = 2
xoffset# = Random(0,40)/10.0 -2
yoffset# = Random(0,40)/10.0 -2
rem *** Move sprite ***
do
 SetSpritePosition(id,GetSpriteX(id)+xoffset#,
 GetSpriteY(id)+yoffset#)
 Sync()
loop

Activity 17.29
Modified	code	for	MovingBall:

rem *** Moving a sprite ***
rem *** Load image ***
LoadImage(1,”Ball.png”)
rem *** Create, size and position sprite ***
id = CreateSprite(1)
SetSpriteSize(id,5,-1)
SetSpritePosition(id,47.5,47.5)
rem *** Set velocity ***
speed = 2
xoffset# = Random(0,40)/10.0 -2
yoffset# = Random(0,40)/10.0 -2
rem *** Move sprite ***
do
 if GetSpriteX(id) >= 100
 SetSpritePosition(id,0,GetSpriteY(id))
 elseif GetSpriteX(id) <= -5
 SetSpritePosition(id,100,GetSpriteY(id))
 elseif GetSpriteY(id) >= 100
 SetSpritePosition(id,GetSpriteX(id),0)
 elseif GetSpriteY(id) <= -GetSpriteHeight(id)
 SetSpritePosition(id,GetSpriteX(id),100)
 endif
 Sync()
loop

Activity 17.30
No solution required.

Activity 17.31
No solution required.

Activity 17.32
No solution required.

Activity 17.33
Modified	code	for	BatAndBall:

rem *** Bat and ball ***

rem *** Load images ***
LoadImage(1,”Ball.png”)
LoadImage(2,”Bat.png”)

rem *** Create sprites ***
CreateSprite(1,1)
SetSpriteSize(1,4,-1)
SetSpritePosition(1,48,5)
CreateSprite(2,2)
SetSpriteSize(2,15,-1)
SetSpritePosition(2,47.5,95)

rem *** Create joystick ***
SetJoystickScreenPosition(90,40,10)

Sync()
Sleep(2000)

rem *** Set ball’s velocity***
yoffset# = Random(3,8)/10.0
xoffset# = (Random(0,40)-20)/10.0

rem *** Set game state to playing (1) ***
gamestate = 1

repeat
 rem *** Redraw ball’s position ***
 SetSpritePosition(1,GetSpriteX(1)+xoffset#,
 GetSpriteY(1)+yoffset#)
 rem *** If the sprite hits the left or right
 sides change xoffset ***
 if GetSpriteX(1)<=0 or GetSpriteX(1)>= 100-
 GetSpriteWidth(1)
 xoffset# = -xoffset#
 rem *** If ball hits top or bat, change yoffset

 elseif GetSpriteY(1)<=0 or
 GetSpriteCollision(1,2) = 1
 yoffset# = -yoffset#
 rem *** If sprite passes bottom edge, end game

 elseif GetSpriteY(1) > 100
 DeleteSprite(1)

 gamestate = 0
 endif
 rem *** Move bat ***
 SetSpritePosition(2,GetSpriteX(2)+GetJoystickX()
 ,GetSpriteY(2))
 Sync()
until gamestate = 0

rem *** Don’t let game terminate ***
do
loop

To use virtual buttons, the joystick code is removed from the
program and virtual buttons added to the left and right edges
by the bat.

Modified	code	for	BatAndBall:
rem *** Bat and ball ***

rem *** Load images ***
LoadImage(1,”Ball.png”)
LoadImage(2,”Bat.png”)
rem *** Create sprites ***
CreateSprite(1,1)
SetSpriteSize(1,4,-1)
SetSpritePosition(1,48,5)
CreateSprite(2,2)
SetSpriteSize(2,15,-1)
SetSpritePosition(2,47.5,95)

rem *** Record bat’s x-coordinate ***
batx = 47.5
rem *** Create virtual buttons ***
AddVirtualButton(1,5,94,10)
AddVirtualButton(2,95,94,10)
SetVirtualButtonVisible(1,0)
SetVirtualButtonVisible(2,0)

Sync()

Hands On AGK BASIC: Sprites 545

Sleep(2000)
rem *** Set ball’s velocity***
yoffset# = Random(3,8)/10.0
xoffset# = (Random(0,40)-20)/10.0
rem *** Set game state to playing (1) ***
gamestate = 1
repeat
 rem *** Redraw ball’s position ***
 SetSpritePosition(1,GetSpriteX(1)+xoffset#,
 GetSpriteY(1)+yoffset#)
 rem *** If the sprite hits the left or right
 sides change xoffset ***
 if GetSpriteX(1)<=0 or GetSpriteX(1)>= 100-
 GetSpriteWidth(1)
 xoffset# = -xoffset#
 rem *** If ball hits top or bat, change yoffset

 elseif GetSpriteY(1)<=0 or
 GetSpriteCollision(1,2) = 1
 yoffset# = -yoffset#
 rem *** If sprite passes bottom edge, end game

 elseif GetSpriteY(1) > 100
 DeleteSprite(1)
 gamestate = 0
 endif
 rem *** Move bat ***
 if GetVirtualButtonState(1) = 1
 dec batx
 elseif GetVirtualButtonState(2) = 1
 inc batx
 endif
 SetSpritePosition(2,batx,GetSpriteY(2))
 Sync()
until gamestate = 0
rem *** Don’t let game terminate ***
do

loop

Activity 17.34
No solution required.

Activity 17.35
No solution required.

Activity 17.36
Modified	code	for	MovingBall2:

rem *** Frame Rate ***
rem *** Create text object ***
CreateText(1,””)
rem *** Load image ***
LoadImage(1,”ball.png”)
rem *** Create, size and position sprite ***
id = CreateSprite(1)
SetSpriteSize(id,5,-1)
SetSpritePosition(id,47.5,47.5)
rem *** Set velocity ***
xoffset# = Random(0,40)/10.0 -2
yoffset# = Random(0,40)/10.0 -2
do
 SetSpritePosition(id,GetSpriteX(id)+xoffset#,
 GetSpriteY(id)+yoffset#)
 if GetSpriteX(id) >= (100-GetSpriteWidth(id)) or
 GetSpriteX(id) <= 0
 xoffset# = -xoffset#
 elseif GetSpriteY(id) >= (100-
 GetSpriteHeight(id)) or GetSpriteY(id) <= 0
 yoffset# = -yoffset#

 endif
 rem *** Display frame rate ***
 SetTextString(1,Str(ScreenFPS(),3))
 Sync()
loop

Activity 17.37
Modified	code	for	MovingBall2:

rem *** Frame Rate ***
rem *** Set Sync rate ***
SetSyncRate(50,0)

rem *** Create text object ***
CreateText(1,””)
rem *** Load image ***
LoadImage(1,”ball.png”)
rem *** Create, size and position sprite ***
id = CreateSprite(1)
SetSpriteSize(id,5,-1)
SetSpritePosition(id,47.5,47.5)
rem *** Set velocity ***
xoffset# = Random(0,40)/10.0 -2
yoffset# = Random(0,40)/10.0 -2
do
 SetSpritePosition(id,GetSpriteX(id)+xoffset#,
 GetSpriteY(id)+yoffset#)
 if GetSpriteX(id) >= (100-GetSpriteWidth(id)) or
 GetSpriteX(id) <= 0
 xoffset# = -xoffset#
 elseif GetSpriteY(id) >= (100-
 GetSpriteHeight(id)) or GetSpriteY(id) <= 0
 yoffset# = -yoffset#

 endif
 rem *** Display frame rate ***
 SetTextString(1,Str(ScreenFPS(),3))
 Sync()
loop

Changing to SetSyncRate(50,1) seems to give a slightly
smoother effect.

Activity 17.38
No solution required.

Activity 17.39
To display the sprite’s ID change the end of the program to
read:

rem *** Raycast from turret to top of screen ***
hit = SpriteRayCast(GetSpriteXByOffset(1),
GetSpriteYByOffset(1),50,0)
if hit = 1
 id = GetRaycastSpriteID()
 rem *** Display ID of sprite hit ***
 SetTextString(1,Str(id))
endif
do
 Sync()
loop

The program displays 3, the ID of the cherry.

When the new bounding area is removed from the cherry
sprite, it is ignored by the ray cast and the tile’s ID (2) is
displayed.

Activity 17.40
To display the coordinates at which the ray strikes the cherry
sprite, change the end of the program to read:

rem *** Raycast from turret to top of screen ***
hit = SpriteRayCast(GetSpriteXByOffset(1),
GetSpriteYByOffset(1),50,0)
if hit = 1
 id = GetRaycastSpriteID()
 x# = GetRaycastX()
 y# = GetRaycastY()
 rem *** Display ID of sprite hit and coords ***
 SetTextString(1,Str(id)+” Hit at position (“
 +Str(x#,1)+”,+Str(y#,1)+”)”)
endif
do
 Sync()
loop

Activity 17.41
Modified	code	for	Raycasting:

rem *** Ray casting ***

rem ** Set screen colour ***
SetClearColor(120,120,120)

546 Hands On AGK BASIC: Sprites

Sync()

rem *** Create text ***
CreateText(1,””)
SetTextSize(1,3)

rem *** Load Images ***
LoadImage(1,”Turret.png”)
LoadImage(2,”Tile.png”)
LoadImage(3,”Cherry.png”)
rem *** Spot marker ***
LoadImage(4,”Spot.png”)

rem *** Create Sprites ***
rem *** Turret ***
CreateSprite(1,1)
SetSpriteSize(1,15,-1)
SetSpritePosition(1,42.5,42.5)
rem *** Tile ***
CreateSprite(2,2)
SetSpriteSize(2,10,-1)
SetSpritePosition(2,45,5)
SetSpriteShape(2,2) //Bounding box
rem *** Cherry ***
CreateSprite(3,3)
SetSpriteSize(3,10,-1)
SetSpritePosition(3,45,20)
SetSpriteShape(3,1) //Bounding circle
rem *** Raycast from turret to top of screen ***
hit = SpriteRayCast(GetSpriteXByOffset(1),
GetSpriteYByOffset(1),50,0)
if hit = 1
 id = GetRaycastSpriteID()
 x# = GetRaycastX()
 y# = GetRaycastY()
 rem *** Mark spot hit ***
 CreateSprite(4,4)
 SetSpriteSize(4,1,-1)
 SetSpritePositionByOffset(4,x#,y#)
 rem *** Display ID of sprite hit and coords ***
 SetTextString(1,Str(id)+” Hit at position (“
 +Str(x#,1)+”,”+Str(y#,1)+”)”)
endif
do
 Sync()
loop

Activity 17.42
To	display	the	distance	from	the	start	of	the	ray	to	the	first	
sprite hit, change the end of the Raycasting program to:

rem *** Raycast from turret to top of screen ***

hit = SpriteRayCast(GetSpriteXByOffset(1),
GetSpriteYByOffset(1),50,0)
if hit = 1
 id = GetRaycastSpriteID()
 rem *** Calculate distance ***
 distance# = GetRayCastFraction()*50 //Fraction
 * length of ray
 rem *** Mark spot hit ***
 CreateSprite(4,4)
 SetSpriteSize(4,1,-1)
 SetSpritePositionByOffset(4,x#,y#)
 rem *** Display distance to sprite from start of
 ray cast ***
 SetTextString(1,”Distance to sprite “
 +Str(distance#,1))
endif
do
 Sync()
loop

Activity 17.43
No solution required.

Activity 17.44
Code for Jigsaw:

rem **********************************
rem *** Jigsaw Game ***
rem **********************************

rem *** Named constants ***

rem *** Rows and columns in jigsaw ***
#constant NO_OF_ROWS = 10
#constant NO_OF_COLUMNS = 7

rem *** Name of file containing image ***
#constant filename = “Cat.png”
//subimage text file needs to be renamed too

rem *** Global variables ***
rem *** Image ID ***
global id as integer

rem *** Main program logic ***
SetUpScreen()
LoadImageUsed()
SplitImageIntoPieces()
CreateSprites()
AllowPlayerToMovePieces()
end

rem *** Level 1 Functions ***

function SetUpScreen()
 rem *** Set aspect ration ***
 SetDisplayAspect(768.0/1024.0)
 rem *** Grey background ***
 SetClearColor(125,125,125)
endfunction

function LoadImageUsed()
 rem *** Load full image ***
 id = LoadImage(filename)
endfunction

function SplitImageIntoPieces()
 rem *** Split image into subimages ***
 pieceid = 0
 for row = 0 to NO_OF_ROWS-1
 for col = 0 to NO_OF_COLUMNS-1
 inc pieceid
 LoadSubImage(pieceid,id,str(row)+
 str(col)+”.png”)
 next col
 next row
endfunction

function CreateSprites()
 rem *** Create sprite for each sub image ***
 for spriteid = 1 to NO_OF_ROWS * NO_OF_COLUMNS
 CreateSprite(spriteid,spriteid)
 SetSpriteSize(spriteid,12,-1)
 rem *** Set centre of sprite as positioning
 point ***
 SetSpriteOffset(spriteid,GetSpriteWidth
 (spriteid)/2.0, GetSpriteHeight(spriteid)
 /2.0)
 SetSpritePosition(spriteid, Random(1,90),
 Random(1,90))
 next c
 Sync()
endfunction

function AllowPlayerToMovePieces()
 rem *** Allow player to move pieces ***
 do
 id = GetPieceSelected()
 if id <> 0
 MovePiece(id)
 endif
 Sync()
 loop
endfunction

rem *** Level 2 Functions ***

function GetPieceSelected()
 if GetPointerState()= 1
 spriteid = GetSpriteHit(GetPointerX(),
 GetPointerY())
 else
 spriteid = 0
 endif
endfunction spriteid

function MovePiece(id)
 rem *** Calculate how far the touched part of
 the sprite is from ***

Hands On AGK BASIC: Sprites 547

 rem *** the centre of the sprite ***
 diffx = GetPointerX()-GetSpriteX(id)
 diffy = GetPointerY()-GetSpriteY(id)
 rem *** Bring the sprite to the front layer ***
 SetSpriteDepth(id,0)
 rem *** Allow sprite to be dragged ***
 repeat
 rem *** Take into account how far the
 touched area is from the centre ***
 rem *** of the sprite when moving the sprite

 SetSpritePosition(id,GetPointerX()-
 diffx,GetPointerY()-diffy)
 Sync()
 until GetPointerState() = 0
 rem *** When the sprite is dropped round off its
 position to a multiple of the sprite’s size

 SetSpritePosition(id, Round(GetSpriteX(id)/
 GetSpriteWidth(id)) *GetSpriteWidth(id),
 Round(GetSpriteY(id) / GetSpriteHeight(id))*
 GetSpriteHeight(id))
 rem *** Retun sprite to original depth ***
 SetSpriteDepth(id,10)
endfunction

548 Hands On AGK BASIC: Sprites

Animated Sprites

Hands On AGK BASIC: Animated Sprites 549

In this Chapter:

T Using Animated Sprites to Create Movement

T Using Animated Sprites for Alternative Images

T Adding New Frames to an Animation

T Playing an Animation

T Showing a Single Frame of an Animation

T An Asteroids Game Using Animated Sprites

550 Hands On AGK BASIC: Animated Sprites

Animated Sprites

Introduction
An animated sprite is one that consists of more than a single image. Each separate
image that goes to make up this collection of pictures is known as a frame.

Frames are numbered. The first frame is frame 1.

The collection of images in an animation may indeed make up, as the name suggests,
an animated display - just like a cartoon or computer generated animation you might
watch on television - but the images may be separate, unrelated pictures. For example,
we might use two images to represent the two sides of a coin, or six images to
represent the six possible throws on a dice; we could even have 52 images to represent
a pack of playing cards.

Using an Animated Sprite
Like any sprite, we need to start by obtaining the image we intend use on the sprite.
In this first example, we’ll make use of a set of images representing a spinning
asteroid (image courtesy of The Game Creators) as shown in FIG-18.1.

The single image containing the frames of the animation is loaded in the usual way

 LoadImage(1,”Asteroid.png”)

and assigned to a sprite:

 CreateSprite(1,1)
 SetSpriteSize(1,12,-1)
 SetSpritePosition(1,46,46)

SetSpriteAnimation()

To convert a normal sprite into an animated one, we need to execute the
SetSpriteAnimation() statement. This specifies the dimensions of each frame
within the animation as well as the total number of frames. FIG-18.2 shows the

FIG-18.1

Asteroid Frames

Hands On AGK BASIC: Animated Sprites 551

format for the SetSpriteAnimation() statement.

where:

 id is an integer value giving the ID of the sprite.

 iwidth is an integer value giving the width of a single frame in pixels.

 iheight is an integer value giving the height of a single frame in pixels.

 icount is an integer value giving the number of frames in the animation.

Notice that each frame of the animation is assumed to be the same size; this is a
restriction you must adhere to.

The asteroid image is 1000 by 1000 pixels and contains 16 frames, so the statement
needed for this is:

 SetSpriteAnimation(1,250,250,16)

PlaySprite()

When we have created a sprite designed to give the impression of movement (as is
the case with the asteroid sprite), then we can play that animation using the
PlaySprite() statement. This statement has many optional parameters (see FIG-
18.3).

where:

 id is an integer value giving the ID of the animated sprite.

 ifps is an integer value giving the frames per second play rate.
 If this is too high for the hardware being used, some frames may
 be skipped. The default value is 10.

 iloop is an integer value (0 or 1) which determines if the animation is
 to be played continuously (1) or only once (0). The default value
 is 1.

 istart is an integer value giving the first frame to be played. The default
 value is 1 (the first frame).

 iend is an integer value giving the last frame to be played. The default
 value is the frame number of the last frame.

So, we could play our animation using a line as simple as:

 PlaySprite(1)

However, if we wanted to play the animation only once at a rate of 15 frames per
second and using only frame 3 to 10, then we would write:

FIG-18.2

SetSpriteAnimation()

SetSpriteAnimation (id iwidth,)iheight, icount,

FIG-18.3

PlaySprite()

PlaySprite (id ifps,)iloop, istart, iend,[[[]]]

552 Hands On AGK BASIC: Animated Sprites

 PlaySprite(1,15,0,3,10)

AddSpriteAnimationFrame()

If you have created your own graphics for an animation, your image will, of course,
include all the frames you need, but sometimes, particularly if you are making use of
other people’s work (as is the case with the asteroid), then you may want to add one
or more frames that were not in the original picture. One approach is to modify that
original image and add in your new frames. Alternatively, you can add a new frame
to the animation from a separate image by using the AddSpriteAnimationFrame()
statement (see FIG-18.4).

where:

 id is an integer value giving the ID of the animated sprite.

 imgId is an integer value giving the ID of the image to be added to the
 animation.

The image should be the same size as a single frame of the animation. However,
images of other sizes will be scaled to fit the frame size.

Activity 18.1

Start a new project called Comet, copy the file Asteroid.png from
AGKDownloads/Chapter18 into the project’s media folder then code the
program to display the animated asteroid in the middle of the app window.

Test your project and then modify it so that the animation plays at 20 frames
per second.

Save your project.

FIG-18.4

AddSpriteAnimation
Frame()

AddSpriteAnimationFrame (id imgId,)

Activity 18.2

Copy the three files named Explode01.png, Explode02.png and Explode03.png
from rom AGKDownloads/Chapter18 into project Comet’s media folder.

Modify Asteroid so that these three files are loaded as images and then added as
new frames to the asteroid sprite.

Test your program. The last three frames should only appear when the asteroid
is destroyed.

Modify the animation so that only frames 1 to 16 are shown when the
animation plays. Test your code.

Modify your project again so that the three explosion frames play only once
after 5 seconds have elapsed.

Test and save your project.

Hands On AGK BASIC: Animated Sprites 553

SetSpriteSpeed()

Although a sprite’s speed is set when the PlaySprite() statement is executed, that
speed can be modified as the sprite is playing using the SetSpriteSpeed() statement
(see FIG-18.5).

where:

 id is an integer value giving the ID of the animated sprite.

 ifps is an integer value giving the frames per second play rate.
 If this is too high for the hardware being used, some frames may
 be skipped. A value of zero will cause the animation to pause at
 the frame currently being displayed.

StopSprite()

A running animation can be stopped (without changing the frame rate) using the
StopSprite() statement (see FIG-18.6).

where:

 id is an integer value giving the ID of the animated sprite.

ResumeSprite()

A stopped sprite can be restarted using the ResumeSprite() statement (see FIG-
18.7).

where:

 id is an integer value giving the ID of the animated sprite.

The sprite will begin playing at the same frame at which it stopped and at the speed
previously set.

GetSpritePlaying()

We can check if an animated sprite is currently playing using the GetSpritePlaying()
statement (see FIG-18.8)

where:

 id is an integer value giving the ID of the animated sprite.

The statement returns 1 if the sprite is playing, otherwise zero is returned.

FIG-18.5

SetSpriteSpeed()

SetSpriteSpeed (id ifps,)

FIG-18.6

StopSprite()

StopSprite (id)

FIG-18.7

ResumeSprite()

ResumeSprite (id)

FIG-18.8

GetSpritePlaying()

GetSpritePlayinginteger (id)

554 Hands On AGK BASIC: Animated Sprites

GetSpriteFrameCount()

To find out exactly how many frames are in an animation, you can use the
GetSpriteFrameCount() statement (see FIG-18.9).

where:

 id is an integer value giving the ID of the animated sprite.

ClearSpriteAnimationFrames()

As we have already seen, the SetSpriteAnimation() statement splits the single
image assigned to a sprite into separate frames. We can reverse this process, making
the sprite show the whole image as a single picture by using
ClearSpriteAnimationFrames().

However, if all of the sprite’s frames have been constructed using the
AddSpriteAnimationFrame() statement, the sprite will have no image assigned to it
after a ClearSpriteAnimationFrames() statement is executed.

The format for the ClearSpriteAnimationFrames() statement is shown in FIG-
18.10.

where:

 id is an integer value giving the ID of the animated sprite.

SetSpriteActive()

A sprite can be made inactive. In this state, any animation will stop and also the
physics of the sprite is also made inoperative (physics is covered in Chapter 20).

The SetSpriteActive() statement (see FIG-18.11) can cause a sprite to become
inactive but is also used to reactivate the sprite.

where:

 id is an integer value giving the ID of the sprite.

 istate is an integer value (0 or 1) used to set the state of the sprite
 (0: inactive; 1: active).

FIG-18.9

GetSpriteFrameCount()

GetSpriteFrameCountinteger (id)

ClearSpriteAnimationFrames (id)
FIG-18.10

ClearSpriteAnimation
Frames()

FIG-18.11

SetSpriteActive()

SetSpriteActive (id istate,)

Activity 18.3

Modify project Comet so that, rather than play the explosion after 5 seconds,
the sprite becomes inactive after 3 seconds.

Test and save your project.

Hands On AGK BASIC: Animated Sprites 555

GetSpriteActive()

The current state of a sprite can be determined using the GetSpriteActive()
statement. This has the format shown in FIG-18.12.

where:

 id is an integer value giving the ID of the sprite whose state is to be
 returned.

SetSpriteFrame()

Not all animated sprites are created with the intention of emulating movement; some
are used to hold the various possible appearances of an object. For example, if we
were using a sprite to represent a six sided dice, then we might use the image shown
in FIG-18.13.

With this type of image, we need to control which frame is showing at any time.
Using the PlaySprite() statement would be inappropriate here. Instead, we can use
SetSpriteFrame() which allows us to display any single frame within the animation.

The SetSpriteFrame() statement’s format is shown in FIG-18.14.

where:

 id is an integer value giving the ID of the animated sprite.

 iframe is an integer value giving the number of the frame to be displayed.
 This should be in the range 1 to the number of frames in the
 animation.

The program in FIG-18.15 makes use of the dice image to show the value thrown by
a six-sided dice. The value changes every 2 seconds.

GetSpriteActiveinteger (id)FIG-18.12

GetSpriteActive()

FIG-18.13

A Dice Image

FIG-18.14

SetSpriteFrame()

SetSpriteFrame (id iframe,)

FIG-18.15

Creating a Dice

rem *** Dice Sprite ***

rem *** Load dice image ***
LoadImage(1,”Dice.png”,0)
rem *** Create sprite ***
CreateSprite(1,1)

556 Hands On AGK BASIC: Animated Sprites

GetSpriteCurrentFrame()

To discover which frame of an animated sprite is currently being displayed, use the
GetSpriteCurrentFrame() statement (see FIG-18.16).

where:

 id is an integer value giving the ID of the animated sprite.

A Card Trick
Some sprites will be used to represent two-sided objects such as a playing card or
coin. You can achieve the effect of turning over such an object by reducing the width
of the object gradually, changing to the second frame, and then restoring the sprite’s
width. The technique is demonstrated in FIG-18.17.

FIG-18.15
(continued)

Creating a Dice

SetSpriteAnimation(1,68,68,6)
SetSpriteSize(1,10,-1)
SetSpritePosition(1,45,45)
rem *** Choose frame at random ***
SetSpriteFrame(1,Random(1,6))
rem *** record time ***
time = GetSeconds()
do
 rem *** If 2 secs passed, rethrow dice ***
 if GetSeconds() - time >= 2
 SetSpriteFrame(1,Random(1,6))
 time = GetSeconds()
 endif
 Sync()
loop

Activity 18.4

Start a new project called DiceSprite and implement the code given in FIG-
18.15 (remember to copy the file Dice.png from AGKDownloads/Chapter18).

Test and save your project.

FIG-18.16

GetSpriteCurrentFrame() GetSpriteCurrentFrameinteger (id)

FIG-18.17

Turning a Playing
Card

rem *** Turning a card ***
rem *** Load image ***
LoadImage(1,”AceofClubs.png”,0)
rem *** Create, size and place sprite ***
CreateSprite(1,1)
SetSpriteAnimation(1,256,387,2)
SetSpriteSize(1,20,-1)
SetSpritePosition(1,40,40)
rem *** Flip sprite ***
FlipCard(1)
rem *** Continue to flip ***
rem *** every 2 seconds ***
time = GetSeconds()

Hands On AGK BASIC: Animated Sprites 557

The card flipping program turns the card using the lines

for c# = spritewidth# to 0 step -stepsize#
 SetSpriteSize(1,c#,spriteheight#)
 rem *** Move sprite’s left edge towards centre ***
 x# = x# + stepsize#/2
 SetSpritePosition(spr,x#,y#)
 Sync()
next c#

The logic behind these lines is explained in FIG-18.18.

FIG-18.17
(continued)

Turning a Playing
Card

Activity 18.5

Start a new project called FlipCard and implement the code given in FIG-
18.17 (remember to copy the file AceofClubs.png from AGKDownloads/
Chapter18).

Test and save your project.

do
 if Getseconds() - time >= 2
 FlipCard(1)
 time = GetSeconds()
 endif
loop

function FlipCard(spr)
 rem *** Get the current dimensions of sprite ***
 spritewidth# = GetSpriteWidth(spr)
 spriteheight# = GetSpriteHeight(spr)
 rem *** Get the sprite’s current position ***
 x# = GetSpriteX(spr)
 y# = GetSpriteY(spr)
 rem *** Set the reduction in width at each step ***
 stepsize# = 1.0
 rem *** Reduce sprite’s width to zero ***
 for c# = spritewidth# to 0 step -stepsize#
 SetSpriteSize(1,c#,spriteheight#)
 rem *** Move sprite’s left edge towards centre ***
 x# = x# + stepsize#/2
 SetSpritePosition(spr,x#,y#)
 Sync()
 next c#
 rem *** Swap to other frame in sprite ***
 SetSpriteFrame(spr,3-GetSpriteCurrentFrame(spr))
 rem *** Restore sprite’s width ***
 for c# = 0 to spritewidth# step stepsize#
 SetSpriteSize(1,c#,spriteheight#)
 rem *** Move sprite’s left edge away from centre ***
 x# = x# - stepsize#/2
 SetSpritePosition(spr,x#,y#)
 Sync()
 next c#
endfunction

558 Hands On AGK BASIC: Animated Sprites

Once the second frame is displayed, the second for loop expands the sprite back to
its original size, gradually moving the x-coordinate back to its starting value.

Summary
± An animated sprite is made up of a sequence of frames.

± A single image contains all the frames of an animated sprite.

± The image is loaded into a sprite in the normal way and then converted to an
animated sprite using SetSpriteAnimation().

± Use PlaySprite() to play the frames of an animated sprite.

± Use AddSpriteAnimationFrame() if you want to add new frames to an
animation.

± Use SetSpriteSpeed() to adjust the speed at which the frames are changed.

± Use StopSprite() to halt an animation.

± Use ResumeSprite() to restart an animation from the point at which it
stopped.

± Use GetSpritePlaying() to determine if an animated sprite is currently
playing.

FIG-18.18

How the Card is
Turned

The line
SetSpriteSize(1,c#,spriteheight#)

reduces the width of the sprite without
affecting its height.

Normally, that would mean that the
left edge of the sprite would stay in
a fixed position as the right edge
moves inwards...

...but by adjusting the position of the
sprite by exactly half the reduction in
width, both edges move in as the sprite
gets thinner.

Eventually, the width is reduced to zero,
with the sprite x-coordinate at the
middle of the sprite’s original position.

width reduced

original
position of

sprite

Right
edge moves

in

Left
edge fixed

Right
and left edges

move in

original
position of

sprite

original
position of

sprite

Width
reduced to

zero

Hands On AGK BASIC: Animated Sprites 559

± Use GetSpriteFrameCount() to discover how many frames are in an
animation.

± Use ClearSpriteAnimationFrames() to combine the frames of an animation
into a single image which is displayed on the sprite.

± Use SetSpriteActive() to deactivate/activate a sprite. A deactivated sprite
stops playing any associated animation and no longer reacts to physical forces.

± Use GetSpriteActive() to determine if a sprite is currently active.

± Use SetSpriteFrame() to make a sprite display a specific frame of its
animation.

± Use GetSpriteCurrentFrame() to determine which frame is currently being
displayed by an animated sprite.

560 Hands On AGK BASIC: Animated Sprites

An Asteroid Game

Introduction
This game implements the basic elements of an asteroid shooting game incorporating
animated sprites and various other techniques that have been covered in the last few
chapters.

Since the main aim of the game is to demonstrate various design and programming
ideas, the program itself lacks the finishing touches of a completed app in order to
focus on the basic concepts. However, with very little effort, you could add the
required elements to produce a complete game.

Game Layout
A labelled snapshot of the game is shown in FIG-18.19.

The game begins with a single large asteroid travelling across the screen and a
spacecraft at the centre of the screen. The controls allow the spacecraft to be rotated
clockwise or counterclockwise and for the craft to fire missiles.

The snapshot in FIG-18.19 shows a stage in the game where the large asteroid has
already been hit and been transformed into three smaller asteroids. When the smaller
asteroids are hit by a missile, they will vanish from the screen.

FIG-18.19

Asteroid Game Screen
Snapshot Small

Asteroid

Small
AsteroidSmall

Asteroid

Spacecraft

Craft
rotate buttons Missile

fire button

Hands On AGK BASIC: Animated Sprites 561

Game Logic
The game uses the following logic:

Load all resources used
Position the spacecraft
Position the controls
Create the largest asteroid
DO
 Move all asteroids
 Move all missiles
 React to ship controls
 Deal with collisions
LOOP

As usual, the overall logic is kept simple without going into too much detail at this
early stage. Notice that there is no terminating condition. This makes testing easier,
but later we could make the game stop when all asteroids are destroyed.

Game Resources
The images used by the game are shown in FIG-18.20.

Two sound files are also used. The first of these (Launch.wav) is played when a
missile is launched and the second (Explode.wav) played when an asteroid is hit.

Game Code
In this project we will make use of the top-down programming method, creating code
for the main game logic which will consist mostly of function calls and then
implementing each function one at a time.

We need to start with any constants and global variables required by the program.
The code for these is given below:

rem *** Constants ***
#constant shipID = 101
#constant leftButtonID = 102
#constant rightButtonID = 103
#constant fireButtonID = 104
#constant firstMissileID = 105

FIG-18.20

Game Graphics

AsteroidSpacecraftControl Buttons

Rotate Clockwise

Rotate CounterClockwise

Craft

Missile

Asteroid (16 frames)

Explosion (3 images)

Fire Missile

562 Hands On AGK BASIC: Animated Sprites

rem *** Record Structures ***
type MissileType
 xoffset as float
 yoffset as float
endtype

type AsteroidType
 size
 xoffset as float
 yoffset as float
endtype

rem *** Global variables ***
global highestAsteroidID = 0
global rotateSpeed# = 1.0
global lastDirection = 103
global numberOfMissiles = 0
global buttonUp = 1
global dim asteroids[4] as AsteroidType
global dim missiles[5] as MissileType

Being presented with these data items in this way is entirely artificial. If you were
writing the program from scratch, then the need for each data item would only
become clear as you created your code and so they would be defined as the coding
went along. Here they have been presented to you simply to allow us to concentrate
on implementing the code for the functions that are to follow. However, it is worth
taking the time to give a brief description of each item.

The set of constants are, for the main part, the IDs to be assigned to the various sprites
used within the program. However, the last constant is the ID of the first missile to
be used. As we will see, the game allows up to five missiles to be on the screen at any
one time, so these will be given the IDs 105 to 109. When a missile is destroyed, its
ID can be reused by a later missile.

The MissileType structure defines the x and y offsets used to give a missile’s velocity.

The AsteroidType structure not only gives the asteroid’s velocity, but also the
asteroid’s type: large or small.

The global variables are used as follows:

 highestAsteroidID records the highest ID being used for an asteroid
 sprite.

 rotateSpeed# holds the angle by which the spacecraft rotates
 on each iteration of the main loop.

 lastDirection gives the ID of the last directional button
 pressed. This lets us know if the craft is turning
 clockwise or counterclockwise.

 numberOfMissiles is the number of missiles currently on the screen.

 buttonUp records the state of the fire button.

 asteroids array holds details of each asteroid.

 missiles array holds details of all missiles currently on screen.

Hands On AGK BASIC: Animated Sprites 563

Now we are ready to code the main program logic. This is taken almost unchanged
from the outline logic of the game:

rem *** Main Game Logic ***
LoadResources()
PositionShip()
PositionControls()
CreateAsteroid(12,Random(0,100),Random(0,100))
do
 MoveAllAsteroids()
 ControlShip()
 MoveAllMissiles()
 HandleCollisions()
 Sync()
loop
end

The function names will give a clue to the purpose of each one. Only CreateAsteroid()
requires parameters. These parameters give the width of the asteroid and where it is
to be positioned on the screen.

Before we can compile our code, we need to create test stubs for each of the routines
named in the main logic:

The code for the first test stub is

function LoadResources()
 Print(“LoadResources()”)
endfunction

The one for CreateAsteroid() needs to include parameters:

function CreateAsteroid(sz,x,y)
 Print(“CreateAsteroid()”)
endfunction

Activity 18.6

Create a new project called Asteroids. Set the size of the app window to 768
wide by 1024 high.

Compile the default code and copy the following files from AGKDownloads/
Chapter18 to the project’s media folder.

 Arrow.png Asteroid.png Explode01.png
 Explode02.png Explode03.png Fire.png
 Left.png Missile.png Right.png
 Explode.wav Launch.wav

Replace the default code with the code containing details of the program’s
constants, global variables,etc.

Add the code for the main program logic as shown above.

Enter the test stubs for LoadResources() and CreateAsteroid(). Add test
stubs for the remaining routines called by the main logic.

Run the program. What text is displayed? Save the project.

564 Hands On AGK BASIC: Animated Sprites

Now that the test stubs are in place, we can begin to replace each with the actual code
they should contain.

LoadResources()

This routine loads all the image and sound files required by the program. Its code is:

function LoadResources()
 rem *** Asteroid images ***
 LoadImage(1,”Asteroid.png”)
 LoadImage(2,”Explode01.png”)
 LoadImage(3,”Explode02.png”)
 LoadImage(4,”Explode03.png”)
 rem *** Ship and missile images ***
 LoadImage(5,”Arrow.png”)
 LoadImage(6,”Missile.png”)
 rem *** Button images ***
 LoadImage(7,”Left.png”)
 LoadImage(8,”Right.png”)
 LoadImage(9,”Fire.png”)
 rem *** Sound files ***
 LoadSound(1,”Launch.wav”)
 LoadSound(2,”Explode.wav”)
endfunction

PositionShip()

This function creates a spacecraft sprite using the Arrow.png image. The sprite is 5%
wide and its top-left corner should be placed at position (47.5,48) and rotated to -90o.

PositionControls()

This function positions the three buttons used to control the ship. On the left side of
the screen are the rotate-right and rotate-left buttons which allow the ship to be
rotated. On the right side of the screen is the fire button which fires a missile from the
spacecraft.

Activity 18.7

Update Asteroids, replacing the test stub for LoadResources() with the
routine’s final code (as shown above).

Run the project. If any of the files are missing from the media folder or you
have misspelled a file name, a runtime error will occur.

Resave your project.

Activity 18.8

Update Asteroids, replacing the test stub for PositionShip() with the routine’s
final code (which you need to create).

Test your code. If it is correct, the spacecraft should appear at the centre of the
screen.

Resave your project.

Hands On AGK BASIC: Animated Sprites 565

The buttons make use of the images with ID codes 7, 8 and 9.

CreateAsteroid()

This function creates an animated asteroid sprite. Its mini-spec is given below:

Activity 18.9

Add the code for PositionControls() to Asteroids.

All buttons are 10% wide and should be placed on layer 9.

Button positions are:
 left button at (1,87)
 right button at (1,93)
 fire button at (89,93)

Test your code. If it is correct, the three buttons should appear on the screen.

Resave your project.

FUNCTION NAME : CreateAsteroid

PARAMETERS
 In : sz : Integer
 x : Integer
 y : Integer

GLOBALS
 Written : highestSpriteID
 asteroids[]

PRE-CONDITION : None

DESCRIPTION : Increment highestSpriteID
 Create sprite with ID of highestSpriteID using
 image 1
 Set sprite width to sz (height: -1)
 Position sprite at (x,y)
 Convert sprite to an animated sprite with 16
 frames (frames are 250x250 pixels)
 Add images 2, 3 and 4 to the animation as frames
 17 to 19
 Set asteroids[highestSpriteID].size to sz
 Set asteroids[highestAsteroidID].xoffset to a
 random value between -1 and 1 (step size of 0.1)
 Set asteroids[highestAsteroidID].yoffset to a
 random value between -1 and 1 (step size of 0.1)
 Play the animation repeatedly (frames 1 to 16 only
 at a frame rate of 20 fps)

Activity 18.10

Implement the CreateAsteroid() function and add it to Asteroids.

Run the project. A rotating asteroid should appear on the screen.

Resave your project.

566 Hands On AGK BASIC: Animated Sprites

MoveAllAsteroids()

This function moves any existing asteroids using the values held in the asteroids
array. The first, large asteroid has an ID of 1; the three smaller ones which are created
when the larger one is hit by a missile, have IDs 2, 3, and 4. This routine cycles
through the four possible IDs to check if a sprite with that ID exists, If it does, then
a new function called MoveSingleAsteroid() is called with the sprite ID as a
parameter.

The logic of this routine can be described in structured English as:

 FOR each possible asteroid sprite ID DO
 IF a sprite of that ID exists THEN
 Move the asteroid of that ID
 ENDIF
 ENDFOR

MoveSingleAsteroid()

This function moves the asteroid of a specified ID by the appropriate offset value
stored in the asteroids array. The code for the routine is:

function MoveSingleAsteroid(id)
 rem *** Calculate new coordinates ***
 x# = GetSpriteX(id) + asteroids[id].xoffset
 y# = GetSpriteY(id) + asteroids[id].yoffset
 rem *** If it is past an edge, bring it ***
 rem *** back on at the opposite edge ***
 if x# > 120
 x# = 0
 elseif x# < -20
 x# = 100
 elseif y# > 120
 y# = 0
 elseif y# < -20
 y# = 100
 endif
 rem *** Reposition sprite ***
 SetSpritePosition(id,x#,y#)
endfunction

Notice that it waits until the asteroid is 20% off the screen before bringing it round
to the opposite edge. This is to allow the player time to think before the asteroid
reappears. You may also have noticed that no attempt is made to have the asteroid
follow the same path each time it crosses the screen. If it were to do this, then the
player’s task of predicting the position of the asteroid would be too easy.

Activity 18.11

Implement the MoveAllAsteroids() function and add it to Asteroids.

Add a test stub for the new routine MoveSingleAsteroid() to the program.

Run the project. A text message should be displayed saying
MoveSingleAsteroid() has been called.

Resave your project.

Methods of making a
sprite reappear at the
opposite edge of the
screen were discussed
in Chapter 17.

Hands On AGK BASIC: Animated Sprites 567

ControlShip()

This function allows the player to use the screen button to control the rotation of the
ship and to fire missiles. A maximum of five missiles can be on the screen at one time.

This routine has the following code:

function ControlShip()
 rem *** Check for button pressed down ***
 x = GetPointerX()
 y = GetPointerY()
 id = GetSpriteHit(x,y)
 rem *** If button is pressed ***
 if GetPointerState() = 1
 rem *** Handle button ***
 select id
 case leftButtonID: //Rotate ship left
 SetSpriteAngle(shipID,GetSpriteAngle(shipID)-
 rotatespeed#)
 endcase
 case rightButtonID: //Rotate ship right
 SetSpriteAngle(shipID,GetSpriteAngle(shipID)+
 rotatespeed#)
 endcase
 case fireButtonID: //Handle missile firing
 rem *** If less than 5 missiles on screen ***
 rem *** and fire button has just been pressed ***
 if numberOfMissiles < 5 and buttonup = 1
 rem *** Create a new missile ***
 CreateMissile()
 rem *** Record fire button as pressed ***
 buttonup = 0
 endif
 endcase
 endselect
 else
 rem *** If no buttons are pressed ***
 rem *** record fire button as up ***
 buttonup = 1
 endif
endfunction

In fact, this routine will return the ID of any sprite being pressed - button, asteroid,
ship or missile (see first three lines) - but only the buttons are processed by the
select statement, so hits on any of the sprites would be ignored.

The left and right buttons result in a change to the ship’s rotation setting. By how
much this is changed is determined by the setting of the constant rotatespeed#.

Activity 18.12

Implement the MoveSingleAsteroid() function and add it to Asteroids.

Run the project. The asteroid should now move across the screen, reappearing
at the opposite edge when it moves off the screen.

Resave your project.

568 Hands On AGK BASIC: Animated Sprites

The handling of a missile launch is slightly more complicated. Because this routine
will be executed several times per second (it is called from within the main logic’s
do..loop stucture) all five missiles would be launched in the time it takes us mere
humans to press and release the fire button. To avoid this, the global variable buttonup
is used to determine the state of the fire button, ensuring that only one missile can be
launched on each press.

Initially, buttonup is set to 1 (indicating that the fire button is unpressed). When the
fire button is pressed by the player, the code checks to see that the buttonup variable
is set to 1 before allowing a missile to be created. When the missile is created buttonup
is then set to zero thereby making the immediate launch of another missile impossible.
buttonup is only reset to 1 when no buttons are being pressed.

The other check used when creating a missile is that a maximum of five missiles can
exist at any one time. Each time a missile is created, the global variable
numberOfMissiles is incremented; when a missile is destroyed, the variable is
decremented.

CreateMissile()

This function creates a missile whose orientation matches that of the ship. The missile
is placed at the centre of the ship, but on layer 11 so it is hidden by the ship. The code
for the function is:

function CreateMissile()
 rem *** Check pre-condition ***
 rem *** Exit if 5 missiles already exist ***
 if numberOfMissiles >= 5
 exitfunction
 endif
 rem *** Increment missile count ***
 inc numberOfMissiles
 rem For each missile ID available ***
 for c = firstMissileID to firstMissileID + 4
 rem *** If no missile of that ID ***
 if GetSpriteExists(c) = 0
 rem *** Create the missile under ship ***
 CreateSprite(c,6)
 SetSpriteDepth(c,11)
 SetSpriteSize(c,2,-1)
 SetSpritePositionByOffset(c,
 GetSpriteXByOffset(shipID),
 GetSpriteYByOffset(shipID))
 rem *** Rotate it to same angle as ship ***
 angle# = GetSpriteAngle(shipID)

Activity 18.13

Implement the ControlShip() function and add it to Asteroids.

Add a test stub for the new routine CreateMissile() to the program.

Run the project. The ship should rotate clockwise or counterclockwise when
the right or left buttons are pressed. Pressing the fire button should display a
message saying CreateMissile() has been called.

Resave your project.

Hands On AGK BASIC: Animated Sprites 569

 SetSpriteAngle(c,angle#)
 rem *** Set missiles velocity ***
 missiles[c-firstMissileID].xoffset = sin(angle#)*2
 missiles[c-firstMissileID].yoffset =-cos(angle#)*2
 rem *** Play the launch sound ***
 PlaySound(1)
 rem *** Exit FOR loop ***
 exit
 endif
 next c
endfunction

Notice that the function checks to see if five missiles already exist and exits the
routine if they do. Now, you may be tempted to think that since we did the same
check before calling the routine, there is no need to do the same check here. However,
it is always good policy for a routine’s code not to make any assumptions about what
safeguards will be in place when that function is being called; hence the duplication
of the check.

MoveAllMissiles()

This function tests each ID available to the missiles’ sprites (firstMissileID to
firstMissileID + 4) to discover if a sprite of that ID exists. If the sprite does exist, a
new function called MoveSingleMissile() is called to move that particular missile.
MoveSingleMissile() takes the ID of the missile sprite as a parameter.

MoveSingleMissile()

This function moves the missile of a specified ID by the appropriate offset value
stored in the missiles array. If the missile moves off the edge of the screen, it is
deleted and the missile count held in numberOfMissiles is decremented. This allows
a new missile to be fired. The code for the routine is:

Activity 18.14

Implement the CreateMissile() function and add it to Asteroids.

Run the project. When you press the fire button, the missile is placed “under”
the ship and will not be visible.

Temporarily change the missile’s layer setting to 9 and check that it has been
correctly positioned. The launch sound will play when a missile is created.
Only five missiles can be created.

Resave your project.

Activity 18.15

Implement the MoveAllMissiles() function based on the description
given above (HINT: This is a very short routine, containing only five
lines of code) and add it to Asteroids. Add a test stub for the new routine
MoveSingleMissile() to the program.

Run the project. When you press the fire button, a text message stating that the
function MoveSingleMissile() has been called will be displayed.

Resave your project.

570 Hands On AGK BASIC: Animated Sprites

function MoveSingleMissile(id)
 rem *** If missile doesn’t exist ***
 rem *** exit function ***
 if GetSpriteExists(id) = 0
 exitfunction
 endif
 rem *** Move the missile ***
 SetSpritePosition(id,GetSpriteX(id)+
 missiles[id-firstMissileID].xoffset,GetSpriteY(id)+
 missiles[id-firstMissileID].yoffset)
 rem *** If missile leaves the screen ***
 rem *** delete it and decrease missile count ***
 if GetSpriteX(id) < 0 or GetSpriteX(id)> 105 or
 GetSpriteY(id) < 0 or GetSpriteY(id) > 105
 DeleteSprite(id)
 dec numberOfMissiles
 endif
endfunction

HandleCollisions()

At this point, the only collisions we want to detect are those between a missile and
an asteroid. If a missile hits a large asteroid, the missile is destroyed and the asteroid
breaks into three smaller asteroids. If a smaller asteroid is hit, both the missile and
asteroid are destroyed. An explosion sound is played when an asteroid is hit.

The function’s code checks each possible missile ID against each asteroid ID to test
for a collision. The functions code is:

function HandleCollisions()
 rem *** FOR each missile ID DO ***
 for m = firstMissileID to firstMissileID + 4
 rem *** If the missile exists check each asteroid ***
 if GetSpriteExists(m) = 1
 rem *** FOR each asteroid ID DO ***
 for a = 1 to highestAsteroidID
 rem *** If asteroid exists ***
 if GetSpriteExists(a)=1
 rem *** If misslie and asteroid have
 collided ***
 if GetSpriteCollision(m,a) = 1
 rem *** Delete missile and reduce
 missile count ***
 DeleteSprite(m)
 dec numberOfMissiles
 rem *** If a large asteroid split it ***
 if asteroids[a].size = 12
 SplitAsteroid(a)
 else
 rem *** if a small asteroid, destroy
 it ***

Activity 18.16

Implement the MoveSingleMissiles() function and add it to Asteroids.

Run the project. When you press the fire button, the missile should move in the
direction of the spacecraft.

Resave your project.

Hands On AGK BASIC: Animated Sprites 571

 DestroyAsteroid(a)
 endif
 rem *** Don’t test remaining asteroids
 exit
 endif
 endif
 next a
 endif
 next m
endfunction

Two new functions are called from within the code. These are SplitAsteroid() and
DestroyAsteroid().

SplitAsteroid()

This function splits the specified asteroid sprite into three smaller asteroid sprites
placing them at the same position as the original one. The original sprite is then
destroyed. The mini-spec for this function is:

DestroyAsteroid()

The final routine deletes the asteroid of the specified ID. The sprite to be destroyed
first plays the last three frames of the animation (frames 17 to 19) which show the

Activity 18.17

Implement the HandleCollisions() function and add it to Asteroids.

Add test stubs for the new routine SplitAsteroid() and DestroyAsteroid()
to the program.

Run the project. When a missile hits the asteroid, you should see text stating
that the SplitAsteroid() function has been executed.

Resave your project.

FUNCTION NAME : SplitAsteroid

PARAMETERS
 In : id : Integer

PRE-CONDITION : Sprite with ID id exists

DESCRIPTION	 	 :	 Find	the	coordinates	of	the	specified	sprite
 Create three new sprites (width: 6) at this position
 Delete sprite id

Activity 18.18

Implement the SplitAsteroid() function and add it to Asteroids. (HINT: The
new asteroids are created by three calls to CreateAsteroid().)

Run the project. When a missile hits the asteroid, it should split into three
smaller asteroids but the large asteroid will remain.

Resave your project.

572 Hands On AGK BASIC: Animated Sprites

explosion. This is followed by the explosion sound and, finally, the sprite is deleted.

The code for this function is:

function DestroyAsteroid(id)
 rem *** Play the explosion frames ***
 PlaySprite(id,10,1,17,19)
 Sync()
 rem *** Play explosion noise ***
 PlaySound(2)
 rem *** Delete sprite ***
 DeleteSprite(id)
endfunction

Of course, much more can be done to turn this into a complete game. The most
obvious need is to check for a collision between an asteroid and the spacecraft. But
you would also need to add more large asteroids at the start of the game, display a
score, etc.

Activity 18.19

Implement the DestroyAsteroid() function and add it to Asteroids.

Test your completed project.

Reorganise the layout of your code, grouping Level 1 and Level 2 functions
separately.

Save your project.

Hands On AGK BASIC: Animated Sprites 573

Solutions
Activity 18.1

Code for Comet:
rem *** Animated Sprite ***
rem *** load image ***
LoadImage(1,”Asteroid.png”)
rem *** Create, size and position sprite ***
CreateSprite(1,1)
SetSpriteSize(1,12,-1)
SetSpritePosition(1,46,46)
rem *** Transform into animated sprite ***
SetSpriteAnimation(1,250,250,16)
rem *** Play animation ***
PlaySprite(1)
do
 Sync()
loop

To play at 20 frames per second, change the PlaySprite()
command to

 PlaySprite(1,20)

Activity 18.2
Modified code for Comet (additional frames added):

rem *** Animated Sprite ***
rem *** Load images ***
LoadImage(1,”Asteroid.png”)
LoadImage(2,”Explode01.png”)
LoadImage(3,”Explode02.png”)
LoadImage(4,”Explode03.png”)
rem *** Create, size and position sprite ***
CreateSprite(1,1)
SetSpriteSize(1,12,-1)
SetSpritePosition(1,46,46)
rem *** Transform into animated sprite ***
SetSpriteAnimation(1,250,250,16)
rem *** Add new frames to the animation ***
AddSpriteAnimationFrame(1,2)
AddSpriteAnimationFrame(1,3)
AddSpriteAnimationFrame(1,4)
rem *** Play animation ***
PlaySprite(1,20)
do
 Sync()
loop

To play only frames 1 to 16, change the line
PlaySprite(1,20)

to
PlaySprite(1,20,1,1,16)

Modified code for Comet (explosion after 5 seconds):
rem *** Animated Sprite ***
rem *** Load images ***
LoadImage(1,”Asteroid.png”)
LoadImage(2,”Explode01.png”)
LoadImage(3,”Explode02.png”)
LoadImage(4,”Explode03.png”)
rem *** Create, size and position sprite ***
CreateSprite(1,1)
SetSpriteSize(1,12,-1)
SetSpritePosition(1,46,46)
rem *** Transform into animated sprite ***
SetSpriteAnimation(1,250,250,16)
rem *** Add new frames to the animation ***
AddSpriteAnimationFrame(1,2)
AddSpriteAnimationFrame(1,3)
AddSpriteAnimationFrame(1,4)
rem *** Play animation ***
PlaySprite(1,20,1,1,16)
rem *** Explode after 5 seconds ***
time = GetSeconds()

repeat

 Sync()
until GetSeconds() - time >= 5
PlaySprite(1,20,0,17,19)
do
 Sync()
loop

Activity 18.3
Modified code for Comet (inactive after 3 secs) :

rem *** Animated Sprite ***
rem *** Load images ***
LoadImage(1,”Asteroid.png”)
LoadImage(2,”Explode01.png”)
LoadImage(3,”Explode02.png”)
LoadImage(4,”Explode03.png”)
rem *** Create, size and position sprite ***
CreateSprite(1,1)
SetSpriteSize(1,12,-1)
SetSpritePosition(1,46,46)
rem *** Transform into animated sprite ***
SetSpriteAnimation(1,250,250,16)
rem *** Add new frames to the animation ***
AddSpriteAnimationFrame(1,2)
AddSpriteAnimationFrame(1,3)
AddSpriteAnimationFrame(1,4)
rem *** Play animation ***
PlaySprite(1,20,1,1,16)
rem *** After 3 secs make sprite inactive ***
time = GetSeconds()
repeat
 Sync()
until GetSeconds() - time >= 3
SetSpriteActive(1,0)
do
 Sync()
loop

Activity 18.4
No solution required.

Activity 18.5
No solution required.

Activity 18.6
Code for Asteroids:

rem *** Asteroid Game ***

rem *** Constants ***
#constant shipID = 101
#constant leftButtonID = 102
#constant rightButtonID = 103
#constant fireButtonID = 104
#constant firstMissileID = 105
rem *** Record Structures ***
type MissileType
 xoffset as float
 yoffset as float
endtype

type AsteroidType
 size
 xoffset as float
 yoffset as float
endtype

rem *** Global variables ***
global highestAsteroidID = 0
global rotateSpeed# = 1.0
global lastDirection = 103
global numberOfMissiles = 0
global buttonUp = 1
global dim asteroids[4] as AsteroidType
global dim missiles[5] as MissileType

rem *** Main Game Logic ***
LoadResources()
PositionShip()

574 Hands On AGK BASIC: Animated Sprites

PositionControls()
CreateAsteroid(12,Random(0,100),Random(0,100))
do
 MoveAllAsteroids()
 ControlShip()
 MoveAllMissiles()
 HandleCollisions()
 Sync()
loop
end

function LoadResources()
 Print(“LoadResources()”)
endfunction

function PositionShip()
 Print(“PositionShip()”)
endfunction

function PositionControls()
 Print(“PositionControls()”)
endfunction

function CreateAsteroid(sz,x,y)
 Print(“CreateAsteroid()”)
endfunction

function MoveAllAsteroids()
 Print(“MoveAllAsteroids()”)
endfunction

function ControlShip()
 Print(“ControlShip()”)
endfunction

function MoveAllMissiles()
 Print(“MoveAllMissiles()”)
endfunction

function HandleCollisions()
 Print(“HandleCollisions()”)
endfunction

The screen will display the names of all eight routines, but
the first four will be shown only once (and you are unlikely
to see them because of the next call to Sync()). The names of
the four functions called within the do..loop will remain on
the screen.

Activity 18.7
Modified code for Asteroids(LoadResources() coded):

rem *** Asteroid Game ***

rem *** Constants ***
#constant shipID = 101
#constant leftButtonID = 102
#constant rightButtonID = 103
#constant fireButtonID = 104
#constant firstMissileID = 105
rem *** Record Structures ***
type MissileType
 xoffset as float
 yoffset as float
endtype

type AsteroidType
 size
 xoffset as float
 yoffset as float
endtype

rem *** Global variables ***
global highestAsteroidID = 0
global rotateSpeed# = 1.0
global lastDirection = 103
global numberOfMissiles = 0
global buttonUp = 1
global dim asteroids[4] as AsteroidType
global dim missiles[5] as MissileType

rem *** Main Game Logic ***
LoadResources()
PositionShip()

PositionControls()
CreateAsteroid(12,Random(0,100),Random(0,100))
do
 MoveAllAsteroids()
 ControlShip()
 MoveAllMissiles()
 HandleCollisions()
 Sync()
loop
end

function LoadResources()
 rem *** Asteroid images ***
 LoadImage(1,”Asteroid.png”)
 LoadImage(2,”Explode01.png”)
 LoadImage(3,”Explode02.png”)
 LoadImage(4,”Explode03.png”)
 rem *** Ship and missile images ***
 LoadImage(5,”Arrow.png”)
 LoadImage(6,”Missile.png”)
 rem *** Button images ***
 LoadImage(7,”Left.png”)
 LoadImage(8,”Right.png”)
 LoadImage(9,”Fire.png”)
 rem *** Sound files ***
 LoadSound(1,”Launch.wav”)
 LoadSound(2,”Explode.wav”)
endfunction

function PositionShip()
 Print(“PositionShip()”)
endfunction

function PositionControls()
 Print(“PositionControls()”)
endfunction

function CreateAsteroid(sz,x,y)
 Print(“CreateAsteroid()”)
endfunction

function MoveAllAsteroids()
 Print(“MoveAllAsteroids()”)
endfunction

function ControlShip()
 Print(“ControlShip()”)
endfunction

function MoveAllMissiles()
 Print(“MoveAllMissiles()”)
endfunction

function HandleCollisions()
 Print(“HandleCollisions()”)
endfunction

Activity 18.8
Modified code for Asteroids(PositionShip() coded):

rem *** Asteroid Game ***

rem *** Constants ***
#constant shipID = 101
#constant leftButtonID = 102
#constant rightButtonID = 103
#constant fireButtonID = 104
#constant firstMissileID = 105
rem *** Record Structures ***
type MissileType
 xoffset as float
 yoffset as float
endtype

type AsteroidType
 size
 xoffset as float
 yoffset as float
endtype

rem *** Global variables ***
global highestAsteroidID = 0
global rotateSpeed# = 1.0
global lastDirection = 103
global numberOfMissiles = 0
global buttonUp = 1

Hands On AGK BASIC: Animated Sprites 575

global dim asteroids[4] as AsteroidType
global dim missiles[5] as MissileType

rem *** Main Game Logic ***
LoadResources()
PositionShip()
PositionControls()
CreateAsteroid(12,Random(0,100),Random(0,100))
do
 MoveAllAsteroids()
 ControlShip()
 MoveAllMissiles()
 HandleCollisions()
 Sync()
loop
end

function LoadResources()
 rem *** Asteroid images ***
 LoadImage(1,”Asteroid.png”)
 LoadImage(2,”Explode01.png”)
 LoadImage(3,”Explode02.png”)
 LoadImage(4,”Explode03.png”)
 rem *** Ship and missile images ***
 LoadImage(5,”Arrow.png”)
 LoadImage(6,”Missile.png”)
 rem *** Button images ***
 LoadImage(7,”Left.png”)
 LoadImage(8,”Right.png”)
 LoadImage(9,”Fire.png”)
 rem *** Sound files ***
 LoadSound(1,”Launch.wav”)
 LoadSound(2,”Explode.wav”)
endfunction

function PositionShip()
 rem *** Create, size and position spacecraft ***
 CreateSprite(shipID,5)
 SetSpriteSize(shipID,5,-1)
 SetSpritePosition(shipID,47.5,48)
 rem *** Rotate ship to point upwards ***
 SetSpriteAngle(shipID,-90)
endfunction

function PositionControls()
 Print(“PositionControls()”)
endfunction

function CreateAsteroid(sz,x,y)
 Print(“CreateAsteroid()”)
endfunction

function MoveAllAsteroids()
 Print(“MoveAllAsteroids()”)
endfunction

function ControlShip()
 Print(“ControlShip()”)
endfunction

function MoveAllMissiles()
 Print(“MoveAllMissiles()”)
endfunction

function HandleCollisions()
 Print(“HandleCollisions()”)

endfunction

Activity 18.9
Code for Asteroids’ PositionControls():

function PositionControls()
 rem *** Position Left button ***
 CreateSprite(leftButtonID,7)
 SetSpriteSize(leftButtonID,10,-1)
 SetSpritePosition(leftButtonID,1,87)
 SetSpriteDepth(leftButtonID,9)
 rem *** Position right button ***
 CreateSprite(rightButtonID,8)
 SetSpriteSize(rightButtonID,10,-1)
 SetSpritePosition(rightButtonID,1,93)
 SetSpriteDepth(rightButtonID,9)
 rem *** Position fire button ***
 CreateSprite(fireButtonID,9)
 SetSpriteSize(fireButtonID,10,-1)
 SetSpritePosition(fireButtonID,89,93)
 SetSpriteDepth(fireButtonID,9)

endfunction

Activity 18.10
Code for Asteroids’ CreateAsteroid():

function CreateAsteroid(sz,x,y)
 inc highestAsteroidID
 id = highestAsteroidID
 rem *** Create, size and position sprite ***
 CreateSprite(id,1)
 SetSpriteSize(id,sz,-1)
 SetSpritePosition(id,x,y)
 rem *** Transform into animated sprite ***
 SetSpriteAnimation(id,250,250,16)
 AddSpriteAnimationFrame(id,2)
 AddSpriteAnimationFrame(id,3)
 AddSpriteAnimationFrame(id,4)
 rem *** Record sprite’s size and velocity ***
 asteroids[id].size = sz
 asteroids[id].xoffset = (Random(0,20)-10)/10.0
 asteroids[id].yoffset = (Random(0,20)-10)/10.0
 PlaySprite(id,20,1,1,16)
endfunction

Activity 18.11
Code for Asteroids’ MoveAllAsteroids():

function MoveAllAsteroids()
 for c = 1 to highestAsteroidID
 if GetSpriteExists(c) = 1
 MoveSingleAsteroid(c)
 endif
 next c
endfunction

Test stub for MoveSingleAsteroid():
function MoveSingleAsteroid(id)
 Print(“MoveSingleAsteroid()”)
endfunction

Activity 18.12
Code for Asteroids’ MoveSingleAsteroid():

function MoveSingleAsteroid(id)
 rem *** Calculate new coordinates ***
 x# = GetSpriteX(id) + asteroids[id].xoffset
 y# = GetSpriteY(id) + asteroids[id].yoffset
 rem *** If it is past an edge, bring it ***
 rem *** back on at the opposite edge ***
 if x# > 120
 x# = 0
 elseif x# < -20
 x# = 100
 elseif y# > 120
 y# = 0
 elseif y# < -20
 y# = 100
 endif
 rem *** Reposition sprite ***
 SetSpritePosition(id,x#,y#)
endfunction

Activity 18.13
Code for Asteroids’ ControlShip():

function ControlShip()
 rem *** Check for button pressed down ***
 x = GetPointerX()
 y = GetPointerY()
 id = GetSpriteHit(x,y)
 rem *** If button is pressed ***
 if GetPointerState() = 1
 rem *** Handle button ***
 select id
 case leftButtonID: //Rotate ship left
 SetSpriteAngle(shipID,GetSpriteAngle
 (shipID)-rotatespeed#)
 endcase
 case rightButtonID: //Rotate ship right
 SetSpriteAngle(shipID,
 GetSpriteAngle(shipID)+
 rotatespeed#)

576 Hands On AGK BASIC: Animated Sprites

 endcase
 case fireButtonID: //Handle missile firing
 rem *** If less than 5 missiles on
 screen ***
 rem *** and fire button has just been
 pressed ***
 if numberOfMissiles<5 and buttonup=1
 rem *** Create a new missile ***
 CreateMissile()
 rem *** Record fire button as
 being pressed ***
 buttonup = 0
 endif
 endcase
 endselect
 else
 rem *** If no buttons are pressed ***
 rem *** record fire button as up ***
 buttonup = 1
 endif
endfunction

Test stub for CreateMissile():
function CreateMissile()
 Print(“CreateMissile()”)
endfunction

Activity 18.14
Code for Asteroids’ CreateMissile():

function CreateMissile()
 rem *** Check pre-condition ***
 rem *** Exit if 5 missiles already exist ***
 if numberOfMissiles >= 5
 exitfunction
 endif
 rem *** Increment missile count ***
 inc numberOfMissiles
 rem For each missile ID available ***
 for c = firstMissileID to firstMissileID + 4
 rem *** If no missile of that ID ***
 if GetSpriteExists(c) = 0
 rem *** Create the missile under ship

 CreateSprite(c,6)
 SetSpriteDepth(c,11)
 SetSpriteSize(c,2,-1)
 SetSpritePositionByOffset(c,
 GetSpriteXByOffset(shipID),
 GetSpriteYByOffset(shipID))
 rem *** Rotate it to same angle as ship

 angle# = GetSpriteAngle(shipID)
 SetSpriteAngle(c,angle#)
 rem *** Set missiles velocity ***
 missiles[c-firstMissileID].xoffset =
 cos(angle#)*2
 missiles[c-firstMissileID].yoffset =
 sin(angle#)*2
 rem *** Play the launch sound ***
 PlaySound(1)
 rem *** Exit the FOR loop ***
 exit
 endif
 next c
endfunction

To have the missile appear over the ship change the line
 SetSpriteDepth(c,11)

to
 SetSpriteDepth(c,9)

Return to the original version of the line after your test run.

Activity 18.15
Code for Asteroids’ MoveAllMissiles():

function MoveAllMissiles()
 for c = firstMissileID to firstMissileID + 4
 if GetSpriteExists(c) = 1
 MoveSingleMissile(c)
 endif

 next c
endfunction

Test stub for MoveSingleMissile():
function MoveSingleMissile()
 Print(“MoveSingleMissile()”)
endfunction

Activity 18.16
Code for Asteroids’ MoveSingleMissile():

function MoveSingleMissile(id)
 rem *** If missile doesn’t exist ***
 rem *** exit function ***
 if GetSpriteExists(id) = 0
 exitfunction
 endif
 rem *** Move the missile ***
 SetSpritePosition(id,GetSpriteX(id)+
 missiles[id-firstMissileID].xoffset,
 GetSpriteY(id)+missiles[id-firstMissileID].
 yoffset)
 rem *** If missile leaves the screen ***
 rem *** delete it and decrease missile count ***
 if GetSpriteX(id) < 0 or GetSpriteX(id)> 105 or
 GetSpriteY(id) < 0 or GetSpriteY(id) > 105
 DeleteSprite(id)
 dec numberOfMissiles
 endif
endfunction

Activity 18.17
Code for Asteroids’ HandleCollisions():

function HandleCollisions()
 rem *** FOR each missile ID DO ***
 for m = firstMissileID to firstMissileID + 4
 rem *** If the missile exists ***
 if GetSpriteExists(m) = 1
 rem *** FOR each asteroid ID DO ***
 for a = 1 to highestAsteroidID
 rem *** If asteroid exists ***
 if GetSpriteExists(a)=1
 rem *** If missile and asteroid
 have collided ***
 if GetSpriteCollision(m,a) = 1
 rem *** Delete missile and
 reduce missile count ***
 DeleteSprite(m)
 dec numberOfMissiles
 rem *** If its a large
 asteroid split the asteroid

 if asteroids[a].size = 12
 SplitAsteroid(a)
 else
 rem *** if its a small
 asteroid, destroy it
 DestroyAsteroid(a)
 endif
 exit
 endif
 endif
 next a
 endif
 next m
endfunction

Test stub for SplitAsteroid():
function SplitAsteroid()
 Print(“SplitAsteroid()”)
endfunction

Test stub for DestroyAsteroid():
function DestroyAsteroid()
 Print(“DestroyAsteroid()”)
endfunction

Activity 18.18
Code for Asteroids’ SplitAsteroid():

function SplitAsteroid(id)

Hands On AGK BASIC: Animated Sprites 577

 rem *** If sprite doesn’t exist, exit ***
 if GetSpriteExists(id) = 0
 exitfunction
 endif
 rem *** Get the asteroid’s current position ***
 x = GetSpriteX(id)
 y = GetSpriteY(id)
 rem *** Create three new asteroids ***
 CreateAsteroid(6,x,y)
 CreateAsteroid(6,x,y)
 CreateAsteroid(6,x,y)
 rem *** Destroy the original asteroid ***
 DestroyAsteroid(id)
endfunction

Activity 18.19
The complete code for Asteroids:

rem *** Asteroid Game ***
rem *** Constants ***
#constant shipID = 101
#constant leftButtonID = 102
#constant rightButtonID = 103
#constant fireButtonID = 104
#constant firstMissileID = 105
rem *** Record Structures ***
type MissileType
 xoffset as float
 yoffset as float
endtype

type AsteroidType
 size
 xoffset as float
 yoffset as float
endtype

rem *** Global variables ***
global highestAsteroidID = 0
global rotateSpeed# = 1.0
global lastDirection = 103
global numberOfMissiles = 0
global buttonUp = 1
global dim asteroids[4] as AsteroidType
global dim missiles[5] as MissileType

rem *** Main Game Logic ***
LoadResources()
PositionShip()
PositionControls()
CreateAsteroid(12,Random(0,100),Random(0,100))
do
 MoveAllAsteroids()
 ControlShip()
 MoveAllMissiles()
 HandleCollisions()
 Sync()
loop
end

rem ************************************
rem *** Level 1 Functions ***
rem ************************************

function LoadResources()
 rem *** Asteroid images ***
 LoadImage(1,”Asteroid.png”)
 LoadImage(2,”Explode01.png”)
 LoadImage(3,”Explode02.png”)
 LoadImage(4,”Explode03.png”)
 rem *** Ship and missile images ***
 LoadImage(5,”Arrow.png”)
 LoadImage(6,”Missile.png”)
 rem *** Button images ***
 LoadImage(7,”Left.png”)
 LoadImage(8,”Right.png”)
 LoadImage(9,”Fire.png”)
 rem *** Sound files ***
 LoadSound(1,”Launch.wav”)
 LoadSound(2,”Explode.wav”)
endfunction

function PositionShip()
 rem *** Create, size and position spacecraft ***
 CreateSprite(shipID,5)

 SetSpriteSize(shipID,5,-1)
 SetSpritePosition(shipID,47.5,48)
 rem *** Rotate ship to point upwards ***
 SetSpriteAngle(shipID,-90)
endfunction

function PositionControls()
 rem *** Position Left button ***
 CreateSprite(leftButtonID,7)
 SetSpriteSize(leftButtonID,10,-1)
 SetSpritePosition(leftButtonID,1,87)
 SetSpriteDepth(leftButtonID,9)
 rem *** Position right button ***
 CreateSprite(rightButtonID,8)
 SetSpriteSize(rightButtonID,10,-1)
 SetSpritePosition(rightButtonID,1,93)
 SetSpriteDepth(rightButtonID,9)
 rem *** Position fire button ***
 CreateSprite(fireButtonID,9)
 SetSpriteSize(fireButtonID,10,-1)
 SetSpritePosition(fireButtonID,89,93)
 SetSpriteDepth(fireButtonID,9)
endfunction

function CreateAsteroid(sz,x,y)
 inc highestAsteroidID
 id = highestAsteroidID
 rem *** Create, size and position sprite ***
 CreateSprite(id,1)
 SetSpriteSize(id,sz,-1)
 SetSpritePosition(id,x,y)
 rem *** Transform into animated sprite ***
 SetSpriteAnimation(id,250,250,16)
 AddSpriteAnimationFrame(id,2)
 AddSpriteAnimationFrame(id,3)
 AddSpriteAnimationFrame(id,4)
 rem *** Record sprite’s size and velocity ***
 asteroids[id].size = sz
 asteroids[id].xoffset = (Random(0,20)-10)/10.0
 asteroids[id].yoffset = (Random(0,20)-10)/10.0
 PlaySprite(id,20,1,1,16)
endfunction

function MoveAllAsteroids()
 for c = 1 to highestAsteroidID
 if GetSpriteExists(c) = 1
 MoveSingleAsteroid(c)
 endif
 next c
endfunction

function ControlShip()
 rem *** Check for button pressed down ***
 x = GetPointerX()
 y = GetPointerY()
 id = GetSpriteHit(x,y)
 rem *** If button is pressed ***
 if GetPointerState() = 1
 rem *** Handle button ***
 select id
 case leftButtonID: //Rotate ship left
 SetSpriteAngle(shipID,
 GetSpriteAngle(shipID)-
 rotatespeed#)
 endcase
 case rightButtonID: //Rotate ship right
 SetSpriteAngle(shipID,
 GetSpriteAngle(shipID)+
 rotatespeed#)
 endcase
 case fireButtonID: //Handle missile firing
 rem *** If less than 5 missiles on
 screen ***
 rem *** and fire button has just been
 pressed ***
 if numberOfMissiles<5 and buttonup=1
 rem *** Create a new missile ***
 CreateMissile()
 rem *** Record fire button as
 being pressed ***
 buttonup = 0
 endif
 endcase
 endselect
 else
 rem *** If no buttons are pressed ***
 rem *** record fire button as up ***
 buttonup = 1
 endif
endfunction

578 Hands On AGK BASIC: Animated Sprites

function MoveAllMissiles()
 for c = firstMissileID to firstMissileID + 4
 if GetSpriteExists(c) = 1
 MoveSingleMissile(c)
 endif
 next c
endfunction

function HandleCollisions()
 rem *** FOR each missile ID DO ***
 for m = firstMissileID to firstMissileID + 4
 rem *** If the missile exists ***
 if GetSpriteExists(m) = 1
 rem *** FOR each asteroid ID DO ***
 for a = 1 to highestAsteroidID
 rem *** If asteroid exists ***
 if GetSpriteExists(a)=1
 rem *** If misslie and asteroid
 have collided ***
 if GetSpriteCollision(m,a) = 1
 rem *** Delete missile and
 reduce missile count ***
 DeleteSprite(m)
 dec numberOfMissiles
 rem *** If its a large
 asteroid split the asteroid

 if asteroids[a].size = 12
 SplitAsteroid(a)
 else
 rem *** if its a small
 asteroid, destroy it
 DestroyAsteroid(a)
 endif
 exit
 endif
 endif
 next a
 endif
 next m
endfunction

rem ************************************
rem *** Level 2 Functions ***
rem ************************************

function MoveSingleAsteroid(id)
 rem *** Play animation ***
 rem *** Move sprite ***
 x# = GetSpriteX(id) + asteroids[id].xoffset
 if x# > 120
 x# = 0
 elseif x# < -20
 x# = 100
 endif
 y# = GetSpriteY(id) + asteroids[id].yoffset
 if y# > 120
 y# = 0
 elseif y# < -20
 y# = 100
 endif
 SetSpritePosition(id,x#,y#)
endfunction

function CreateMissile()
 rem *** Check pre-condition ***
 rem *** Exit if 5 missiles already exist ***
 if numberOfMissiles >= 5

 exitfunction
 endif
 rem *** Increment missile count ***
 inc numberOfMissiles
 rem For each missile ID available ***
 for c = firstMissileID to firstMissileID + 4
 rem *** If no missile of that ID ***
 if GetSpriteExists(c) = 0
 rem *** Create the missile under ship

 CreateSprite(c,6)
 SetSpriteDepth(c,11)
 SetSpriteSize(c,2,-1)
 SetSpritePositionByOffset(c,
 GetSpriteXByOffset(shipID),
 GetSpriteYByOffset(shipID))
 rem *** Rotate it to same angle as ship

 angle# = GetSpriteAngle(shipID)
 SetSpriteAngle(c,angle#)

 rem *** Set missiles velocity ***
 missiles[c-firstMissileID].xoffset =
 cos(angle#)*2
 missiles[c-firstMissileID].yoffset =
 sin(angle#)*2
 rem *** Play the launch sound ***
 PlaySound(1)
 rem *** Exit the FOR loop ***
 exit
 endif
 next c
endfunction

function MoveSingleMissile(id)
 rem *** If missile doesn’t exist ***
 rem *** exit function ***
 if GetSpriteExists(id) = 0
 exitfunction
 endif
 rem *** Move the missile ***
 SetSpritePosition(id,GetSpriteX(id)+
 missiles[id-firstMissileID].xoffset,
 GetSpriteY(id)+missiles[id-firstMissileID].
 yoffset)
 rem *** If missile leaves the screen ***
 rem *** delete it and decrease missile count ***
 if GetSpriteX(id) < 0 or GetSpriteX(id)> 105 or
 GetSpriteY(id) < 0 or GetSpriteY(id) > 105
 DeleteSprite(id)
 dec numberOfMissiles
 endif
endfunction

function SplitAsteroid(id)
 rem *** If sprite doesn’t exist, exit ***
 if GetSpriteExists(id) = 0
 exitfunction
 endif
 rem *** Get the asteroid’s current position ***
 x = GetSpriteX(id)
 y = GetSpriteY(id)
 rem *** Create three new asteroids ***
 CreateAsteroid(6,x,y)
 CreateAsteroid(6,x,y)
 CreateAsteroid(6,x,y)
 rem *** Destroy the original asteroid ***
 DestroyAsteroid(id)
endfunction

function DestroyAsteroid(id)
 rem *** Play the explosion frames ***
 PlaySprite(id,10,1,17,19)
 Sync()
 rem *** Play explosion noise ***
 PlaySound(2)
 rem *** Delete sprite ***
 DeleteSprite(id)
endfunction

Hands On AGK BASIC : Screen Handling 579

Screen Handling

In this Chapter:

T Accessing Screen Attributes

T Controlling Screen Orientation

T Screen and World Coordinates

T Zooming

T Scrolling

T Clipping

T Using Touch Statements

T Understanding Sync()

T Accessing the Backbuffer

580 Hands On AGK BASIC: Screen Handling

Screen Handling

Introduction
Since an app is likely to run on various platforms, one of the things we need to take
into account is the screen on which it is displayed.

In this section we describe the commands used to access information about the screen
being used and how these commands affect the relationship between screen space
and world space.

Screen-Related Statements
GetDeviceHeight()

We can discover the height of the current device’s screen using the GetDeviceHeight()
statement (see FIG-19.1).

The value returned is the actual resolution of the screen in pixels and normally
assumes portrait orientation. The value will not change if you rotate the device.

GetDeviceWidth()

The width of the current device’s display can be determined using GetDeviceWidth()
(see FIG-19.2).

The value returned is the actual screen resolution in pixels and measures the width of
the screen when used in portrait mode.

GetVirtualHeight() and GetVirtualWidth()

If you have set your display to use virtual pixels (rather than the default percentage
system), then you can retrieve the settings you specified in SetVirtualResolution()
using GetVirtualHeight() and GetVirtualWidth() whose formats are shown in
FIG-19.3.

Should you call these commands when using the default percentage screen setup, the
return values for each statement will be 100.

GetDisplayAspect()

The width-to-height aspect ratio of the device’s screen can be found using the
GetDisplayAspect() statement (see FIG-19.4).

FIG-19.1

GetDeviceHeight()

GetDeviceHeightinteger ()

FIG-19.2

GetDeviceWidth()

GetDeviceWidthinteger ()

The
SetVirtualResolution()

statement was covered in
Chapter 2.

FIG-19.3

GetVirtualHeight()

GetVirtualWidth()

GetVirtualHeightinteger ()

GetVirtualWidthinteger ()

FIG-19.4

GetDisplayAspect() GetDisplayAspectfloat ()

Hands On AGK BASIC: Screen Handling 581

GetOrientation()

If the device running your code is capable of detecting its own orientation, then you
can use the GetOrientation() statement to determine if it is in landscape or portrait
mode. The statement’s format is shown in FIG-19.5.

The statement returns one of four possible values. These are:

 1 portrait mode
 2 portrait mode - 180o rotation
 3 landscape mode - 90o rotation counterclockwise
 4 landscape mode - 90o rotation clockwise

SetOrientationAllowed()

You have the option to disable a change of screen layout when a device’s orientation
shifts. Using SetOrientationAllowed() permits you to switch on or off automatic
layout changes. The statement’s format is shown in FIG-19.6.

where:

 iport is an integer value (0 or 1). Set this to 1 if standard portrait
 orientation is allowed.

 ivport is an integer value (0 or 1). Set this to 1 if inverted portrait
 orientation is allowed.

 iland is an integer value (0 or 1). Set this to 1 if standard landscape
 orientation (90o counterclockwise) is allowed.

 ivland is an integer value (0 or 1). Set this to 1 if inverted landscape
 orientation (90o clockwise) is allowed.

FIG-19.5

GetOrientation()

GetOrientationinteger ()

FIG-19.6

SetOrientationAllowed()

SetOrientationAllowed ()iport ivport iland ivland

Activity 19.1

Start a new project called Orientation.

Enter the following code in main.agc:

 dim orientation[4] as string = [“”,”Portrait”,
 ”Inverted portrait”,”Landscape right”,”Landscape left”]
 CreateText(1,””)
 do
 SetTextString(1,orientation[GetOrientation()])
 Sync()
 loop

Transfer the code to your smart device and try rotating it to each of the
various options and observing the results.

Save your project.

582 Hands On AGK BASIC: Screen Handling

A zero setting for any parameter means that particular orientation is not allowed. By
default, all orientations are allowed.

SetTransitionMode()

If your app does allow a change of orientation, how that orientation is handled can
be set using SetTransitionMode(). This statement allows you to specify either an
instant change in orientation or a gradual one. Using the gradual option the screen
image can be seen rotating through several stages to its new position. The format for
SetTransitionMode() is shown in FIG-19. 7.

where:

 imode is an integer value (0 or 1). 0: instant transition; 1: gradual
 transition.

The program in FIG-19.8 shows the effects of changing transition modes.

Activity 19.2

Modify Orientation so that only standard portrait and standard landscape
are allowed. See what effect this has when you run the app on your portable
device.

FIG-19.7

SetTransitionMode()

SetTransitionMode ()imode

FIG-19.8

Using Transition Modes

rem *** Demonstrate Orientation Transition ***

rem *** Set screen aspect ***
SetDisplayAspect(768/1024.0)
rem *** Set transition effect ***
SetTransitionMode(1)
rem *** Create sprite ***
LoadImage(1,”Spacecraft.png”)
CreateSprite(1,1)
SetSpriteSize(1,-1,50)
SetSpritePositionByOffset(1,50,50)
do
 Sync()
loop

Activity 19.3

Start a new project called Transitions and implement the code given in FIG-
19.8 (also copy AGKDownloads/Chapter19/Spacecraft.png to the project’s
media folder.

Run the program on your mobile device and check out the effect as you move
between landscape and portrait mode.

Change the parameter for SetTransitionMode() to zero and see how the effect
produced changes.

Save your project.

Hands On AGK BASIC: Screen Handling 583

SetResolutionMode()

When using a high resolution device such as your PC or tablet, you have the option
to set the graphics of your app to high resolution or low resolution using the
SetResolutionMode() statement (see FIG-19.9).

where:

 imode is an integer value (0 or 1). Set to 1 for high resolution; 0 for low
 resolution.

Obviously, selecting high resolution will result in sharper images, but low resolution
may give faster execution times.

UpdateDeviceSize()

If you are using virtual pixels, then width and height values can be changed (you may
need to do this if the device is rotated) using the UpdateDeviceSize() statement (see
FIG-19.10).

where

 iwidth is an integer value giving the new width of the screen.

 iheight is an integer value giving the new height of the screen.

Zooming and Scrolling
In order to understand zooming and scrolling, we need to know a few things about
the virtual world created by AGK.

Although your device’s screen (or app window on a PC) represents a 100% by 100%
area, this is only part of the “world” in which visual objects can be placed. FIG-19.11
shows the relationship between the screen (or viewport) and the world.

FIG-19.9

SetResolutionMode()

SetResolutionMode ()imode

FIG-19.10

UpdateDeviceSize()

UpdateDeviceSize ()iwidth iheight

FIG-19.11

World and Screen
Coordinates

NOTE: markings on the
axes are not to scale.

x-axis

y-axis+

+

-

-

World

Screen

584 Hands On AGK BASIC: Screen Handling

In this default setup, position (0,0) on the screen matches position (0,0) in the
“world”. In fact all points between (0,0) and (100,100) match in both the screen and
world setups.

When we size an image to be larger than the screen with a line such as

 SetSpriteSize(1,200,-1)

then part of the image lies in an area of the world not visible within the screen’s
viewport (see FIG-19.12).

When a sprite is larger than the area of the screen, or when other visual elements have
been placed outside the part of the “world” seen on the screen, then we need to use
scrolling to see those off-screen elements (just like scrolling on a web page or text
document). The idea is shown in FIG-19.13.

When we employ scrolling, the screen coordinates no longer match those of the
world. For example, if we have scrolled 20 units in the x direction and 25 in the y
direction (creating a similar situation to that in FIG-19.13 above), screen position
(0,0) shows what is at position (20,25) in the world area.

When we adjust what appears on the screen by zooming, the image on the screen is
a magnification of what’s been placed in the “world”. For example, if the image is
sized using the line

 SetSpriteSize(1,100,-1)

and we zoom in on the screen so that we have a magnification factor of 2, then we

FIG-19.12

Resizing an Image

x-axis

+

+

-

-

World
Screen

FIG-19.13

Scrolling

x-axis

+

+

-

-

World
Screen

y-o�set

x-o�set

Hands On AGK BASIC: Screen Handling 585

get the setup shown in FIG-19.14.

Like scrolling, this has affected how positions on the screen relate to (or map to)
positions in the “world”. For example, in screen coordinates, the bottom-right corner
is, as ever, (100,100) but this now corresponds to position (50,50) in world coordinates.
If the magnification factor changed to 4, then the bottom-right of the screen would
show what is at position (25,25) in the world.

If we use scrolling and zooming together mapping screen coordinates to world ones
becomes even more difficult. If we assume we have offset the viewport by 12 units
in the x direction and 5 units in the y direction and followed this up by using a
magnification factor of 2, the resulting relationship between screen coordinates and
world coordinates are shown in FIG-19.15.

When using scrolling and zooming, the following formulae are used to convert
screen coordinates to world coordinates and vice versa:

 xworld = xscreen / magnification +xoffset xscreen = xworld * magnification-xoffset

 yworld = yscreen / magnification+yoffset yscreen = yworld * magnification-yoffset

FIG-19.14

Using Zoom

x-axis

+

+

-

-

World

Image

Screen

FIG-19.15

Mapping Screen To
World

x-axis

y-axis+

+

-

-

World

Image

Screen

5

12

(0,0)

(100,100)

(5,12)

(55,62)

Zoom = 2

Activity 19.4

If the screen is using a magnification of 2.5, and is offset in the x and y
directions by 7 and -4 respectively, which position in the world maps to screen
position (50,50)?

586 Hands On AGK BASIC: Screen Handling

ScreenToWorldX() and ScreenToWorldY()
Although we have already discussed how to convert screen coordinates to world
coordinates manually, there are two statements we can use to do the job for us. The
ScreenToWorldX() and ScreenToWorldY() statements’ formats are shown in FIG-
19.16.

where

 x,y are a pair of real values giving the screen coordinates to be
 converted to world coordinates.

WorldToScreenX() and WorldToScreenY()

Converting in the other direction, from world coordinates to screen ones, is achieved
using the WorldToScreenX() and WorldToScreenY() statements (see FIG-19.17).

where

 x,y are a pair of real value giving the world coordinates to be
 converted to screen coordinates.

SetViewZoom()

To create a zoom effect on the screen, we can use the SetViewZoom() statement (see
FIG-19.18).

where:

 fmag is a real number giving the magnification factor to be used. A
 value of 0.5 would halve the size of the images on the screen; 1.0
 would set them to normal size; 2.0 would double the image sizes.

The program in FIG-19.19 displays an image using three different zoom settings (1,
0.5 and 2) with a two second delay between each change.

FIG-19.16

ScreenToWorldX()

ScreenToWorldY()

ScreenToWorldX ()float

ScreenToWorldY ()float

x

y

FIG-19.17

WorldToScreenX()

WorldToScreenY()

WorldToScreenX ()float

WorldToScreenY ()float

FIG-19.18

SetViewZoom()

SetViewZoom ()fmag

FIG-19.19

Using Zoom()

rem *** Using Zoom ***

rem *** Load image ***
LoadImage(1,”AilsaCraig.jpg”)

rem *** Display for 2 seconds ***
CreateSprite(1,1)
SetSpriteSize(1,100,-1)
Sync()
Sleep(2000)

Hands On AGK BASIC: Screen Handling 587

SetViewZoomMode()

When you use zoom, the default setup is for the top-left corner of the screen to remain
fixed. Should you want to change this so that it is the centre of the screen that remains
fixed, you can do this by using the SetViewZoomMode() statement (see FIG-19.20).

where:

 imode is an integer value (0: top-left fixed, or 1: centre fixed).

FIG-19.21 contains a program which allows the user to control the zoom in and zoom
out options using two buttons.

FIG-19.19
(continued)

Using Zoom()

rem *** Zoom out ***
SetViewZoom(0.5)
Sync()
Sleep(2000)
rem *** Zoom in ***
SetViewZoom(2)
Sync()
do
loop

Activity 19.5

Start a new project called Zooming and implement the code given in FIG-19.19
copying AilsaCraig.jpg from AGKDownloads/Chapter19 to the project’s media
folder. (Use screen size 768 x 1024.) Test and save your project.

FIG-19.20

SetViewZoomMode()

SetViewZoomMode ()imode

Activity 19.6

Modify Zooming so that the centre of the image remains fixed when the screen
magnification changes.

FIG-19.21

User-Controlled Zoom()

rem *** Zooming ***

rem *** Load images ***
LoadImage(1,”AilsaCraig.jpg”)
LoadImage(2,”In.png”)
LoadImage(3,”Out.png”)
rem *** Create main image ***
CreateSprite(1,1)
SetSpriteSize(1,100,-1)

rem *** Create zoom in and zoom out buttons ***
CreateSprite(2,2)
SetSpriteSize(2,12,-1)
SetSpritePosition(2,85,92)
CreateSprite(3,3)
SetSpriteSize(3,12,-1)
SetSpritePosition(3,2,92)

588 Hands On AGK BASIC: Screen Handling

The initial setup created by this program is shown in FIG-19.22.

As you can see from the results of Activity 19.7, zooming changes the size and
position of all the images on the screen - even the text and zoom buttons. Worse, all
the buttons move off-screen as we zoom making it impossible to press them.

FIG-19.21
(continued)

User-Controlled Zoom()

rem *** Image Title ***
CreateText(1,”Ailsa Craig, Scotland”)
rem *** Zoom using buttons ***
zoom# = 1
do
 if GetPointerState() = 1
 if GetSpriteHit(GetPointerX(),GetPointerY()) = 2
 zoom# = zoom# +0.1
 elseif GetSpriteHit(GetPointerX(),GetPointerY())=3
 zoom# = zoom# -0.1
 endif
 endif
 SetViewZoom(zoom#)
 Sync()
 Sleep(100)
loop

FIG-19.22

Program Screen Shot

Activity 19.7

Start a new project called Zooming2 and implement the code given in FIG-
19.21. Copy the file In.png, Out.png and AilsaCraig.png from AGKDownloads/
Chapter19 to the media folder.

What problems arise when you test the program?

 Ë Actually, if you
press in the parts of
the screen where the
buttons had been, the
zoom feature will still
operate even though
the buttons are no
longer within the
screen area.

Hands On AGK BASIC: Screen Handling 589

FixSpriteToScreen()

If we want sprites such as the zoom buttons of the last project to stay in a fixed
position, unaffected by the zooming, we can make use of the FixSpriteToScreen()
statement (see FIG-19.23).

where:

 id is an integer value giving the ID of the sprite.

 ifix is an integer value (0 or 1) which determines if the sprite moves
 with changes to the screen magnification (0) or remains
 unchanged (1).

FixTextToScreen()

What we can do for sprites, we can also do for text objects. To fix a text object to its
position on the screen we use FixTextToScreen() (see FIG-19.24).

where:

 id is an integer value giving the ID of the text object.

 ifix is an integer value (0 or 1) which determines if the text moves
 with changes to the screen magnification (0) or remains
 unchanged (1).

FixEditBoxToScreen()

A final element that can be fixed to a screen position and hence remain unaffected by
scrolling and zooming, is the edit box. To fix an edit box to its screen position, use
FixEditBoxToScreen() (see FIG-19.25).

where:

 id is an integer value giving the ID of the existing edit box.

 ifix is an integer value (0 or 1) which determines if the edit box
 moves with zoom and scrolling changes (0) or remains in a fixed
 position (1).

FIG-19.23

FixSpriteToScreen()

FixSpriteToScreen ()id ifix

FIG-19.24

FixTextToScreen()

FixTextToScreen ()id ifix

Activity 19.8

Modify Zooming2 so that the two zoom buttons and image title remain fixed
in position when the image is zoomed. Test your project. What problems arise
this time?

Save your project.

FixEditBoxToScreen ()id ifixFIG-19.25

FixEditBoxToScreen()

590 Hands On AGK BASIC: Screen Handling

Fixed Elements and World Coordinates

If an element such as a sprite or text resource stay fixed on the screen, it means that
it must be shifting its position in the underlying world coordinate system when
zooming or scrolling is used.

Many of the commands we have covered in the previous chapters have required x and
y coordinates for positioning sprites or detecting hits. All of these statements require
the x and y coordinates specified in the parameter list to be given in world coordinates.
Functions that return x and y coordinates also generally give their results in world
coordinates.

Of course, if the app is not using zooming or scrolling, then screen and world
coordinates are the same and calling these functions doesn’t present a problem.
However, if the screen and world coordinates do not match, you always need to call
ScreenToWorldX() and ScreenToWorldY() before passing parameters to any function
requiring world coordinates.

Functions that require world coordinates include:

GetSpriteHit() GetSpriteHitTest()
SetSpritePosition() SetSpritePositionByOffset()
SetSpriteX() SetSpriteY()

Functions that return screen coordinates include:

 GetPointerX() GetPointerY()

Now we arrive at the cause of our problem in the last Activity. When we press on the
screen (or click with the mouse) we are given screen coordinates, but to check if a
sprite has been hit (which we do with the buttons), we must supply world coordinates.

We can solve the problem in the last Activity by converting the screen touches to
world coordinates with code such as:

ScreenToWorldX(GetPointerX())

GetViewZoom()

When using the zoom option, we can find the current magnification factor using the
GetViewZoom() statement (see FIG-19.26).

The function returns the current magnification factor. A value of 1.0 indicates that no
magnification is being used.

Activity 19.9

Modify Zooming2 so that the values returned by GetPointer calls are
converted to world coordinates. How does this affect the program? Save your
project.

FIG-19.26

GetViewZoom()

GetViewZoom ()float

Activity 19.10

Modify Zooming2 so that the magnification factor is displayed in the top-left of
the screen in place of the image title. Test and save your project.

Hands On AGK BASIC: Screen Handling 591

SetViewOffset()

The trouble with using the zoom command is that, having zoomed in, there is no way
of seeing the part of the image that is off-screen.

We can solve this problem by scrolling. Scrolling in AGK is achieved by using the
SetViewOffset() statement which allows you to shift the viewport relative to the
“world” coordinates (see FIG-19.27)

where

 xoff is a real value giving the offset in the x direction. This figure will
 be given as a percentage or in virtual pixels as appropriate.

 yoff is a real number giving the offset in the y direction.

The program in FIG-19.28 is a variation on the previous program. It adds left and
right scroll buttons to allow the user to scroll over the enlarged image.

FIG-19.27

SetViewOffset()

SetViewOffset ()xoff yoff

FIG-19.28

Using Zoom and Scrolling

rem *** Zooming and Scrolling ***

rem *** Load images ***
LoadImage(1,”AilsaCraig.jpg”)
LoadImage(2,”In.png”)
LoadImage(3,”Out.png”)
LoadImage(4,”Left.png”)
LoadImage(5,”Right.png”)

rem *** Create main screen image ***
CreateSprite(1,1)
SetSpriteSize(1,100,-1)

rem *** Create zoom in and zoom out buttons ***
CreateSprite(2,2)
SetSpriteSize(2,12,-1)
SetSpritePosition(2,85,92)
CreateSprite(3,3)
SetSpriteSize(3,12,-1)
SetSpritePosition(3,2,92)

rem *** Create scroll buttons ***
CreateSprite(4,4)
SetSpriteSize(4,10,-1)
SetSpritePosition(4,40,92)
CreateSprite(5,5)
SetSpriteSize(5,10,-1)
SetSpritePosition(5,50,92)

rem *** Fix buttons to screen ***
FixSpriteToScreen(2,1)
FixSpriteToScreen(3,1)
FixSpriteToScreen(4,1)
FixSpriteToScreen(5,1)

rem *** Zoom/Scroll using buttons ***
zoom# = 1
offsetX# = 0

592 Hands On AGK BASIC: Screen Handling

GetViewOffsetX() and GetViewOffsetY()

We can discover the amount of viewport offset using the GetViewOffsetX() and
GetViewOffsetY() statements (see FIG-19.29).

FIG-19.28
(continued)

Using Zoom and Scrolling

do
 if GetPointerState() = 1
 select GetSpriteHit(ScreenToWorldX(GetPointerX()),
 ScreenToWorldY(GetPointerY()))
 case 2: // Zoom In
 zoom# = zoom# +0.1
 endcase
 case 3: //Zoom Out
 zoom# = zoom# -0.1
 endcase
 case 4: // Scroll Left
 offsetX# = offsetX# - 1
 endcase
 case 5: //Scroll Right
 offsetX# = offsetX# + 1
 endcase
 endselect
 endif
 rem *** Set zoom factor ***
 SetViewZoom(zoom#)
 rem *** Set offset factor ***
 SetViewOffset(offsetX#,0)
 Sync()
 Sleep(100)
loop

Use Up.png and
Down.png images as
the vertical scrolling
buttons.

Activity 19.11

Start a new project called ZoomScroll and implement the code given in FIG-
19.28. Copy all of the required files to the media folder.

Modify the program to include vertical as well as horizontal scrolling.
Test and save your project.

FIG-19.29

GetViewOffsetX()

GetViewOffsetY()

GetViewOffsetX ()float

GetViewOffsetY ()float

Activity 19.12

Modify ZoomScroll so that the x and y offset values are displayed at the top-left
of the screen. Test and save your project.

Activity 19.13

Modify ZoomScroll so that the world coordinates of the mouse pointer are
displayed instead of the x and y offsets.

Check out how the world coordinates initially match those of the screen and
how zooming and offsetting modifies this relationship. Save your project.

Hands On AGK BASIC: Screen Handling 593

Mouse Scrolling

The scroll buttons in the last project are a rather clumsy way of achieving our
requirements. On a traditional computer screen, we could achieve scrolling by
simply dragging the mouse. To use the mouse to scroll an image, we must detect the
initial press of the mouse. When this happens, we then need to record the position of
the mouse pointer. Now, while the mouse button remains pressed, we compare its
new position with the starting position. The difference between these two values will
indicate the amount of scrolling required. When the mouse button is released,
scrolling terminates. An initial attempt at this approach is given in FIG-19.30.

rem *** Zooming and Scrolling ***

rem *** Load images ***
LoadImage(1,”AilsaCraig.jpg”)
LoadImage(2,”In.png”)
LoadImage(3,”Out.png”)

rem *** Create main image ***
CreateSprite(1,1)
SetSpriteSize(1,100,-1)

rem *** Create zoom in and zoom out buttons ***
CreateSprite(2,2)
SetSpriteSize(2,12,-1)
SetSpritePosition(2,85,92)
CreateSprite(3,3)
SetSpriteSize(3,12,-1)
SetSpritePosition(3,2,92)

rem *** Fix buttons to screen ***
FixSpriteToScreen(2,1)
FixSpriteToScreen(3,1)

rem *** Zoom using buttons ***
zoom# = 1
do
 rem *** Check if mouse button just pressed ***
 pressed = GetPointerPressed()
 rem *** IF mouse button down ***
 if GetPointerState() = 1
 rem *** Operation depends on sprite hit ***
 select GetSpriteHit(ScreenToWorldX(GetPointerX()),
 ScreenToWorldY(GetPointerY()))
 case 1: // Main image sprite
 rem *** IF mouse just pressed, save start
 position ***
 if pressed = 1
 x# = GetPointerX()
 y# = GetPointerY()
 else
 rem *** else record latest position ***
 newx# = GetPointerX()
 newy# = GetPointerY()
 endif
 endcase
 case 2: // Zoom In sprite
 zoom# = zoom# +0.1
 endcase

FIG-19.30

Scrolling Using the
Mouse

594 Hands On AGK BASIC: Screen Handling

The problem with the existing code is that it does not take into account any scrolling
that has taken place previously. To solve this problem, we need to record the existing
scrolling when the mouse button is initially pressed. This can be achieved with the
lines:

xoffsetatstart# = GetViewOffsetX()

yoffsetatstart# = GetViewOffsetY()

We then need to use these two values when redrawing the image. This means that the
line

SetViewOffset(x#-newx#,y#-newy#)

must be changed to

SetViewOffset(xoffsetatstart#+x#-newx#,yoffsetatstart#+
y#-newy#)

The last problem is to match the movement of the mouse when the screen is zoomed
to the equivalent displacement in the world space.

For example, if the magnification factor is set to 2 and the mouse is dragged from one
side of the screen to the other then, on the screen we have moved 100 units but,
because of the magnification factor, this is equivalent of only 50 units in world space.

FIG-19.30
(continued)

Scrolling Using the
Mouse

 case 3: // Zoom Out sprite
 zoom# = zoom# -0.1
 endcase
 endselect
 endif
 rem *** Modify zoom level ***
 SetViewZoom(zoom#)
 rem *** If mouse being dragged, modify image (start position
 - current)***
 if pressed = 0
 SetViewOffset(x#-newx#,y#-newy#)
 endif
 Sync()
loop

Activity 19.14

Modify ZoomScroll to match the code given in FIG-19.30.

Test your code. What happens when you attempt a second scroll? Save your
project.

Activity 19.15

Modify ZoomScroll using the code above to correct the problem with the
scrolling. Test your program.

How is scrolling affected when you have previously zoomed in on the image?
Save your project.

Hands On AGK BASIC: Screen Handling 595

So we need to make one last change to how the offset is calculated:

 SetViewOffset(xoffsetatstart#+(x#-newx#)/zoom#,yoffsetatstart#+
 (y#-newy#)/zoom#)

We’ll look at a way of replacing the zoom buttons in the next section.

Touch Statements
Although we can use the various GetPointer functions to detect both screen touches
and mouse movements, we can achieve a lot more by making use of specific screen
touch commands if we know our app will be running on a touch screen device.

GetMultiTouchExists()

To check if a device supports multiple simultaneous touches, we can use the
GetMultiTouchExists() statement (see FIG-19.31).

The function returns 1 if the device supports multi-touch, otherwise zero is returned.

GetRawTouchCount()

The number of simultaneous touches on a screen can be determined using the
GetRawTouchCount() statement. AGK normally delays the detection of a touch until
it has determined the nature of that touch. There are three categories: short, long and
drag. The GetRawTouchCount() statement can return a count of identified touches
only or of all touches including those whose nature has not yet been determined.

The format for the GetRawTouchCount() statement is shown in FIG-19.32.

where

 itype is an integer value (0 or 1) used to determine the type of touches
 to be included in the count (0: identified touches only; 1: all
 touches).

The program in FIG-19.33 displays a count of all touches being made on the screen.

Activity 19.16

Modify ZoomScroll so that the scrolling works correctly when the image is
zoomed. Test and save your project.

FIG-19.31

GetMultiTouchExists()

GetMultiTouchExists ()integer

FIG-19.32

GetRawTouchCount()

GetRawTouchCount ()integer itype

FIG-19.33

Counting Touches

rem *** Count Touches ***
do
 Print(Str(GetRawTouchCount(1)))
 Sync()
loop

596 Hands On AGK BASIC: Screen Handling

GetRawFirstTouchEvent()

Details of every touch event are recorded in a list. To access the first unhandled item
in that list we need to use the GetRawFirstTouchEvent(). This function returns the
position of the first unhandled item in the list. If the list is empty, zero is returned.

The GetRawFirstTouchEvent() statement has the format shown in FIG-19.34.

where

 itype is an integer value used to determine the type of touches to be
 accessed in the list (0: identified touches only; 1: all touches).

GetRawNextTouchEvent()

Subsequent entries in the touch event list must be accessed using
GetRawNextTouchEvent(). If the list is empty, zero is returned.

The GetRawNextTouchEvent() statement has the format shown in FIG-19.35.

GetRawTouchType()

Once a touch event has been discovered using GetRawFirstTouchEvent() or
GetRawNextTouchEvent(), various information about that touch can be retrieved.
One such piece of information is the type of touch - short, long, drag, or unidentified
(1, 2, 3 or 0).

The type of touch can be found using the GetRawTouchType() statement (see FIG-
19.36).

where

 id is an integer value giving the position of the touch event in the
 event list.

The program in FIG-19.37 displays the type for every touch detected.

Activity 19.17

Create a new project called Touch01 and implement the code in FIG-19.33.
Test the program on your touch device and check the count displayed.

Modify the program so that only recognised touches are displayed. How does
this affect the result?

Save your project.

FIG-19.34

GetRawFirstTouchEvent() GetRawFirstTouchEvent ()integer itype

FIG-19.35

GetRawNextTouchEvent()

GetRawNextTouchEvent ()integer

FIG-19.36

GetRawTouchType() GetRawTouchType ()integer id

Hands On AGK BASIC: Screen Handling 597

GetRawTouchTime()

We can discover the duration of a touch (in seconds) using the GetRawTouchTime()
statement (see FIG-19.38).

where

 id is an integer value giving the position of the touch event in the
 event list.

GetRawTouchReleased()

The GetRawTouchReleased() function returns 1 the instant a touch/mouse button is
released. If the touch is still in progress (as it may be for long and drag touches), the
function returns zero. The statement’s format is shown in FIG-19.39.

where

 id is an integer value giving the position of the touch event in the
 event list.

FIG-19.37

Displaying Touch Type

rem *** Touch Types ***
rem *** Create text ***
CreateText(1,””)
do
 rem *** Get first touch ***
 id = GetRawFirstTouchEvent(0)
 while id <> 0
 rem *** Display its type ***
 SetTextString(1,Str(GetRawTouchType(id)))
 rem *** Get next touch ***
 id = GetRawNextTouchEvent()
 endwhile
 Sync()
loop

Activity 19.18

Create a new project called Touch02 and implement the code in FIG-19.37.

Test the program on your PC using the mouse.

Modify the program so that unrecognised touches are displayed. Save your
project.

FIG-19.38

GetRawTouchTime()

GetRawTouchTime ()float id

Activity 19.19

Modify Touch02 so that it displays the duration of each screen press instead of
its type. Test the program on your PC using the mouse. Save your project.

FIG-19.39

GetRawTouch
Released()

GetRawTouchEventReleased ()integer id

598 Hands On AGK BASIC: Screen Handling

GetRawTouchStartX() and GetRawTouchStartY()

You can find the screen coordinates of where a touch starts using the
GetRawTouchStartX() and GetRawTouchStartY() statements (see FIG-19.40).

where

 id is an integer value giving the position of the touch event in the
 event list.

GetRawTouchCurrentX() and GetRawTouchCurrentY()

To discover the current screen coordinates of a touch, use GetRawTouchCurrentX()
and GetRawTouchCurrentY() (see FIG-19.41).

where

 id is an integer value giving the position of the touch event in the
 event list.

GetRawTouchLastX() and GetRawTouchLastY()

To discover the final screen coordinates of a touch at the moment the user’s finger is
lifted from the screen (or the mouse button released) , use GetRawTouchLastX() and
GetRawTouchLastY() (see FIG-19.42).

where

 id is an integer value giving the position of the touch event in the
 event list.

SetRawTouchValue()

If you wish, you may assign a value to a specific touch ID using SetRawTouchValue()
(see FIG-19.43).

where

 id is an integer value giving the position of the touch event in the
 event list.

FIG-19.40

GetRawTouchStartX()

GetRawTouchStartY()

GetRawTouchStartX ()float

GetRawTouchStartY ()float

id

id

FIG-19.41

GetRawTouchCurrentX()

GetRawTouchCurrentY()

GetRawTouchCurrentX ()float

GetRawTouchCurrentY ()float

id

id

FIG-19.42

GetRawTouchLastX()

GetRawTouchLastY()

GetRawTouchLastX ()float

GetRawTouchLastY ()float

id

id

FIG-19.43

SetRawTouchValue() SetRawTouchValue ()id ival

Hands On AGK BASIC: Screen Handling 599

 ival is the integer number to be associated with the specified touch
 ID.

GetRawTouchValue()

The value assigned to a touch can be retrieved using the GetRawTouchValue()
statement (see FIG-19.44).

where

 id is an integer value giving the position of the touch event in the
 event list.

Using Touch to Zoom and Scroll

Earlier we used the mouse to scroll and zoom an image. In this next example, we’ll
use a single touch to scroll and a double touch to zoom. The scrolling technique is no
different from that we used earlier: get the initial touch position and use the difference
between that and the latest position to scroll.

To zoom, we will take the difference in the y coordinates of a double touch to decide
the magnification factor. The initial distance between the two elements of the double
touch will represent the current zoom factor and any change in that distance will
adjust that factor (see FIG-19.45).

 The code for the program is given in FIG-19.46.

FIG-19.44

GetRawTouchValue()

GetRawTouchValue ()idinteger

FIG-19.45

Calculating Zoom Values

Initial Touch Zoom In Zoom Out

Initial
Distance

Distance
Increased

Distance Decreased

FIG-19.46

Touch Controlled Zoom
and Scroll

rem *** Touch Zooming and Scrolling ***

rem *** Set aspect ratio ***
SetDisplayAspect(768/1024.0)

rem *** Load image ***
LoadImage(1,”AilsaCraig.jpg”)

rem *** Create Sprite ***
CreateSprite(1,1)
SetSpriteSize(1,100,-1)

rem *** Zoom factor ***
lastzoom# = 1
zoom#=1
do
 touches = GetRawTouchCount(1)
 select touches

600 Hands On AGK BASIC: Screen Handling

SetScissor()

Another, but quite different way of adjusting how the world elements are mapped
onto the screen is achieved using the SetScissor() statement. This statement crops
all elements outside a specified area of the screen. The SetScissor() statement has

FIG-19.46
(continued)

Touch Controlled Zoom
and Scroll

 case 0:
 rem *** Record current zoom setting ***
 lastzoom# = zoom#
 endcase
 case 1: // Scroll
 rem *** Get current offsets ***
 xoffsetatstart# = GetViewOffsetX()
 yoffsetatstart# = GetViewOffsetY()
 rem *** Get coords at start of touch ***
 id = GetRawFirstTouchEvent(0)
 x# = GetRawTouchStartX(id)
 y# = GetRawTouchStartY(id)
 rem *** Read current coords and offset the image ***
 while GetRawTouchReleased(id) = 0
 currentx#= GetRawTouchCurrentX(id)
 currenty# = GetRawTouchCurrentY(id)
 SetViewOffset(xoffsetatstart#+(x#-currentx#)/
 lastzoom#,yoffsetatstart#+(y#-currenty#)/lastzoom#)
 Sync()
 endwhile
 endcase
 case 2: // Zoom
 rem *** Get start y coord for each touch ***
 id1 = GetRawFirstTouchEvent(1)
 id2 = GetRawNextTouchEvent()
 y1 = GetRawTouchStartY(id1)
 y2 = GetRawTouchStartY(id2)
 rem *** Calculate the distance between the two points

 dist# = Abs(y1 - y2)
 rem *** Get new distance appart, compare with original
 and adjust zoom accordingly ***
 while GetRawTouchReleased(id1) = 0 and
 GetRawTouchReleased(id2) = 0
 newdist# = Abs(GetRawTouchCurrentY(id1)-
 GetRawTouchCurrentY(id2))
 diff# = Abs(newdist#/dist#)
 zoom# = lastzoom#*diff#
 SetViewZoom(zoom#)
 Sync()
 endwhile
 endcase
 endselect
 Sync()
loop

Activity 19.20

Start a new project called ZoomScrollTouch and implement the code given in
FIG-19.46 (copy the necessary image into the media folder).

Test and save your project.

Hands On AGK BASIC: Screen Handling 601

the format shown in FIG-19.47.

where

 x1,y1 are a pair of real values giving the coordinates of the top-left
 corner of the clipping area.

 x2,y2 are a pair of real values giving the coordinates of the bottom-
 right corner of the clipping area.

FIG-19.48 shows a screen display before and after clipping.

The program that produced the screen displays is shown in FIG-19.49. The code
shows the normal screen for 3 seconds before clipping.

FIG-19.47

SetScissor()

SetScissor ()x1 y1 x2 y2

FIG-19.48

The Effects of Clipping

Full Screen Clipped Screen

(30,30)

(70,70)

FIG-19.49

Using Clipping

rem *** Screen Clipping ***

rem *** Load images ***
LoadImage(1,”Grid.png”)
LoadImage(2,”Crab.png”)
rem *** Set screen background ***
SetClearColor(140,140,140)
Sync()
rem *** Create sprites ***
CreateSprite(1,1)
SetSpriteSize(1,100,100)
CreateSprite(2,2)
SetSpriteSize(2,40,-1)
SetSpritePosition(2,40,60)
Sync()
Sleep(3000)
rem *** Clip screen ***
SetScissor(30,30,70,70)
do
 Sync()
loop

Activity 19.21

Start a new project called Clipping and implement the code given in FIG-19.49
(copy the necessary images into the media folder). Test and save your project.

602 Hands On AGK BASIC: Screen Handling

Summary
± Use GetDeviceHeight() and GetDeviceWidth() to determine the dimensions

of the device running your app. Values given in pixels.

± When your app has been set up to use virtual pixels, use GetVirtualHeight()
and GetVirtualWidth() to discover the current dimensions of the screen when
using virtual pixels.

± Use GetDisplayAspect() to find the aspect ratio set for the screen in the last
call to SetDisplayAspect().

± Use GetOrientation() to detect the orientation of any device which contains
an accelerometer.

± Use SetOrientationAllowed() to specify which orientations will
automatically reorientate the screen display.

± Use SetTransitionMode() to specify how the display moves from one
orientation to another.

± Use SetResolutionMode() to specify the resolution setting for screen
graphics.

± Use UpdateDeviceSize() to change the virtual pixel dimensions of the screen.

± AGK makes use of two coordinates systems: screen coordinates and world
coordinates.

± When positioning visual elements they are placed using world coordinates.

± Screen coordinates and world coordinates match exactly if no scrolling or
zooming has occurred.

± Use SetViewZoom() to change screen magnification.

± Use SetViewZoomMode() to specify if the top-left or centre point is to remain
fixed when zooming.

± Use FixSpriteToScreen() to fix the position of a sprite on the screen
irrespective of zooming and scrolling.

± Use FixTextToScreen() to fix the position of text on the screen.

± Use FixEditBoxToScreen() to fix an edit box to screen space.

± Use GetViewZoom() to discover the current magnification factor being used.

± Offsetting the screen changes which part of world space appears on the screen.

± Use SetViewOffset() to offset the screen’s view.

± Use GetViewOffsetX() and GetViewOffsetY() to determine the current screen
offsets.

± Use ScreenToWorldX() and ScreenToWorldY() to convert screen coordinates
to world coordinates.

± Use WorldToScreenX() and WorldToScreenY() to convert world coordinates
to screen coordinates.

±Use MultiTouchExists() to determine if multiple simultaneous screen touches
are detected.

Hands On AGK BASIC: Screen Handling 603

± Use GetRawTouchCount() to detect the current number of simultaneous
touches.

± Use GetRawFirstTouchEvent()to determine the ID of the first touch event
listed.

± Use GetRawNextTouchEvent() to determine the ID of subsequent touches
listed.

± Use GetRawTouchType() to determine the type of touch detected (short, long,
drag or unidentified).

± Use GetRawTouchTime() to discover the current duration of a specific touch.

± Use GetRawTouchReleased() to detect the moment a specified touch is
released.

± Use GetRawTouchStartX() and GetRawTouchStartY() to determine the start
coordinates of a touch.

± Use GetRawTouchCurrentX() and GetRawTouchCurrentY() to determine the
current coordinates of a touch.

± Use GetRawTouchLastX() and GetRawTouchLastY() to determine the last
coordinates of a touch at the moment of release.

± Use SetRawTouchValue() to associate a value with a specified touch.

± Use GetRawTouchValue() to retrieve the value associated with a specific
touch.

± Use SetScissor() to clip all visual elements outside a specified area of the
screen.

604 Hands On AGK BASIC: Screen Handling

Secrets of Sync()
The contents of your screen are updated several times a second. Each update redraws
the entire contents of the screen. Each redrawing is known as a frame.

To create a screen display, AGK reserves two areas of memory within your device.
These areas of memory are known as screen buffers. The contents of one buffer are
used to create the frame currently being displayed on the device’s screen. This is
known as the screen buffer or front buffer. At the same time, the contents of the
second buffer (known as the back buffer) are being updated to contain the layout of
the next frame.

FIG-19.50 shows how these buffers are used in the construction of a frame.

Notice that after the contents of the front buffer is displayed, the contents of the back
buffer are transferred to the front buffer, ready to display the next frame.

The Sync() function, which updates all-screen related details, does, in fact, call three
other routines which handle the various aspects of screen updating. Under normal
circumstances, we are quite happy to call Sync() and let it handle the screen, but we
have the option to replace Sync() and call the three routines ourselves. Doing so
might, in certain circumstances, allow us to achieve a higher frame rate when we
have complex calculations to perform between frames.

Update()

The Update() function is used to update the state of various objects on the screen.
For example, it will calculate the layout of the latest frame to be displayed when

FIG-19.50 How the Screen Display is Produced

Memory

Back bu�erFront bu�er
Screen

The contents
of the front buffer
creates the image

The image for
the next frame is built
up in the backbuffer

Memory

Back bu�erFront bu�er

The contents
of the back buffer is copied

to the front buffer...

...and the
contents of the

back buffer cleared

Stage 1 Stage 2

Hands On AGK BASIC: Screen Handling 605

handling animated sprites and physics calculations when using the physics engine.
The statement has the format shown in FIG-19.51.

where

 finterval is a real number giving the time (in seconds) assumed to have
 passed since the last update. This time is important when you are
 using physics. If zero is given, then the time interval is assumed
 to be the time taken to build the previous frame (typically 0.017).

Render()

The second function called by Sync() is Render(). The Render() function actually
creates the new screen image data in the back buffer. For example, it will make sure
that the images of any sprites, text objects, edit boxes, etc have been placed in the
back buffer. The format for this statement is given in FIG-19.52.

Swap()

The final function of the trio is Swap(). This function swaps which buffer is being
used as the front buffer and clears the contents of the second buffer (now the new
back buffer). In addition, it also updates various time-related variables. The format
for Swap() is given in FIG-19.53.

ClearScreen()

The ClearScreen() function clears the contents of the back buffer and fills it with
the current clear colour (as set using SetClearColor()). The statement has the
format shown in FIG-19.54.

However, remember that the statement actually clears the back buffer and not the
front buffer, so it will not clear the screen you see in front of you. And when you call
Sync() its call to Render() will repopulate the back buffer with the various visual
elements. However, the lines

FIG-19.51

Update() Update ()finterval

FIG-19.52

Render() Render ()

FIG-19.53

Swap() Swap ()

Activity 19.22

In MovingBall2 which you created in Chapter 17, remove the call to Sync()
and replace it with the lines

 Update(0)
 Render()
 Swap()

How does this affect the program?

FIG-19.54

ClearScreen()

ClearScreen ()

606 Hands On AGK BASIC: Screen Handling

 ClearScreen()
 Swap()

will create a cleared screen until the next Sync() statement is executed.

DrawSprite()

Another statement which modifies the back buffer directly is DrawSprite() which
draws the specified sprite onto the back buffer. The statement’s format is shown in
FIG-19.55.

where

 id is an integer value giving the ID of the sprite whose image is to
 be written to the back buffer.

The sprite is drawn with its existing attributes (size and rotation).

GetImage()

If you want to copy part of the screen image built up in the back buffer, this can be
achieved using the GetImage()statement which will turn the captured area of the
buffer into another image. The statement’s format is shown in FIG-19.56.

where

 id is an integer value giving the ID to be assigned to the new image.

 x,y are real values giving the coordinates of the top-left corner of the
 area to be copied. Use percentage or virtual pixels as appropriate.

 width is a real value giving the width of the area to be copied (in
 percentage or virtual pixels).

 height is a real value giving the height of the area to be copied (in
 percentage or virtual pixels).

The function returns the ID assigned to the newly created image.

This can be a tricky statement to use the first time you come across it. If your program
just makes use of the Sync() statement to handle the two screen buffers, then the
back buffer will be empty so there’s nothing in there to capture. The way round this
is to replace the call to Sync() with your own calls to Update(), Render() and
Swap() (functions called by Sync()). Then, after calling Render() but before calling
Swap() you can use GetImage() to capture part of the back buffer.

FIG-19.55

DrawSprite()

DrawSprite ()id

FIG-19.56

GetImage()

(integer

(

Version 1

Version 2

id)width heightx yGetImage

GetImage)width heightx y

Hands On AGK BASIC: Screen Handling 607

Another method is to make direct use of the back buffer by using ClearScreen() and
DrawSprite() before calling GetImage().

For example, the line

 id = GetImage(0,0,100,50)

would capture the top half of the back buffer’s screen data and store that as an image.

The program in FIG-19.57 demonstrates the use of several of the previous statements
by emptying the back buffer, drawing an image there, and then capturing part of that
image. After a delay of one second the captured image is assigned to a sprite and
displayed on the screen.

FIG-19.57

Accessing the Back
Buffer

rem *** Using the Back Buffer ***

rem *** Load image ***
LoadImage(1,”Grid.png”)

rem *** Set screen background ***
SetClearColor(140,140,140)
Sync()

rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,100,100)

rem *** Clear the back buffer ***
ClearScreen()

rem *** Draw the grid in the back buffer ***
DrawSprite(1)

rem *** Capture a section of the back buffer ***
id = GetImage(30,30,40,40)

rem *** Delete the original sprite ***
DeleteSprite(1)

rem *** Clear the back buffer ***
ClearScreen()

rem *** Wait 1 second ***
CreateText(1,”Wait one second ...”)
Sync()
Sleep(1000)

rem *** Delete the text ***
DeleteText(1)

rem *** Show the captured image on a sprite ***
CreateSprite(2,id)
SetSpriteSize(2,30,-1)

do
 Sync()
loop

608 Hands On AGK BASIC: Screen Handling

Summary
± Sync() operates by calling the functions Update(), Render() and Swap().

± The Update() operation calculates the new positions of physics-enabled
objects and the current frame of any animated sprites.

± Render() builds the next screen image to appear on the screen in the back
buffer.

± Swap() transfers the contents of the back buffer to the screen buffer and clears
the back buffer’s contents.

± Use ClearScreen() to clear the contents of the back buffer.

± Use DrawSprite() to place a sprite in the back buffer.

± Use GetImage() to capture an area of the back buffer and convert it to an
image.

Activity 19.23

Start a new project called Backbuffer and implement the code in FIG-19.57.

Copy Grid.png to the media folder.

Test and save your project.

Hands On AGK BASIC: Screen Handling 609

Solutions
Activity 19.1

No solution required.

Activity 19.2
Modified code for Orientation:

dim orientation[4] as string = [“”,
”Portrait”,”Inverted portrait”,
”Landscape right”,”Landscape left”]
CreateText(1,””)
rem *** Only standard portrait and landscape ***
SetOrientationAllowed(1,0,1,0)
do
 SetTextString(1,orientation[GetOrientation()])
 Sync()

loop

Activity 19.3
Using the original code, the image rotates through several
stages before settling in the new orientation.

With the second option the image jumps instantly from one
orientation to the other.

Activity 19.4
(27,16) that is (50/2.5+7,50/2.5-4)

Activity 19.5
No solution required.

Activity 19.6
Modified code for Zooming:

rem *** Using Zoom ***

rem *** Load image ***
LoadImage(1,”AilsaCraig.jpg”)
rem *** Dsiplay for 2 seconds ***
CreateSprite(1,1)
SetSpriteSize(1,100,-1)
Sync()
Sleep(2000)
rem *** Fix centre of image ***
SetViewZoomMode(1)
rem *** Zoom out ***
SetViewZoom(0.5)
Sync()
Sleep(2000)
rem *** Zoom in ***
SetViewZoom(2)
Sync()
do

loop

Activity 19.7
As the zoom increases, the buttons disappear off the screen.

Activity 19.8
Modified code for Zooming2:

rem *** Zooming ***

rem *** Load images ***
LoadImage(1,”AilsaCraig.jpg”)
LoadImage(2,”In.png”)
LoadImage(3,”Out.png”)
rem *** Create main image ***
CreateSprite(1,1)
SetSpriteSize(1,100,-1)

rem *** Create zoom in and zoom out buttons ***
CreateSprite(2,2)
SetSpriteSize(2,12,-1)
SetSpritePosition(2,85,92)
CreateSprite(3,3)
SetSpriteSize(3,12,-1)
SetSpritePosition(3,2,92)
rem *** Fix buttons to screen ***
FixSpriteToScreen(2,1)
FixSpriteToScreen(3,1)
rem *** Image Title ***
CreateText(1,”Ailsa Craig, Scotland”)
rem *** Fix text to screen ***
FixTextToScreen(1,1)
rem *** Zoom using buttons ***
zoom# = 1
do
 if GetPointerState() = 1
 if GetSpriteHit(GetPointerX(),
 GetPointerY()) = 2
 zoom# = zoom# +0.1
 elseif GetSpriteHit(GetPointerX(),
 GetPointerY())=3
 zoom# = zoom# -0.1
 endif
 endif
 SetViewZoom(zoom#)
 Sync()
 Sleep(100)
loop

The problem now is that the buttons no longer seem to
respond to being pressed.

Activity 19.9
To convert screen touch coordinates to world coordinates,
change the following lines

if GetSpriteHit(GetPointerX(),GetPointerY()) = 2
 zoom# = zoom#+0.1
elseif GetSpriteHit(GetPointerX(),GetPointerY()) = 3
 zoom# = zoom# -0.1
endif

to
if GetSpriteHit(ScreenToWorldX(GetPointerX()),
ScreenToWorldY(GetPointerY())) = 2
 zoom# = zoom# +0.1
elseif GetSpriteHit(ScreenToWorldX(GetPointerX()),
ScreenToWorldY(GetPointerY())) = 3
 zoom# = zoom# -0.1
endif

The zoom button should now respond correctly to being hit.

Activity 19.10
Modified code for Zooming2:

rem *** Zooming ***

rem *** Load images ***
LoadImage(1,”AilsaCraig.jpg”)
LoadImage(2,”In.png”)
LoadImage(3,”Out.png”)
rem *** Create main image ***
CreateSprite(1,1)
SetSpriteSize(1,100,-1)
rem *** Create zoom in and zoom out buttons ***
CreateSprite(2,2)
SetSpriteSize(2,12,-1)
SetSpritePosition(2,85,92)
CreateSprite(3,3)
SetSpriteSize(3,12,-1)
SetSpritePosition(3,2,92)
rem *** Fix buttons to screen ***
FixSpriteToScreen(2,1)
FixSpriteToScreen(3,1)
rem *** Zoom Factor ***
CreateText(1,”Zoom : 1.0”)
rem *** Fix text to screen ***
FixTextToScreen(1,1)
rem *** Zoom using buttons ***
zoom# = 1
do
 if GetPointerState() = 1

610 Hands On AGK BASIC: Screen Handling

 if GetSpriteHit(ScreenToWorldX(GetPointerX()),
 ScreenToWorldY(GetPointerY())) = 2
 zoom# = zoom# +0.1
 elseif GetSpriteHit(ScreenToWorldX(
 GetPointerX()),ScreenToWorldY(GetPointerY()))
 = 3
 zoom# = zoom# -0.1
 endif
 endif
 SetViewZoom(zoom#)
 rem *** Update text ***
 SetTextString(1,”Zoom:”+Str(GetViewZoom()))
 Sync()
 Sleep(100)

loop

Activity 19.11
Modified code for ZoomScroll:

rem *** Zooming and Scrolling ***

rem *** Load images ***
LoadImage(1,”AilsaCraig.jpg”)
LoadImage(2,”In.png”)
LoadImage(3,”Out.png”)
LoadImage(4,”Left.png”)
LoadImage(5,”Right.png”)
LoadImage(6,”Up.png”)
LoadImage(7,”Down.png”)
rem *** Create main image ***
CreateSprite(1,1)
SetSpriteSize(1,100,-1)
rem *** Create zoom in and zoom out buttons ***
CreateSprite(2,2)
SetSpriteSize(2,12,-1)
SetSpritePosition(2,85,92)
CreateSprite(3,3)
SetSpriteSize(3,12,-1)
SetSpritePosition(3,2,92)
rem *** Create scroll buttons ***
CreateSprite(4,4)
SetSpriteSize(4,10,-1)
SetSpritePosition(4,40,85)
CreateSprite(5,5)
SetSpriteSize(5,10,-1)
SetSpritePosition(5,50,85)
CreateSprite(6,6)
SetSpriteSize(6,10,-1)
SetSpritePosition(6,45,79)
CreateSprite(7,7)
SetSpriteSize(7,10,-1)
SetSpritePosition(7,45,91.5)
rem *** Fix buttons to screen ***
FixSpriteToScreen(2,1)
FixSpriteToScreen(3,1)
FixSpriteToScreen(4,1)
FixSpriteToScreen(5,1)
FixSpriteToScreen(6,1)
FixSpriteToScreen(7,1)
rem *** Zoom/Scroll using buttons ***
zoom# = 1
offsetX# = 0
offsetY# = 0
do
 if GetPointerState() = 1
 select GetSpriteHit(ScreenToWorldX(
 GetPointerX()), ScreenToWorldY(
 GetPointerY()))
 case 2:
 zoom# = zoom# +0.1
 endcase
 case 3:
 zoom# = zoom# -0.1
 endcase
 case 4:
 offsetX# = offsetX# - 1
 endcase
 case 5:
 offsetX# = offsetX# + 1
 endcase
 case 6:
 offsetY# = offsetY# - 1
 endcase
 case 7:
 offsetY# = offsetY# + 1
 endcase
 endselect
 endif

 rem *** Set zoom factor ***
 SetViewZoom(zoom#)
 rem *** Set Offset factor ***
 SetViewOffset(offsetX#,offsetY#)
 Sync()
 Sleep(100)
loop

Activity 19.12
Modified code for ZoomScroll:

rem *** Zooming and Scrolling ***

rem *** Load images ***
LoadImage(1,”AilsaCraig.jpg”)
LoadImage(2,”In.png”)
LoadImage(3,”Out.png”)
LoadImage(4,”Left.png”)
LoadImage(5,”Right.png”)
LoadImage(6,”Up.png”)
LoadImage(7,”Down.png”)
rem *** Create main image ***
CreateSprite(1,1)
SetSpriteSize(1,100,-1)
rem *** Create text object ***
CreateText(1,””)
rem *** Create zoom in and zoom out buttons ***
CreateSprite(2,2)
SetSpriteSize(2,12,-1)
SetSpritePosition(2,85,92)
CreateSprite(3,3)
SetSpriteSize(3,12,-1)
SetSpritePosition(3,2,92)
rem *** Create scroll buttons ***
CreateSprite(4,4)
SetSpriteSize(4,10,-1)
SetSpritePosition(4,40,85)
CreateSprite(5,5)
SetSpriteSize(5,10,-1)
SetSpritePosition(5,50,85)
CreateSprite(6,6)
SetSpriteSize(6,10,-1)
SetSpritePosition(6,45,79)
CreateSprite(7,7)
SetSpriteSize(7,10,-1)
SetSpritePosition(7,45,91.5)
rem *** Fix buttons to screen ***
FixSpriteToScreen(2,1)
FixSpriteToScreen(3,1)
FixSpriteToScreen(4,1)
FixSpriteToScreen(5,1)
FixSpriteToScreen(6,1)
FixSpriteToScreen(7,1)
rem *** Fix text to screen ***
FixTextToScreen(1,1)
rem *** Zoom/Scroll using buttons ***
zoom# = 1
offsetX# = 0
offsetY# = 0
do
 if GetPointerState() = 1
 select GetSpriteHit(ScreenToWorldX(
 GetPointerX()),ScreenToWorldY(
 GetPointerY())
 case 2:
 zoom# = zoom# +0.1
 endcase
 case 3:
 zoom# = zoom# -0.1
 endcase
 case 4:
 offsetX# = offsetX# - 1
 endcase
 case 5:
 offsetX# = offsetX# + 1
 endcase
 case 6:
 offsetY# = offsetY# - 1
 endcase
 case 7:
 offsetY# = offsetY# + 1
 endcase
 endselect
 endif
 rem *** Set zoom factor ***
 SetViewZoom(zoom#)
 rem *** Set Offset factor ***
 SetViewOffset(offsetX#,offsetY#)

Hands On AGK BASIC: Screen Handling 611

 rem *** Display offsets ***
 SetTextString(1,”X:”+Str(GetViewOffsetX(),1)+
 ” Y:”+Str(GetViewOffsetY(),1))
 Sync()
 Sleep(100)

loop

Activity 19.13
To display the mouse position in world coordinates requires
the lines

 rem *** Display offsets ***
 SetTextString(1,”X:”+Str(GetViewOffsetX(),1)+
 ” Y:”+Str(GetViewOffsetY(),1))

to be changed to
rem *** Display mouse position in world coords ***
SetTextString(1,”World X:”+Str(ScreenToWorldX(
GetPointerX()),1)+” World Y:”+Str(ScreenToWorldY(
GetPointerY()),1))

Activity 19.14
When you attempt a second scroll, the image jumps back to
its original position.

Activity 19.15
To correct the scrolling, change the first case option to

case 1: // Main image sprite
 rem *** IF mouse just pressed, save start
 position ***
 if pressed = 1
 x# = GetPointerX()
 y# = GetPointerY()
 xoffsetatstart# = GetViewOffsetX()
 yoffsetatstart# = GetViewOffsetY()
 else
 rem *** else record latest position ***
 newx# = GetPointerX()
 newy# = GetPointerY()
 endif
 endcase

and line
SetViewOffset(x#-newx#,y#-newy#)

to
SetViewOffset(xoffsetatstart#+x#-newx#,
yoffsetatstart#+y#-newy#)

After zooming, the distance the image moves when scrolling
no longer matches the distance moved by the pointer.

Activity 19.16
To make scrolling work correctly when the magnification is
other than 1, change the line

SetViewOffset(xoffsetatstart#+x#-newx#,
yoffsetatstart#+y#-newy#)

to
SetViewOffset(xoffsetatstart#+(x#-newx#)/zoom#,

yoffsetatstart#+(y#-newy#)/zoom#)

Activity 19.17
To have the program count only recognised touches, change
the parameter for GetRawTouchCount() to 0.

This option increases the time taken for a touch to register in
the count.

Activity 19.18
To include unrecognised touches, change the parameter for
GetRawFirstTouchEvent() to 1.

Activity 19.19
Modified code for Touch02:

rem *** Touch Times ***

rem *** Create text ***
CreateText(1,””)
do
 rem *** Get first touch ***
 id = GetRawFirstTouchEvent(0)
 while id <> 0
 rem *** Display its ID and time ***
 SetTextString(1,Str(id)+” “
 +Str(GetRawTouchTime(id)))
 rem *** Get next touch ***
 id = GetRawNextTouchEvent()
 endwhile
 Sync()
loop

Activity 19.20
No solution required.

Activity 19.21
No solution required.

Activity 19.22
When the Sync() statement is replaced with calls to Update(),
Render() and Swap(), the movement of the ball seems less
smooth.

Activity 19.23
No solution required.

612 Hands On AGK BASIC: Screen Handling

Hands On AGK BASIC: Physics 613

Physics

In this Chapter:

T Using AGK’s Physics Engine

T Giving a Sprite Velocity

T Setting a Sprite’s Bounce Factor

T Adding Spin

T Adjusting Friction

T Setting Mass

T Detecting Collisions

T Bounding Boxes for Physics

T Physics and Ray Casting

T Joints

T Physics Debugging

614 Hands On AGK BASIC: Physics

Sprite Physics - 1

Introduction
So far we have had to write all the code required to make a sprite move or react to a
collision. Sometimes that can require a considerable amount of effort and code.
However, the good news is that AGK comes with a built-in physics engine.

What is a physics engine? In effect, it is a set of commands that, when applied to a
sprite, will allow that sprite to react in an apparently natural way to gravity, friction,
collisions and various other natural laws of physics.

In this chapter we cover all the physics commands available in AGK and demonstrate
what effect they have on sprite behaviour.

Basic Physic Statements
SetSpritePhysicsOn()

All that is required to have a sprite react to the AGK’s built-in physics is to apply the
SetSpritePhysicsOn() statement to that sprite. This allows us to setup the sprite as
one of three basic types:

± A static object. These objects never move, but dynamic objects will react to a
collision with a static object. Typical real-world static objects would be items
such as pavements, buildings, and mountains.

± A dynamic object. These objects move, react to gravity, friction, collisions,
etc. Most small man-made objects in the real world would fall into this
category.

± A kinematic object. A kinematic object is one which moves along a trajectory
but will not deviate from that path and is not affected by other objects. The
closest to a real-world object would be a meteorite or Superman!

The format for the SetSpritePhysicsOn() statement is shown in FIG-20.1.

where:

 id is an integer value giving the ID of a previously created sprite.

 imode is an integer value (1 to 3) specifying the type of physics object
 to be implemented (1: static; 2: dynamic; 3: kinematic).

The program in FIG-20.2 demonstrates the use of physics to create a falling ball.

FIG-20.1

SetSpritePhysicsOn() SetSpritePhysicsOn (id imode)

FIG-20.2

A Dynamic Object rem *** Basic Physics ***

rem *** Load image ***
LoadImage(1,”Ball.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,6,-1)
SetSpritePosition(1,50,5)

Hands On AGK BASIC: Physics 615

SetSpritePhysicsVelocity()

In the last Activity, there was no apparent difference between the static and kinematic
modes. This is because no velocity had been specified for the kinematic sprite. To set
a velocity, we need to use the SetSpritePhysicsVelocity() statement (see FIG-
20.3).

where:

 id is an integer value giving the ID of a previously created sprite.

 vx,vy are real numbers giving the x and y components of the velocity
 to be applied to the sprite.

Velocity defines both speed and direction. In physics it is usually depicted graphically
as an arrowed line (see FIG-20.4).

To split the velocity into separate x, y components, we just need a simple piece of
trigonometry (see FIG-20.5).

FIG-20.2
(continued)

A Dynamic Object

rem *** Apply dynamic physics ***
SetSpritePhysicsOn(1,2)
do
 Sync()
loop

 Ë All projects in this
chapter should be sized
as 480 x 480 unless
stated otherwise.

Activity 20.1

Start a new project called Physics01 and implement the code given in FIG-
20.2. Copy AGKDownloads/Chapter20/Ball.png to the media folder.

Set the window size to 480 x 480 and run the program.

What happens to the ball as it falls? What happens when the ball hits the
bottom of the app window?

Modify the program so that the sprite is a static object. What happens when
you run the program?

Modify the program to make the sprite a kinematic object. What happens when
you run the program?

FIG-20.3

SetSpritePhysicsVelocity() SetSpritePhysicsVelocity (id vx vy)

FIG-20.4

Velocity Visualised

Object

direction

The length
of the line gives

the speed

616 Hands On AGK BASIC: Physics

If we know the direction of the velocity as an angle (say θ), the simplest way of
calculating the x and y components is to use

	 x	component	=	cos(θ)

	 y	component	=	sin(θ)

and set the speed by multiplying these terms by the relevant amount. For example,

	 5*cos(θ)	
	 5*sin(θ)

You can apply the SetSpritePhysicsVelocity() statement to a dynamic object, but
this will interrupt the natural velocity assigned to the object by gravity, collisions, etc.
Of course, one reason you might wish to do this is to simulate an engine burn on a
spacecraft.

GetSpritePhysicsVelocityX() and GetSpritePhysicsVelocityY()

You can retrieve the x and y components of an object’s velocity using the
GetSpritePhysicsVelocityX() and GetSpritePhysicsVelocityY() statements.
These statements have the format shown in FIG-20.6.

where:

 id is an integer value giving the ID of a previously created sprite.

The program in FIG-20.7 is a variation on the earlier falling ball example, but this
time the y component of the ball’s velocity is displayed as it falls. No x component is
displayed since the ball is falling vertically.

FIG-20.5

Velocity’s X and Y
Components

y
component

x
component

velocity

θ

Activity 20.2

Modify Physics01 so that the kinematic ball is moving at a speed of 15 at an
angle of 60o. Test and save your project.

FIG-20.6

GetSpritePhysicsVelocityX()
GetSpritePhysicsVelocityY()

GetSpritePhysicsVelocityX (id)

GetSpritePhysicsVelocityY (id)

FIG-20.7

Displaying Velocity rem *** Basic Physics ***

rem *** Load image ***
LoadImage(1,”Ball.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,6,-1)

Hands On AGK BASIC: Physics 617

SetSpritePhysicsOff()
You can return a sprite to a normal, non-physics-influenced sprite by switching off
physics for that sprite. This requires the use of the SetSpritePhysicsOff() statement
(see FIG-20.8).

where:

 id is an integer value giving the ID of a previously created sprite.

If you want to change the nature of a sprite from, say, dynamic to static, you need to
start by switching off the sprite’s physics and then reactivating it in a different mode
using SetSpritePhysicsOn().

SetSpritePhysicsDelete()

If you switch off a sprite’s physics, turning it back on will restore all the previous
settings (assuming you create the sprite as the same type of physics object). However,
if you want to go further than this, you can turn off a sprite’s physics and remove all
the previous settings using the SetSpritePhysicsDelete() statement (see FIG-
20.9).

where:

 id is an integer value giving the ID of a previously created sprite.

SetSpritePhysicsRestitution()

When the ball dropped in our previous programming examples, we saw it bounce
slightly as it hit the “floor” of the app. Obviously, some objects bounce to a greater
or lesser degree in the real world. For example, we would expect a rubber ball to

FIG-20.7
(continued)

Displaying Velocity

SetSpritePosition(1,50,5)

rem *** Apply dynamic physics ***
SetSpritePhysicsOn(1,2)

rem *** Create text object ***
CreateText(1,””)

do
 rem *** Update text ***
 SetTextString(1,”Ball velocity Y : “
 +Str(GetSpritePhysicsVelocityY(1)))
 Sync()
loop

Activity 20.3

Modify Physics01 to match the code given above. Test and save your project.

FIG-20.8

SetSpritePhysicsOff() SetSpritePhysicsOff (id)

FIG-20.9

SetSpritePhysicsDelete()

SetSpritePhysicsDelete (id)

618 Hands On AGK BASIC: Physics

bounce more than one made of iron.

The “bounciness” of an object can be set using the SetSpritePhysicsRestitution()
statement (see FIG-20.10).

where:

 id is an integer value giving the ID of a previously created sprite.

 fbounce is a real number (0 to 1) which defines the bounciness of the
 object. 0: no bounce; 1 : full bounce.

SetSpritePhysicsAngularVelocity()

Adding a spinning effect to an object can be achieved using the
SetSpritePhysicsAngularVelocity() statement. This has the format shown in
FIG-20.11.

where:

 id is an integer value giving the ID of a previously created sprite.

 fav is a real number giving the angular velocity to be applied. This
 is the angle by which the object rotates in each time frame. The
 larger the number, the faster the spin.

Angular velocity is best applied to a dynamic object when it is first created or to a
kinematic object. The program in FIG-20.12 demonstrates a spinning kinematic
rectangle.

FIG-20.10

SetSpritePhysicsRestitution() SetSpritePhysicsRestitution (id)fbounce

Activity 20.4

Modify Physics01 to give the ball a bounce factor of 0.75. Test and save your
project.

FIG-20.11

SetSpritePhysicsAngular
Velocity()

SetSpritePhysicsAngularVelocity (id)fav

FIG-20.12

Using Angular Velocity rem *** Angular Velocity ***

rem *** Load image ***
LoadImage(1,”Tile.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,15,-1)
SetSpritePosition(1,10,10)

rem *** Apply kinematic physics ***
SetSpritePhysicsOn(1,3)
rem *** Apply angular velocity ***
SetSpritePhysicsAngularVelocity(1,1)

do
 Sync()
loop

Hands On AGK BASIC: Physics 619

SetSpritePhysicsAngularDamping()

In the real world, spinning objects normally loose their spin because of frictional
forces. To create the same effect in our virtual world, we can use the
SetSpritePhysicsAngularDamping() statement (see FIG-20.13).

where:

 id is an integer value giving the ID of a previously created sprite.

 fdamp is a real number (0 to 2) giving the angular damping to be
 applied. 0: no dampening; 2: rotation stops almost immediately.

Damping cannot be applied to a kinematic object.

SetSpritePhysicsTorque()

Torque is the term used for a turning force applied to an object. When you turn a nut
with a wrench, you are applying torque to the nut. The SetSpritePhysicsTorque()
command applies a turning force to an object. Although this will cause an object to
spin, and hence you might be tempted to think that it performs the same purpose as
SetSpritePhysicsAngularVelocity(), the SetSpritePhysicsTorque() statement
creates a more realistic effect on dynamic objects, since it takes into account the
current state of the object. Torque forces are cumulative, so applying the same force
continually will speed up the rotation of the object to which it is being applied.

The SetSpritePhysicsTorque() statement has the format shown in FIG-20.14.

where:

 id is an integer value giving the ID of a previously created sprite.

 ftorque is a real number giving the angular force to be applied. This force
 is cumulative. A negative figure will cause the object to spin in
 the opposite (counter-clockwise) direction.

Window size 480 x 480

Activity 20.5

Start a new project called Physics02 and implement the code given in FIG-
20.12. Copy Tile.png from AGKDownloads/Chapter20 to the media folder.

After you have run the program, change the sprite to a dynamic object and the
angular velocity to 50. How does this affect the object?

Test and save your project.

FIG-20.13

SetSpritePhysicsAngular
Damping()

SetSpritePhysicsAngularDamping (id)fdamp

Activity 20.6

Add a damping factor of 0.7 to the sprite in Physics02 and observe how this
affects the tile.

FIG-20.14

SetSpritePhysicsTorque() SetSpritePhysicsTorque (id)ftorque

620 Hands On AGK BASIC: Physics

The program in FIG-20.15 makes use of torque rather than setting angular momentum
to spin an object.

SetSpritePhysicsAngularImpulse()

The SetSpritePhysicsAngularImpulse() statement has a similar effect to applying
torque but it is designed to be executed only once, not continuously. Use this
command if you want to simulate an object that has been given added angular velocity
because of a collision.

The statement has the format shown in FIG-20.16.

where:

 id is an integer value giving the ID of a previously created sprite.

 fimpulse is a real number giving the angular force to be applied. This force
 is cumulative. A negative figure will cause the object to spin in
 the opposite (counter-clockwise) direction.

The effect created by the SetSpritePhysicsAngularImpulse() statement is
equivalent to a torque of the same force applied for one second.

Both torque and impulse forces have a greater effect on the angular velocity of a
smaller object than on a larger one for the same amount of force.

FIG-20.15

Using Torque

rem *** Torque ***

rem *** Load image ***
LoadImage(1,”Tile.png”)

rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,15,-1)
SetSpritePosition(1,40,10)

rem *** Apply dynamic physics ***
SetSpritePhysicsOn(1,2)
do
 rem *** Apply torque ***
 SetSpritePhysicsTorque(1,20)
 Sync()
loop

Activity 20.7

Modify Physics02 to match the code in FIG-20.15.

Run the program and observe the effect.

Change the torque from 20 to 200. How does this affect the behaviour of the
sprite?

FIG-20.16

SetSpritePhysicsAngular
Impulse()

SetSpritePhysicsAngularImpulse (id)fimpulse

Hands On AGK BASIC: Physics 621

GetSpritePhysicsAngularVelocity()

The rate at which an object is spinning can be discovered using the
GetSpritePhysicsAngularVelocity() statement which has the format shown in
FIG-20.17.

where:

 id is an integer value giving the ID of a previously created sprite.

SetSpritePhysicsCanRotate()

You can switch off a dynamic object’s ability to rotate using the
SetSpritePhysicsCanRotate() statement (see FIG-20.18).

where:

 id is an integer value giving the ID of a previously created sprite.

 iflag is an integer value (0 or 1) which determines if a dynamic sprite
 is allowed to rotate. 0: no rotation allowed; 1: rotation allowed.

The main use of this statement is to stop an object being given angular momentum
when struck by some other object.

SetSpritePhysicsForce()

As well as being able to apply forces that set an object spinning, we can also apply a
force to move an object to the side, up, or down (although gravity will do the down
option for us).

When we do this, the direction and strength of that force will affect how the object
reacts to the force (see FIG-20.19).

FIG-20.17

GetSpritePhysicsAngular
Velocity()

GetSpritePhysicsAngularVelocityfloat (id)

Activity 20.8

Modify Physics02 so that the angular velocity of the sprite is continuously
displayed.

Save your project.

FIG-20.18

SetSpritePhysicsCanRotate() SetSpritePhysicsCanRotate (id)iflag

Activity 20.9

Modify Physics02 by switching off the sprite’s ability to rotate immediately
after the SetSpritePhysicsOn() statement.

How is the sprite affected?

Save your project.

622 Hands On AGK BASIC: Physics

The SetSpritePhysicsForce() statement allows us to apply such a linear force to
an object. The statement has the format shown in FIG-20.20.

where:

 id is an integer value giving the ID of a previously created sprite.

 x,y are a pair of real numbers giving the coordinates of any point
 along the line of force. This value is used to identify the exact
 position acted on by the force.

 vx is a real number giving the x offset of the force. A positive value
 implies a force pushing to the right; a negative one creates a
 push to the left.

 vy is a real number giving the y offset of the force. A positive value
 pushes down; a negative value pushes up.

These last two values define the strength of the force.

FIG-20.21 explains the values required when defining a force.

FIG-20.20

SetSpritePhysicsForce() SetSpritePhysicsForce (id)x y vx vy

If we apply a sufficiently large sideways
force to an object at its centre of mass
then...

...it will be pushed in the direction of
that force. Movement will stop because
of friction at the point of contact
between the object and the ground.

If the force is applied off-centre, then
the object will experience a turning
force.

An upward force will be countered by
the force of gravity.

Centre
of mass

force

force

rotation

force

gravity

friction

FIG-20.19

Force Explained

Hands On AGK BASIC: Physics 623

The force applied by SetSpritePhysicsForce() is applied only once, so if you want
the force to be applied continually, the statement must be placed within a loop.

The program in FIG-20.22 creates a pushing force under the spaceship sprite, causing
it to lift into the air.

The centre of mass (COM) of a sprite
is assumed to be at the centre of the
sprite.

The force offsets are calculated by a
simple Pythagorean formula. Larger
values mean a stronger force.

A horizontal force has no y offset;
a vertical force has no x offset.

sprite width

sprite
height

Sprite
centre

The coordinates of the centre of mass
can be calculated as:

Xcom = GetSpriteX(spr)
 +GetSpriteWidth(spr)/2.0

ycom = GetSpriteY(spr)
 +GetSpriteHeight(spr)/2.0

force y offset

x offset

These points can be used as the
coordinates on the line of force. This
ensures there is no turning force
applied to the object.

horizontal force

vertical force

FIG-20.21

Calculating Force Vectors

FIG-20.22

Using a Force Vector

rem *** Force Upwards ***

rem *** Load image ***
LoadImage(1,”Rocketship.png”)

rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,-1,20)
SetSpritePosition(1,45,80)

rem *** Turn on physics for sprite ***
SetSpritePhysicsOn(1,2)

do
 rem *** Apply upward force through centre of craft ***
 SetSpritePhysicsForce(1,GetSpriteX(1)+GetSpriteWidth(1)/2.0,
 GetSpriteY(1)+GetSpriteHeight(1)/2.0,0,-200)
 Sync()
loop

624 Hands On AGK BASIC: Physics

SetSpritePhysicsImpulse()

The SetSpritePhysicsImpulse() statement is similar to SetSpritePhysicsForce()
but this time the force is applied for the equivalent of one second. This command is
primarily intended to be used when a one-off force is required such as an object being
struck momentarily by a laser beam.

The format for SetSpritePhysicsImpulse()is given in FIG-20.23.

where:

 id is an integer value giving the ID of a previously created sprite.

 x,y are a pair of real numbers giving the coordinates of any point
 along the line of force. This value is used to identify the exact
 position of the force.

 vx is a real number giving the x offset of the force. A positive value
 implies a force pushing to the right; a negative one creates a
 push to the left.

 vy is a real number giving the y offset of the force. A positive value
 pushes down; a negative value pushes up.

Window size 480 x 480

Activity 20.10

Create a new project called Physics03 and implement the code in FIG-20.22.
Copy AGKDownload/Chapter20/Rocketship.png to the media folder.

Test and save your project. What happens when the craft reaches the top of the
app window?

Modify the program to change the vertical force to a horizontal force to the
right, passing through the centre of the craft.

What effect does this have on the craft?

Move the SetSpritePhysicsForce() statement so that it is positioned before
the do statement. Return the force to an upward one and change the vy value to
-20000. How does this affect the craft?

FIG-20.23

SetSpritePhysicsImpulse() (id)x y vx vySetSpritePhysicsImpulse

Activity 20.11

Modify Physics03, reducing the vy value in the SetSpritePhysicsForce()
statement to -2000).

How far does the spacecraft rise with this setting?

Replace the SetSpritePhysicsForce() statement with a
SetSpritePhysicsImpulse() statement using the same parameters.

How far does the spacecraft rise this time?

Hands On AGK BASIC: Physics 625

SetSpritePhysicsMass()

When a force is applied to an object, how that object reacts depends on the strength
of the force and the mass of the object. AGK assigns a default mass to a sprite based
on the area of the sprite. However, this is not always appropriate. For example, an
object constructed from Styrofoam may be the same size as an object made from
steel, but the mass of the two objects will be widely different.

You can define the mass of an object using the SetSpritePhysicsMass() statement
whose syntax is given in FIG-20.24.

where:

 id is an integer value giving the ID of a previously created sprite.

 fkilos is a real number giving the new mass in kilograms.

GetSpritePhysicsMass()

To determine the mass currently assigned to an object, call GetSpritePhysicsMass()
(see FIG-20.25) which returns a specified object’s mass in kilograms.

where:

 id is an integer value giving the ID of a previously created sprite.

SetSpritePhysicsFriction()

When two surfaces move over each other, friction is created which impedes
movement, eventually bringing the moving object to a halt.

The degree of friction created by a sprite can be set using the
SetSpritePhysicsFriction() statement (see FIG-20.26).

where:

 id is an integer value giving the ID of a previously created sprite.

 friction is a real number (0 to 1) specifying the friction created by the
 sprite. 0: no friction; 1 : full friction. The default friction value is
 around 0.3.

FIG-20.24

SetSpritePhysicsMass() (id fkilos)SetSpritePhysicsMass

FIG-20.25

GetSpritePhysicsMass() GetSpritePhysicsMassfloat (id)

Activity 20.12

Modify Physics03, so that the mass of the spacecraft is displayed.

Modify the program again so that the spacecraft is ten times its original weight.

How does this affect the craft’s movement?

FIG-20.26

SetSpritePhysicsFriction() SetSpritePhysicsFriction (id)friction

626 Hands On AGK BASIC: Physics

SetSpritePhysicsDamping()

With no friction, the craft slides over the surface at a constant speed until it hits the
edge of the window. In real life, no matter how low the surface friction, the craft
would still stop, slowed by air resistance. To simulate air resistance (or water
resistance if our sprite was a boat) we can make use of SetSpritePhysicsDamping()
(see FIG-20.27).

 where:

 id is an integer value giving the ID of a previously created sprite.

 fdamp is a real number (0 to 1) specifying the damping factor to be
 applied. 0: no damping (the default); 1 : full damping (movement
 stops almost immediately).

SetSpritePhysicsCOM()

By default, a sprite’s centre of mass (COM) is at the centre of the image (as was
explained earlier) but you can move this to another position which is more appropriate
for the object your sprite represents. For example, a railway carriage would have a
lower centre of gravity because the wheels and chassis are much heavier than the
walls and roof of the compartment area.

To shift a sprite’s centre of gravity, use SetSpritePhysicsCOM() (see FIG-20.28).

 where:

 id is an integer value giving the ID of a previously created sprite.

FIG-20.27

SetSpritePhysicsDamping() SetSpritePhysicsDamping (id)fdamp

Activity 20.14

Modify Physics03, so that a damping force of 0.2 is applied?

How does this affect the movement of the craft? Save your project.

FIG-20.28

SetSpritePhysicsCOM() SetSpritePhysicsCOM (id)x y

Activity 20.13

Modify Physics03, so that the force is again horizontal and to the left then run
the program. What happens to the craft?

Set friction of the spacecraft to 0.25. How does this affect the craft’s
movement?

What is the lowest value of friction (to the nearest one hundredth) that causes
the craft to topple?

Set friction to zero. What affect does this have on the craft?

Save your project.

Hands On AGK BASIC: Physics 627

 x,y are real values giving the position of the new centre of mass
 relative to the sprite’s offset values.

For example, if we were to use the statement

SetSpritePhysicsCOM(1,0,2)

the centre of mass would be moved as shown in FIG-20.29.

CalculateSpritePhysicsCOM()

You can also leave AGK to recalculate the centre of mass using the
CalculateSpritePhysicsCOM() statement (see FIG-20.30).

 where:

 id is an integer value giving the ID of a previously created sprite.

If you have overridden the centre of mass position using SetSpritePhysicsCOM(),
CalculateSpritePhysicsCOM()will reset its position. You may also wish to call
CalculateSpritePhysicsCOM()if you have assigned a new bounding area to your
sprite (see later for physics-activated sprite bounding area assignments).

SetSpritePhysicsIsSensor()

If you want a physics sprite to detect collisions but not react to them in anyway and
also not cause the colliding sprite to be affected, then you can set the sprite to be a
sensor using the SetSpritePhysicsIsSensor() statement (see FIG-20.31).

 where:

 id is an integer value giving the ID of a previously created sprite.

 iflag is an integer value (0 or 1) which is used to set the sprite to sensor
 mode (0) or return it to normal mode (1).

FIG-20.29

Changing the Centre of Mass

SetSpritePhysicsCOM(1,0,2)
moves the centre of mass
2 units in the y direction

The centre of mass is
initially at the sprite
o
set position in the
middle of the image

FIG-20.30

CalculateSpritePhysics
COM()

CalculateSpritePhysicsCOM (id)

FIG-20.31

SetSpritePhysicsIsSensor() SetSpritePhysicsIsSensor (id)iflag

628 Hands On AGK BASIC: Physics

Physics Collisions
So far, we have made use of a single physics-based sprite in all of the examples. But
when more than one sprite exists, then the moving sprites are likely to collide. Unlike
standard sprites, physics-activated sprites will deal with collisions automatically. The
program in FIG-20.32 demonstrates this by showing a ball colliding with a spinning
bat.

GetPhysicsCollision()

Even though AGK automatically handles collisions, a program will sometimes need
to be aware of a collision taking place. This can be achieved using the
GetPhysicsCollision() statement (see FIG-20.33).

 where:

 id1,id2 are integer values giving the IDs of previously created sprites.

If the two sprites have collided, then the function returns 1, otherwise zero is returned.

FIG-20.32

Collisions in Physics

rem *** Physics collisions ***

rem *** Load images ***
LoadImage(1,”Bat.png”)
LoadImage(2,”Ball.png”)

rem *** Set up bat ***
CreateSprite(1,1)
SetSpriteSize(1,12,-1)
SetSpritePosition(1,44,48)

rem *** Make bat kinematic ***
SetSpritePhysicsOn(1,3)

rem *** Spin bat ***
SetSpritePhysicsAngularVelocity(1,100)

rem *** Set up ball ***
CreateSprite(2,2)
SetSpriteSize(2,6,-1)
SetSpritePosition(2,47,0)

rem *** Make ball dynamic ***
SetSpritePhysicsOn(2,2)
do
 Sync()
loop

Activity 20.15

Start a new project called Physics04 and implement the code given above.
Copy Ball.png and Bat.png from AGKDownloads/Chapter20 into the media
folder. Test and save your project.

FIG-20.33

GetPhysicsCollision() GetPhysicsCollisioninteger (id1 id2)

Hands On AGK BASIC: Physics 629

GetPhysicsCollisionX() and GetPhysicsCollisionY()

After detecting a collision using GetSpritePhysicsCollision(), you can determine
the exact position of the collision (relative to the first sprite identified in
GetSpritePhysicsCollision()) using the GetPhysicsCollisionX() and
GetPhysicsCollisionY() statements (see FIG-20.34).

GetPhysicsCollisionWorldX() and GetPhysicsCollisionWorldY()

If it would be more useful to have the collision’s coordinates specified in world
coordinates, then you can use the GetPhysicsCollisionWorldX() and
GetPhysicsCollisionWorldY() statements (see FIG-20.35).

SetSpritePhysicsIsBullet()

If a sprite is moving very quickly (typically this would be a bullet or a missile) then
you can force AGK to do more frequent checks for collisions using the
SetSpritePhysicsIsBullet() statement. Without this, collision detection for fast
moving items may not be accurate. The format of the SetSpritePhysicsIsBullet()
statement is shown in FIG-20.36.

 where:

 id is an integer value giving the ID of a previously created sprite.

 iflag is an integer value (0: normal collision checking 1: increased
 collision checking). .

Activity 20.16

Modify Physics04 to display the word “Hit” when the sprites collide. Test and
save your project.

FIG-20.34

GetPhysicsCollisionX()

GetPhysicsCollisionY()

GetPhysicsCollisionXfloat ()

GetPhysicsCollisionYfloat ()

Activity 20.17

Modify Physics04 so that the coordinates of the collision are displayed in place
of the word “Hit”. Test and save your project.

FIG-20.35

GetPhysicsCollisionWorldX()

GetPhysicsCollisionWorldY()

GetPhysicsCollisionWorldXfloat ()

GetPhysicsCollisionWorldYfloat ()

Activity 20.18

Modify Physics04 so that the world coordinates are used to display the position
of the collision. Test and save your project.

FIG-20.36

SetSpritePhysicsIsBullet() SetSpritePhysicsIsBullet (id)iflag

630 Hands On AGK BASIC: Physics

Using this statement may reduce the speed of your program.

Physics Sprite Shapes
In the last chapter we saw how changing the bounding shape for a sprite could lead
to more accurate collision detection. The same type of option is also available for
sprites for which the physics option has been switched on. However, creating a
bounding box for physics objects requires new statements.

By default, every physics object is assigned a rectangular bounding box. This is used
not only to detect collisions, but also to handle other calculations such as friction and
bounce.

SetPhysicsDebugOn()

We can make the bounding box visible by calling SetPhysicsDebugOn() (see FIG-
20.37).

SetPhysicsDebugOff()

Should you want the debug option switched off at a later stage in a program’s
execution, you can use the SetPhysicsDebugOff() statement (see FIG-20.38).

FIG-20.39 shows the default bounding box assigned to an apple-shaped sprite.

As you can see, this is far from ideal. We could replace the default bounding box by
a circular bounding area around the main apple using SetSpriteShapeCircle()
which would give the result shown in FIG-20.40.

FIG-20.37

SetPhysicsDebugOn() SetPhysicsDebugOn ()

Activity 20.19

Modify Physics04 so that physics debug is on during the running of the
program.

FIG-20.38

SetPhysicsDebugOff() SetPhysicsDebugOff ()

FIG-20.39

A Default Bounding Box Bounding

box

Hands On AGK BASIC: Physics 631

But the problem now is that the stalk and leaf remain outside the bounding area.

However, although standard sprites are limited to a single bounding area shape,
physics sprites may be given additional shapes. If you do this, then the new bounding
area will include all the shapes assigned to the sprite. You can only add these new
shapes after physics has been switched on for the sprite.

AddSpriteShapeBox()

To add a rectangular bounding area to your physics sprite, use AddSpriteShapeBox()
(see FIG-20.41).

where

 id is an integer value giving the ID of the sprite.

 x1,y1 are a pair of real values giving the coordinates of the top-left
 corner of the box.

 x2,y2 are a pair of real values giving the coordinates of the bottom-
 right corner of the box.

 fangle is a real number giving the angle of rotation of the box in radians.

The box coordinates are measured relative to the top-left corner of the sprite to which
the bounding box is being added and represent the position of the box before it is
rotated.

AddSpriteShapePolygon()

To add a polygon to the bounding area of a physics sprite, use the
AddSpriteShapePolygon() statement (see FIG-20.42).

FIG-20.40

Creating a Circular
Bounding Box

Bounding
circle

FIG-20.41 AddSpriteShapeBox()

AddSpriteShapeBox ()id x1 y1 x2 y2 fangle

632 Hands On AGK BASIC: Physics

where

 id is an integer value giving the ID of the sprite.

 inum is an integer value (3 to 12) giving the number of vertices in the
 polygon.

 indx is an integer value giving the index of this specific vertex. The
 first vertex has an index setting of zero.

 x,y are a pair of real values giving the coordinates of the vertex. The
 coordinates are measured from the sprite’s offset.

FIG-20.43 shows the apple after both a box and polygon have been added to the
original bounding area.

The code required to produce the bounding area shown above is given in FIG-20.44.

FIG-20.42 AddSpriteShapePolygon()

AddSpriteShapePolygon ()id inum indx yx

FIG-20.43

A Sprite with Three
Bounding Areas

Bounding
circle

Added
polygon

Added
box

FIG-20.44

Creating Additional
Bounding Areas on a
Physics Sprite

rem *** Sprite Bounding Area ***

rem *** Vertex coordinates on polygon ***
dim verticesX#[11]=[20.43,14.37,2.22,6.68,14.07,17.10,18.01,20.94]
dim verticesY#[11]=[-22.49,-20.62,-11.27,-11.44,-13.04,-15.07,
-16.67,-21.98]

rem *** Number of vertices ***
global vcount = 8

rem *** Set background colour ***
SetClearColor(250,250,20)
Sync()

rem *** Load image ***
LoadImage(1,”Apple2.png”)

Hands On AGK BASIC: Physics 633

The values given in the code assume the app window is set to 1000x1200; for other
windows sizes the values given would need to be changed.

AddSpriteShapeCircle()

A circle can also be added to the bounding area of a physics sprite using
AddSpriteShapeCircle() (see FIG-20.45).

where:

 id is an integer value giving the ID previously assigned to the
 sprite.

 x,y are a pair of real values giving the coordinates of the centre of
 the bounding circle. These are measured relative to the sprite’s
 offset.

 fradius is a real number giving the radius of the bounding circle.

FIG-20.44
(continued)

Creating Additional
Bounding Areas on a
Physics Sprite

rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,50,-1)
SetSpritePositionByOffset(1,50,50)

rem *** Bound fruit ***
SetSpriteShapeCircle(1,0,7.5,25.5)

rem *** Make static physics object ***
SetSpritePhysicsOn(1,1)

rem *** Add box to apple stalk ***
AddSpriteShapeBox(1,28.5,-0.5,31.5,15,0.41)

rem *** Add polygon to apple leaf ***
for c = 0 to vcount-1
 AddSpriteShapePolygon(1,vcount,c,verticesX#[c],verticesY#[c])
next c

rem *** Switch on physics debug ***
SetPhysicsDebugOn()

do
 Sync()
loop

Activity 20.20

Start a new project called Physics05 and implement the code given in FIG-
20.44. Copy Apple2.png to the media folder. Set the app window size to
1000x1200.

Test and save your project.

FIG-20.45

AddSpriteShapeCircle()

 Ë Bounding areas added
to a sprite will not resize
with the sprite.

AddSpriteShapeCircle ()id x y fradius

 Ë Additional
bounding areas will
affect the centre of
mass of a sprite.

634 Hands On AGK BASIC: Physics

ClearSpriteShapes()

The shapes that have been added to a sprite can be removed using the
ClearSpriteShapes() statement (see FIG-20.46).

where

 id is an integer value giving the ID of the sprite.

SetPhysicsMaxPolygonPoints()

You can limit the maximum number of vertices on any future bounding polygon
using SetPhysicsMaxPolygonPoints() (see FIG-20.47).

where

 ipnts is an integer (2 to 12) specifying the maximum vertices on any
 future bounding polygons for physics-activated sprites.

Summary
± The physics engine embedded within AGK automatically simulates various

aspects of the physical world such as velocity, friction, gravity and collisions.

± To activate physics for a specific sprite use SetSpritePhysicsOn().

± A physics-activated sprite can be assigned to one of three categories:

 static - unaffected by physics but other sprites react to colliding
 with a static sprite.
 dynamic - reacts to all physics.
 kinematic - can be assigned a velocity but is otherwise unaffected
 by the physics.

± Use SetSpritePhysicsOff() to deactivate a sprite’s physics.

± After switching off a sprite’s physics, it can be reactivated with its previous
settings.

± Use SetSpritePhysicsDelete() to deactivate a sprite’s physics and remove
all current physics settings.

± Use SetSpritePhysicsVelocity() to assign a velocity to a sprite.

± Use GetSpritePhysicsVelocityX() and GetSpritePhysicsVelocityY() to
determine the x and y components of a velocity.

± Use SetSpritePhysicsRestitution() to set the bounciness of a sprite.

± Use SetSpritePhysicsAngularVelocity() to add a spin to a sprite.

± Use SetSpritePhysicsAngularDamping() to adjust the damping effect on a
sprite’s spin.

± Use SetSpritePhysicsTorque() to add an accumulative spin effect to a sprite.

FIG-20.46

ClearSpriteShapes() ClearSpriteShapes (id)

FIG-20.47

SetPhysicsMaxPolyPoints() SetPhysicsMaxPolyPoints (ipnts)

Hands On AGK BASIC: Physics 635

± Use SetSpritePhysicsAngularImpulse() to apply a one-off spin force to a
sprite.

± Use GetSpritePhysicsAngularVelocity() to determine how fast a sprite is
spinning.

± Use SetSpritePhysicsCanRotate() to adjust a sprite’s ability to rotate.

± Use SetSpritePhysicsForce() to apply a force to a sprite.

± Use SetSpritePhysicsImpulse() to apply a force for the equivalent of one
second.

± All sprites are assigned a default mass based on their size.

± Use SetSpritePhysicsMass() to adjust the mass of a sprite.

± Use GetSpritePhysicsMass() to discover the mass of a sprite.

± Use SetSpritePhysicsFriction() to set the friction of a sprite.

± Use SetSpritePhysicsDamping() to adjust the damping factor on a sprite’s
movement.

± Use SetSpritePhysicsCOM() to adjust a sprite’s centre of mass.

± Use CalculateSpritePhysicsCOM() to have AGK calculate a sprite’s centre of
mass.

± Use SetSpritePhysicsIsSensor() to have a sprite detect collisions but not
react to them.

± Use GetPhysicsCollision() to detect if two specified sprites have collided.

± After detecting a collision using GetPhysicsCollision(), use
GetPhysicsCollisionX() and GetPhysicsCollisionY() to find the
coordinates of a collision relative to the position of the first sprite.

± Use GetPhysicsCollisionWorldX() and GetPhysicsCollisionWorldY()to
discover the world coordinates of a collision.

± Use SetSpritePhysicsIsBullet() if a sprite is moving extremely fast in
order to ensure all collisions are detected correctly.

± Use SetPhysicsDebugOn() to display the bounding area of a physics-enabled
sprite.

± Use SetPhysicsDebugOff() to hide the bounding area of a sprite.

± Use AddSpriteShapeBox() to add a new bounding box to the already-existing
bounding area of a physics-enabled sprite.

± Use AddSpriteShapePolygon() to add a new bounding polygon to the
already-existing bounding area of a physics-enabled sprite.

± Use AddSpriteShapeCircle() to add a new bounding circle to the already-
existing bounding area of a physics-enabled sprite.

± Use ClearSpriteShapes() to remove all extra bounding areas assigned to a
sprite.

± Use SetPhysicsMaxPolyPoints() to set the maximum number of vertices
allowed on all new bounding polygons.

636 Hands On AGK BASIC: Physics

World Physics

Introduction
So far, almost all of the physics commands we have covered have adjusted the
properties of individual sprites, but an additional set of physics commands are
available which adjust the complete environment, impacting on all the physics-
enabled sprites within a project. These physics commands are listed in this section.

General Statements
SetPhysicsScale()

The physics environment used by AGK assumes one linear unit of screen space is
equal to one metre in the real world. If you are using the default percentage system
for the app screen, then 1% of screen width or height represents 1 metre in the real
world. This would mean that the screen space is assumed to be 100 metres by 100
metres (even if the app window is not square!). In fact, AGK automatically changes
this scale so that the screen represents a 20 metre by 20 metre area.

We can use the SetPhysicsScale() statement to adjust this metres-to-screen
relationship, making the screen space represent a smaller (or larger) area in the real
world. The SetPhysicsScale() statement has the format shown in FIG-20.48.

where:

 fscale is a real number giving the scale factor to be used when
 calculating the relationship between real-world metres and
 screen units. A value of 1 would mean the screen represents a
 100 metre by 100 metre area. The default setting is 0.2 (20
 metres by 20 metres).

This statement should be called before the physics system is switched on.

SetPhysicsGravity()

Using SetPhysicsGravity() allows you to set both the force and direction of
gravitational acceleration. The format of the statement is given in FIG-20.49.

where:

 xoffset is a real number giving the x offset for the gravity vector.

 yoffset is a real number giving the y offset for the gravity vector.

Normally, gravity will be “down” towards the bottom of the screen, so the xoffset
value would be zero in that case.

These values represent how far in screen units an object will fall in the first second,
so to relate it to real world gravity (which is 9.8 metres/sec2 on Earth) you need to

FIG-20.48

SetPhysicsScale() SetPhysicsScale ()fscale

FIG-20.49

SetPhysicsGravity() SetPhysicsGravity ()xoffset yoffset

Hands On AGK BASIC: Physics 637

take into account the physic scale setting.

Using the lines

 SetPhysicsScale(1)
 SetPhysicsGravity(0,9.8)

would create normal Earth gravity.

But if the default scale value of 0.2 is being used, then to achieve Earth gravity, we
would need to use the line

 SetPhysicsGravity(0,49)

 In general we can say that Earth gravity is achieved by the formula:

	 yoffset	=	9.8	/	physics	scale	setting

However, Earth gravity is the default setting irrespective of the physics scale used,
so you only need to make use of the SetPhysicsGravity() statement if you require
a different gravitational setting. For example, the moon’s gravity causes an
acceleration of 1.63 m/s2 while that of Mars is 3.7 m/s2.

The program in FIG-20.50 creates a standard falling body under Earth’s gravity with
the screen representing a 50 metre by 50 metre area.FIG-20.50

Setting Scale and Gravity rem *** Gravity ***

rem *** Load image ***
LoadImage(1,”Tile.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,6,-1)
SetSpritePosition(1,45,0)
rem *** Set physics scale ***
SetPhysicsScale(0.5)
rem *** Switch on physics ***
SetSpritePhysicsOn(1,2)
do
 Sync()
loop

Activity 20.21

Start a new project called Gravity and implement the code given in FIG-20.50.

You need to copy the file Tile.png from AGKDownloads/Chapter20 into the
media folder. Set the app window size to 768 by 768. Test your project.

Modify the code so that the app window represents a 100m x 100m area.

Modify the code to simulate lunar gravity.

Change the physics scale so that the app window represents a 25m x 25m area,
making sure lunar gravity is retained. Save your project.

638 Hands On AGK BASIC: Physics

Of, course, if your program requires it, gravity can pull in other directions. A negative
y offset value will cause objects to move upwards and adding an x offset value will
cause sideways movement. For example, the line

SetPhysicsGravity(4,-4)

would cause objects to move towards the top right corner of the app window.

SetPhysicsWallBottom(), SetPhysicsWallLeft(),
SetPhysicsWallRight() and SetPhysicsWallTop()

As you will have noticed in various examples, objects never move off-screen when
using the physics engine. This is because perimeter “walls” are in place confining all
movement to the area of the app window. We can control these four “walls”, switching
them on and off using the statements SetPhysicsWallBottom(),
SetPhysicsWallLeft(), SetPhysicsWallRight() and SetPhysicsWallTop(). The
format for each of these statements is shown in FIG-20.51.

where:

 iflag is an integer value (0 or 1) which switches a wall off (0) or on
 (1).

When a wall is switched off, physics sprites can move off that edge of the window.

Forces
Sometimes a force can “radiate” from a single point in space. For example, a powerful
but small magnet will attract many metal objects towards it. Working on a much
larger scale, a planet’s gravitational force will attract passing spacecraft. And in the
realms of science fiction (just for the moment), tractor beams and force fields cause
similar effects.

CreatePhysicsForce()

In AGK we can create this type of force, radiating from a single point on the screen,
by using the CreatePhysicsForce() statement (see FIG-20.52).

FIG-20.51

SetPhysicsWallBottom()

SetPhysicsWallTop()

SetPhysicsWallLeft()

SetPhysicsWallRight()

SetPhysicsWallBottom ()iflag

SetPhysicsWallTop ()iflag

SetPhysicsWallLeft ()iflag

SetPhysicsWallRight ()iflag

Activity 20.22

Modify Gravity so that the sprite can move off screen when the gravity setting
pulls it towards the top-right corner.

Test and save your project.

FIG-20.52

CreatePhysicsForce()

CreatePhysicsForceinteger ()x y fpower flimit frange ifade

Hands On AGK BASIC: Physics 639

where:

 x,y are a pair of real values giving the position from which the force
 is emanating. Use percentage or virtual coordinates as
 appropriate.

 fpower is a real number giving the force at one unit’s distance from the
 point (x,y). For other forces we have given x and y offsets of a
 vector (see SetSpritePhysicsForce() earlier in this chapter)
 but, since force from a single point radiates in all directions, the
 figure given here can be thought of as simply the length of such
 a vector. If a positive value is given, the force will be an attractive
 one, pulling sprites towards point (x,y); a negative value will
 create a repulsive force.

 flimit is a real number giving the maximum force to be exerted when a
 sprite is less than one unit from the point (x,y). This figure is
 only relevant when the force exerted varies with distance.

 frange is a real number giving the range over which the force is effective.
 Sprites outside that range are not affected by the force. If a
 negative figure is given, then the range of the force is taken to be
 unlimited.

 ifade is an integer value (0 or 1) which determines if the force
 decreases with the distance between a sprite and point (x,y) (1)
 or remains fixed (0).

The overall idea of this type of force is visualised in FIG-20.53.

The force created is assigned an ID to allow it to be modified by later commands.

The program in FIG-20.54 makes use of the CreatePhysicsForce() statement to
simulate the moon’s pull on a passing spacecraft.

FIG-20.53

A Force Point

x,y

power -
radiating in all

directions

the arrows shown
represent a repulsive
force, created when
fpower has a negative
value.

FIG-20.54

Using a Force Point rem *** Physics Force ***

rem *** Load images ***
LoadImage(1,”Sphere.png”)
LoadImage(2,”Moon.png”)
rem *** Create Sprites ***

640 Hands On AGK BASIC: Physics

DeletePhysicsForce()

If the force you created using CreatePhysicsForce() is only to be a temporary one,
you can delete it using the DeletePhysicsForce() statement (see FIG-20.55).

where:

 id is an integer value giving the ID of the force to be deleted.

 Ë The forces used in
this program are not
meant to represent an
accurate model of the
moon’s gravitational
forces.

FIG-20.54
(continued)

Using a Force Point

CreateSprite(1,1)
SetSpriteSize(1,3,-1)
SetSpritePosition(1,90,35)
SetSpriteAngle(1,-90)
CreateSprite(2,2)
SetSpriteSize(2,15,-1)
SetSpritePosition(2,42.5,42.5)

rem *** Switch on physics ***
SetSpritePhysicsOn(1,2)
SetSpritePhysicsOn(2,1)

rem *** Modify physics shapes around sprites ***
SetSpriteShapeCircle(1,0,0,1.5)
SetSpriteShapeCircle(2,0,0,7.5)

rem *** No gravity ***
SetPhysicsGravity(0,0)

rem *** No walls ***
SetPhysicsWallBottom(0)
SetPhysicsWallTop(0)
SetPhysicsWallLeft(0)
SetPhysicsWallRight(0)

rem *** Apply force to ship ***
SetSpritePhysicsVelocity(1,-20,0)

rem *** Set moon’s force ***
forceid = CreatePhysicsForce(50,50,4,20,15,1)

do
 Sync()
loop

Activity 20.23

Start a new project called GravitationalPull and implement the code given in
FIG-20.54. Copy the files Sphere.png and Moon.png from AGKDownloads/
Chapter20 into the media folder.

Test the program.

Modify the force used in CreatePhysicsForce() from 4 to -4 and observe how
this changes the interaction between the two bodies.

FIG-20.55

DeletePhysicsForce() DeletePhysicsForce ()id

Hands On AGK BASIC: Physics 641

SetPhysicsForcePosition()

An existing force can be moved to a different position using the
SetPhysicsForcePosition() statement (see FIG-20.56).

where:

 id is an integer value giving the ID of an existing force.

 x,y are a pair of real numbers giving the new position of the force.
 The world coordinates should be in percentage or virtual
 coordinates as appropriate.

SetPhysicsForcePower()

To change the power setting of an existing force, use SetPhysicsForcePower() (see
FIG-20.57).

where:

 id is an integer value giving the ID of an existing force.

 fpower is a real number giving the new power setting.

SetPhysicsForceRange()

To change the range of an existing force, use SetPhysicsForceRange() (see FIG-
20.58).

where:

 id is an integer value giving the ID of an existing force.

 frange is a real number giving the new range setting.

Summary
± The AGK physics engine assumes that 1% of the screen width (or height)

represents one metre irrespective of the actual dimensions of the screen.

± Gravity is set to Earth standard with a pull towards the bottom of the screen.

± Use SetPhysicsScale() to set the relationship between screen and real-world
distances.

± Use SetPhysicsGravity() to set the direction and strength of gravitational
pull.

± The edges of the screen have invisible “walls” to prevent objects leaving the
screen.

FIG-20.56

SetPhysicsForcePosition() SetPhysicsForcePosition ()id x y

FIG-20.57

SetPhysicsForcePower() SetPhysicsForcePower ()id fpower

FIG-20.58

SetPhysicsForceRange() SetPhysicsForceRange ()id frange

642 Hands On AGK BASIC: Physics

± Use SetPhysicsWallBottom(), SetPhysicsWallTop(),
SetPhysicsWallLeft(), and SetPhysicsWallRight()to activate/deactivate
the physics walls.

± Use CreatePhysicsForce() to set a point in space which attracts or repels
objects.

± Use SetPhysicsForcePosition() to position a point force.

± Use SetPhysicsForcePower() to set the strength of a point force.

± Use SetPhysicsForceRange() to set the distance over which a point force is
effective.

± Use DeletePhysicsForce() to delete a point force.

Hands On AGK BASIC: Physics 643

Sprite Physics - 2

Contacts
There are times when we will want to know which sprites are touching. Of course,
sprites come into contact with each other when they collide, but contact can also take
place when sprites are positioned next to each other. If you want the program logic
to react to each of these contacts, then AGK supplies a set of statements to handle
this.

The code in FIG-20.59 demonstrates a simple multi-collision situation.

GetFirstContact()

As a program makes use of the physics engine to calculate the new position of the
sprites, it maintains a list of all sprites that come into contact with each other during
that moment.

FIG-20.59

Sprites in Contact rem *** Multiple Contacts ***

rem *** Load images ***
LoadImage(1,”Tile.png”)
LoadImage(2,”Sphere.png”)

rem *** Create sprites and assign physics attributes ***
rem *** Tile sprites ***
for c = 1 to 10
 CreateSprite(c,1)
 SetSpriteSize(c,10,-1)
 SetSpritePosition(c, 30,(c-1)*10)
 SetSpritePhysicsOn(c,2)
 SetSpritePhysicsRestitution(c,0.8)
next c

rem *** Sphere sprite ***
CreateSprite(11,2)
SetSpriteSize(11,6,-1)
SetSpritePosition(11,92,90)
SetSpritePhysicsOn(11,2)
SetSpritePhysicsFriction(11,0)
SetSpritePhysicsVelocity(11,-200,0)
SetSpritePhysicsRestitution(11,0.8)

do
 rem *** Apply force to sphere ***
 SetSpritePhysicsForce(11,95,93,-700,0)
 Sync()
loop

Activity 20.24

Create a new project called MultipleContacts and implement the code given
in FIG-20.59. Copy the files Tile.png and Sphere.png from AGKDownloads/
Chapter20 to the media folder.

Test and save your project.

644 Hands On AGK BASIC: Physics

You can determine if any contacts have been made using the GetFirstContact()
statement (see FIG-20.60).

The statement returns 1 if at least one contact has been recorded; if no contacts are
recorded, zero is returned.

GetContactSpriteID1() and GetContactSpriteID2()

Once GetFirstContact() has been called to check that at least two sprites are in
contact, GetContactSpriteID1() can be used to discover the ID of the first of the
two sprites involved. GetContactSpriteID2() will return the ID of the second sprite.

The format for each of these two statements is shown in FIG-20.61.

Contact can sometimes be with an object other than a sprite (for example, with a
boundary wall). In this case, one of the statements will return zero.

GetContactWorldX() and GetContactWorldY()

The exact position (in world coordinates) at which a contact was made can be
discovered using the GetContactWorldX() and GetContactWorldY() statements.

These statements return coordinates in percentage or virtual coordinates, depending
on the measurement system specified in the program.

The format for each of these statements is given in FIG-20.62.

GetNextContact()

Having accessed the first contact in the list held by the physics engine, you can access
the second and subsequent contacts using GetNextContact() (see FIG-20.63).

The function will return 1 if another contact is held in the list; zero will be returned
if there are no more contacts.

After having determined that this next contact exists, you can then make use of the
GetContactSpriteID1(), GetContactSpriteID2(), GetContactWorldX()and
GetContactWorldY()statements to access details of the contact.

The program in FIG-20.64 is a modification to that given in FIG-20.59. In this
version, the tile sprites shrink when in contact with another sprite.

FIG-20.60

GetFirstContact() GetFirstContactinteger ()

FIG-20.61

GetContactSpriteID1()

GetContactSpriteID2()

GetContactSpriteID1integer ()

GetContactSpriteID2integer ()

FIG-20.62

GetContactWorldX()

GetContactWorldY()

GetContactWorldXfloat ()

GetContactWorldYfloat ()

FIG-20.63

GetNextContact() GetNextContactinteger ()

Hands On AGK BASIC: Physics 645

FIG-20.64

Retrieving Contact
Details

rem *** Multiple Contacts ***

rem *** Load images ***
LoadImage(1,”Tile.png”)
LoadImage(2,”Sphere.png”)

rem *** Create sprites and assign physics attributes ***
rem *** Tile sprites ***
For c = 1 to 10
 CreateSprite(c,1)
 SetSpriteSize(c,10,-1)
 SetSpritePosition(c, 30,(c-1)*10)
 SetSpritePhysicsOn(c,2)
 SetSpritePhysicsRestitution(c,0.8)
next c

rem *** Sphere sprite ***
CreateSprite(11,2)
SetSpriteSize(11,6,-1)
SetSpritePosition(11,92,90)
SetSpritePhysicsOn(11,2)
SetSpritePhysicsFriction(11,0)
SetSpritePhysicsVelocity(11,-200,0)
SetSpritePhysicsRestitution(11,0.8)

do
 rem *** Apply force to sphere ***
 SetSpritePhysicsForce(11,95,93,-700,0)
 rem *** IF sprites in contact ***
 if GetFirstContact()= 1
 rem *** Get IDs of sprites in contact ***
 id1 = GetContactSpriteId1()
 id2 = GetContactSpriteId2()
 rem *** IF first ID a tile and second not a wall ***
 if id1 <> 0 and id1 <> 11 and id2 <> 0
 rem *** Reduce size of sprite ***
 SetSpriteSize(id1,GetSpriteWidth(id1)/1.01,
 GetSpriteHeight(id1)/1.01)
 endif
 rem *** IF second ID a tile and first not a wall ***
 if id2 <> 0 and id2 <> 11 and id1 <> 0
 rem *** Reduce size of sprite ***
 SetSpriteSize(id2,GetSpriteWidth(id2)/1.01,
 GetSpriteHeight(id2)/1.01)
 endif
 endif
 Sync()
loop

Activity 20.25

Modify MultipleContacts to match the code given in FIG-20.64.

Run the program. Does every contact between two sprites result in a size
reduction?

Save your project

646 Hands On AGK BASIC: Physics

You should have noticed that not all contacts lead to a reduction in tile size. This was
caused by the fact that not all contacts were being processed in each time frame.

We can solve this problem by using GetNextContact() to process all the contacts in
the list.

GetSpriteFirstContact()

If you are more interested in whether a specific sprite is involved in a contact, then,
rather than use GetFirstContact(), you can use GetSpriteFirstContact().

This command allows you to specify a sprite ID and returns 1 if that sprite is in
contact with any other elements. The format for GetSpriteFirstContact()is shown
in FIG-20.65.

where:

 id is an integer value giving the ID of an existing sprite.

GetSpriteContactSpriteID2()

If GetSpriteFirstContact() returns 1, you can discover the ID of the second sprite
involved in the contact using GetSpriteContactSpriteID2() whose format is
shown in FIG-20.66.

Activity 20.26

Modify MultipleContacts again, adding a repeat..until loop as shown
below:

 if GetFirstContact()
 repeat
 rem *** Get sprite IDs ***
 id1 = GetContactSpriteId1()
 id2 = GetContactSpriteId2()
 rem *** IF first ID a tile and second not a wall ***
 if id1 <> 0 and id1 <> 11 and id2 <> 0
 rem *** Reduce size of sprite ***
 SetSpriteSize(id1,GetSpriteWidth(id1)/1.01,
 GetSpriteHeight(id1)/1.01)
 endif
 rem *** IF second ID a tile and first not a wall ***
 if id2 <> 0 and id2 <> 11 and id1 <> 0
 rem *** Reduce size of sprite ***
 SetSpriteSize(id2,GetSpriteWidth(id2)/1.01,
 GetSpriteHeight(id2)/1.01)
 endif
 until GetNextContact() = 0

Observe how this changes the nature of the program.

Save your project.

FIG-20.65

GetSpriteFirstContact() GetSpriteFirstContactinteger ()id

FIG-20.66

GetSpriteContactSpriteID2() GetSpriteContactSpriteID2integer ()

Hands On AGK BASIC: Physics 647

The statement returns the ID of the second sprite involved in the contact. If, however,
the second element is not a sprite, then zero is returned.

GetSpriteContactWorldX() and GetSpriteContactWorldY()

The point of contact between the two elements can be determined using
GetSpriteContactWorldX() and GetSpriteContactWorldY(). The format for each
of these statements is shown in FIG-20.67.

If the screen has been scrolled or zoomed, these world coordinates will not match
screen coordinates.

GetSpriteNextContact()

If the sprite you specified when calling GetSpriteFirstContact() was involved in
other contacts at the same time as the first, then GetSpriteNextContact() will return
1 when called, otherwise zero is returned.

The format for GetSpriteNextContact() is shown in FIG-20.68.

The next program (see FIG-20.69) is a variation on the last project. This time only
tiles that come into contact with the sphere are reduced in size.

FIG-20.67

GetSpriteContactWorldX()

GetSpriteContactWorldY()

GetSpriteContactWorldXfloat ()

GetSpriteContactWorldYfloat ()

FIG-20.68

GetSpriteNextContact() GetSpriteNextContactinteger ()

FIG-20.69

Using Sprite Contacts

rem *** Multiple Contacts ***

rem *** Load images ***
LoadImage(1,”Tile.png”)
LoadImage(2,”Sphere.png”)

rem *** Create sprites and assign physics attributes ***

rem *** Tile sprites ***
For c = 1 to 10
 CreateSprite(c,1)
 SetSpriteSize(c,10,-1)
 SetSpritePosition(c, 30,(c-1)*10)
 SetSpritePhysicsOn(c,2)
 SetSpritePhysicsRestitution(c,0.8)
next c

rem *** Sphere sprite ***
CreateSprite(11,2)
SetSpriteSize(11,6,-1)
SetSpritePosition(11,92,90)
SetSpritePhysicsOn(11,2)
SetSpritePhysicsFriction(11,0)
SetSpritePhysicsVelocity(11,-200,0)
SetSpritePhysicsRestitution(11,0.8)

648 Hands On AGK BASIC: Physics

Physics Groups and Categories
Back in Chapter 17 we saw how sprite groups could be used to ensure only hits on a
specific group of sprites could be detected. We can make use of that same grouping
statement (SetSpriteGroup()) to affect sprite collisions. Normally, sprites collide
irrespective of the group to which they belong, but if we assign a negative value to
the group identity, then sprites in that group will not collide.

The program in FIG-20.70 creates 10 apples and 10 oranges which fly about the
screen. All apple sprites belong to group -1 and will not collide with each other;
oranges belong to group -2 and, again, do not collide. However, an apple will collide
with an orange since they belong to different groups.

FIG-20.69
(continued)

Using Sprite Contacts

do
 rem *** Apply force to sphere ***
 SetSpritePhysicsForce(11,95,93,-700,0)
 rem *** IF sphere in contact ***
 if GetSpriteFirstContact(11)
 rem *** REPEAT for all contacts ***
 repeat
 rem *** Get contact ID ***
 id2 = GetSpriteContactSpriteId2()
 rem *** IF it is a tile THEN ***
 if id2 <> 0
 rem *** Reduce the tile’s size ***
 SetSpriteSize(id2,GetSpriteWidth(id2)/1.1,
 GetSpriteHeight(id2)/1.1)
 endif
 until GetSpriteNextContact() = 0
 endif
 Sync()
loop

Activity 20.27

Modify MultipleContacts to match the code given in FIG-20.69.

Run and save the program.

rem *** Physics Groups and Collisions ***

rem *** Set screen background ***
SetClearColor(25,100,20)
Sync()

rem *** Load images ***
LoadImage(1,”Apple.png”)
LoadImage(2,”Orange.png”)

rem *** Create 10 apple sprites ***
CreateSprite(1,1)
SetSpriteSize(1,6,-1)
SetSpritePosition(1,Random(0,92),Random(0,92))

FIG-20.70

How Groupings Affect
Collisions

Hands On AGK BASIC: Physics 649

When two sprites belong to the same group, they will always collide if that group
number is positive (greater than zero) and always slide past each other without
colliding if that group number is negative.

The physics engine can also make use of a sprite’s categories to determine if a
collision is to take place. This happens when sprites belong to different groups or to
group zero (the default group).

Back in Chapter 17 we used the SetSpriteCategoryBits() and
SetSpriteCategoryBit() statements to set the categories to which a sprite belonged.
The value set with these instructions affect the collision characteristics of sprites.

FIG-20.70
(continued)

How Groupings Affect
Collisions

for c = 2 to 10
 CloneSprite(c,1)
 SetSpritePosition(c,Random(0,92),Random(0,92))
next c

rem *** Create 10 orange sprites ***
CreateSprite(11,2)
SetSpriteSize(11,6,-1)
SetSpritePosition(11,Random(0,92),Random(0,92))
for c = 12 to 20
 CloneSprite(c,11)
 SetSpritePosition(c,Random(0,92),Random(0,92))
next c
rem *** Group apples ***
for c = 1 to 10
 SetSpriteGroup(c,-1)
next c

rem *** Group oranges ***
for c = 11 to 20
 SetSpriteGroup(c,-2)
next c

rem *** Switch on physics ***
for c = 1 to 20
 SetSpriteShape(c,1)
 SetSpritePhysicsOn(c,2)
 angle = Random(0,359)
 SetSpritePhysicsVelocity(c,Cos(angle)*50,Sin(angle)*50)
 SetSpritePhysicsRestitution(c,1)
next c

rem *** No gravity ***
SetPhysicsGravity(0,0)

do
 Sync()
loop

Activity 20.28

Start a new project called PhysicsGroups and implement the code in FIG-
20.70. Copy Apple.png and Orange.png to the media folder.

Test and save the program.

650 Hands On AGK BASIC: Physics

To see how this works, let’s revisit the apples and oranges example and introduce a
new type - green apples.

All apples (red and green) will be in group -1 and oranges in group -2. However,
green apples will belong to category 4, red apples to category 3, and oranges to
category 2 as shown in FIG-20.71.

SetSpriteCollideBits()

To decide which categories will not collide, we need to build a 16-bit mask value
which is then ANDed with the category settings. Any bits set to 1 in the final result
will collide when the sprites belong to different groups.

This mask value is constructed using SetSpriteCollideBits() (see FIG-20.72).

where

 id is an integer value giving the ID of the sprite whose collision
 detection categories are to be set.

 imask is an integer value giving the mask to be ANDed with the
 categories of any other sprite that comes into contact with the
 specified sprite.

For example, let’s say we want oranges to collide with red apples but not green ones,
then, for an orange sprite, c, we would use the line:

 SetSpriteCollideBits(c,%1001)

Now you may be forgiven for thinking that there are no other sprites in the
demonstration other than the oranges and apples, but, in fact, the edge “walls” are
hidden sprites and if you don’t allow the oranges to collide with those “other sprites”,
the oranges will disappear off the edge of the screen.

The program in FIG-20.73 is a variation on the earlier Apples and Oranges project
with 5 red and 5 green apples. The oranges will only collide with the red apples.

FIG-20.71

Sprite Categories

Caregory Bits

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Gree
n A

pp
les

Red
 App

les

Oran
ge

s

Othe
r S

pri
tes

Oranges

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0Red Apples

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0Green Apples

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1Other Sprites

FIG-20.72

SetSpriteCollideBits() SetSpriteCollideBits ()id imask

Hands On AGK BASIC: Physics 651

FIG-20.73

Using Sprite Contacts to
Control Collisions

rem *** Sprite Categories and Collisions ***

rem *** Set background colour ***
SetClearColor(150,150,170)
Sync()

rem *** Load images ***
LoadImage(1,”Apple.png”)
LoadImage(2,”Orange.png”)
LoadImage(3,”GreenApple.png”)

rem *** Create 10 apple sprites ***
CreateSprite(1,1)
SetSpriteSize(1,6,-1)
SetSpritePosition(1,Random(0,92),Random(0,92))
rem *** Red apples ***
for c = 2 to 10
 CloneSprite(c,1)
 SetSpritePosition(c,Random(0,92),Random(0,92))
next c
rem *** Change 5 apples to green ***
for c = 6 to 10
 SetSpriteImage(c,3)
next c

rem *** Create 10 orange sprites ***
CreateSprite(11,2)
SetSpriteSize(11,6,-1)
SetSpritePosition(11,Random(0,92),Random(0,92))
for c = 12 to 20
 CloneSprite(c,11)
 SetSpritePosition(c,Random(0,92),Random(0,92))
next c

rem *** Group apples ***
for c = 1 to 10
 SetSpriteGroup(c,-1)
next c
rem *** Set the category for red apples ***
for c = 1 to 5
 SetSpriteCategoryBits(c,%100)
next c

rem *** Set the category for green apples ***
for c = 6 to 10
 SetSpriteCategoryBits(c,%1000)
next c

rem *** Group and categorise oranges ***
for c = 11 to 20
 SetSpriteGroup(c,-2)
 rem *** Set the category for oranges ***
 SetSpriteCategoryBits(c,%10)
 rem *** Set the categories with which oranges can collide ***
 SetSpriteCollideBits(c,%101)
next c

rem *** Switch on physics ***
for c = 1 to 20
 SetSpriteShape(c,1)
 SetSpritePhysicsOn(c,2)

652 Hands On AGK BASIC: Physics

SetSpriteCollideBit()

You can set individual bits within the collision mask using SetSpriteCollideBit()
(see FIG-20.74).

where

 id is an integer value giving the ID of the sprite.

 index is an integer value (1 to 16) giving the mask bit whose value is
 to be set.

 iflag is an integer value (0 or 1) giving the mask bit setting.
 (0: don’t collide; 1: collide).

For example, we could reset bit 1 of sprite c’s mask using the line:

 SetSpriteCategoryBit(c,1,0)

CreateDummySprite()

Although there may be no immediately obvious reason for having a sprite which is
not capable of appearing on the screen, they can, in fact, be useful in some situations
where the physics engine is being used.

You can create such a “dummy” sprite using the CreateDummySprite() statement
(see FIG-20.75).

FIG-20.73
(continued)

Using Sprite Contacts to
Control Collisions

 angle = Random(0,359)
 SetSpritePhysicsVelocity(c,Cos(angle)*50,Sin(angle)*50)
 SetSpritePhysicsRestitution(c,1)
next c

rem *** No gravity ***
SetPhysicsGravity(0,0)

do
 Sync()
loop

Activity 20.29

Modify PhysicsGroups to match the code in FIG-20.73. Copy GreenApple.png
to the media folder. Test and save the program.

FIG-20.74

SetSpriteCollideBit() SetSpriteCollideBit ()id index iflag

Activity 20.30

Modify PhysicsGroups so that oranges collide with green apples after the
program has been running for 10 seconds. Test and save the program.

Hands On AGK BASIC: Physics 653

where

 id is an integer value giving the ID to be assigned to the dummy
 sprite.

You can add bounding shapes to a dummy sprite and detect any collisions with other
physics-enabled sprites.

Physics Ray Casting
We have already looked at the principles of ray casting in Chapter 17. However,
when dealing with physics-enabled sprites, we do not use the SpriteRayCast()
statement to initiate a ray cast.

PhysicsRayCast()

To initiate a ray cast which detects physics-activated elements such as sprites and
edge walls, use the PhysicsRayCast() statement (see FIG-20.76).

where:

 x1,y1 are a pair of real values giving the coordinates of the starting
 point of the ray cast.

 x2,y2 are a pair of real values giving the coordinates of the finishing
 point of the ray cast.

If the ray intersects one or more physics elements, then PhysicsRayCast() returns 1,
otherwise zero is returned. The details of the first element encountered by the ray cast
are stored and can be accessed by the other ray cast commands covered in Chapter
17 such as GetRayCastSpriteID(), GetRayCastX(), GetRayCastY(), etc.

If the ray cast starts from a position within a sprite, that sprite is ignored in the
calculations performed.

The program in FIG-20.77 sets up a rotating cannon which uses ray casting to detect
when it is in line with a cherry sprite. When the cherry is detected, the cannon fires a
missile at its target.

FIG-20.75

CreateDummySprite()

CreateDummySprite (id)

FIG-20.76

PhysicsRayCast() PhysicsRayCastinteger ()x1 y1 x2 y2

FIG-20.77

Using a Physics Ray Cast

rem *** Physics Ray Casting ***

rem *** Global variables ***
global angle = 0 //Turret angle of rotation
global count = 0 //Missile count
global fired = 0 //Missile fired (0:no; 1:Yes)

rem *** Main program logic ***
LoadImages()
SetUpScreen()
SetUpPhysics()

654 Hands On AGK BASIC: Physics

FIG-20.77
(continued)

Using a Physics Ray Cast

do
 Play()
 Sync()
loop

rem *** Functions ***

rem *** Load Images ***
function LoadImages()
 LoadImage(1,”Turret2.png”)
 LoadImage(2,”Cherry.png”)
 LoadImage(3,”Shell.png”)
endfunction

rem *** Set up screen layout ***
function SetUpScreen()
 rem ** Set screen colour ***
 SetClearColor(120,120,120)
 Sync()
 rem *** Turret ***
 CreateSprite(1,1)
 SetSpriteSize(1,15,-1)
 SetSpritePosition(1,42.5,42.5)
 SetSpriteOffset(1,5,GetSpriteHeight(1)/2.0)
 rem *** Cherry ***
 CreateSprite(2,2)
 SetSpriteSize(2,7,-1)
 SetSpritePosition(2,45,10)
 rem *** Projectile ***
 CreateSprite(3,3)
 SetSpriteSize(3,2,-1)
 SetSpritePositionByOffset(3,GetSpriteXByOffset(1),
 GetSpriteYByOffset(1))
 SetSpriteDepth(3,11)
endfunction

rem *** Set up Physics ***
function SetUpPhysics()
 SetSpritePhysicsOn(2,2)
 SetSpritePhysicsRestitution(2,0.8)
 SetSpritePhysicsOn(3,2)
 SetSpritePhysicsIsBullet(3,1)
 rem *** Set gravity off ***
 SetPhysicsGravity(0,0)
endfunction

function Play()
 rem *** Turn turret ***
 SetSpriteAngle(1,angle)
 rem *** Calculate coordinates of end of barrel ***
 barrelx = GetSpriteXByOffset(1) +10*cos(angle)
 barrely = GetSpriteYByOffset(1) + 10*sin(angle)
 rem *** Ray cast out from the barrel ***
 hit = PhysicsRaycast(barrelx,barrely,(100*Cos(angle))+
 barrelx,100*(Sin(angle))+barrely)

Hands On AGK BASIC: Physics 655

PhysicsRayCastGroup()

If you wish a ray cast to detect only sprites that are within a specific group, then you
can create a ray cast using the PhysicsRayCastGroup() statement (see FIG-20.78).

where

 igrp is an integer value giving the group to be checked by the ray cast.

 x1,y1 are a pair of real values giving the coordinates of the starting
 point of the ray cast.

 x2,y2 are a pair of real values giving the coordinates of the finishing
 point of the ray cast.

FIG-20.77
(continued)

Using a Physics Ray Cast

 rem *** If a hit, get sprite ID and add to count***
 if hit = 1
 id = GetRayCastSpriteId()
 if id = 2 and fired = 0
 count = count + 1
 if count >= 4
 SetSpriteAngle(3,angle)
 SetSpritePhysicsOn(3,2)
 SetSpritePositionByOffset(3,barrelx,barrely)
 SetSpritePhysicsImpulse(3,barrelx,barrely,
 20*Cos(angle),20*Sin(angle))
 fired = 1
 endif
 endif
 endif
 rem *** If shell off edge of screen, delete it ***
 shellx = GetSpriteX(3)
 shelly = GetSpriteY(3)
 if shellx < 4 or shellx > 96 or shelly < 4 or shelly > 96
 and fired = 1
 SetSpritePhysicsOff(3)
 SetSpritePositionByOffset(3,GetSpriteXByOffset(1),
 GetSpriteYByOffset(1))
 count = 0
 fired = 0
 endif
 Sync()
 rem *** Change angle of turret rotation ***
 angle = (angle + 2) mod 360
endfunction

Activity 20.31

Start a new project called PhysicsRayCasting and implement the code given in
FIG-20.77. Copy the necessary image files to the media folder.

Test and save the program.

FIG-20.78 PhysicsRayCastGroup()

PhysicsRayCastGroupinteger ()igrp y1x1 x2 y2

656 Hands On AGK BASIC: Physics

If the ray cast hits a sprite belonging to the specified group, the ID of that sprite is
returned by the function. If no sprite in that group is hit, zero is returned.

For example, we could check if a ray from the centre of the screen to the top-right
corner hits any sprite in group 5 with the line:

 PhysicsRayCastGroup(5,50,50,100,0)

PhysicsRayCastCategory()

To use a ray cast which checks only for sprites in specified categories, use
PhysicsRayCastCategory() (see FIG-20.79).

where

 icat is an integer value giving the categories to be checked by the ray
 cast.

 x1,y1 are a pair of real values giving the coordinates of the starting
 point of the ray cast.

 x2,y2 are a pair of real values giving the coordinates of the finishing
 point of the ray cast.

For example, we could check if a ray from the top-left corner to the bottom-right
corner encounters a sprite in the first four categories using the line:

 PhysicsRayCastCategory(%1111,0,0,100,100)

Summary
± Use GetFirstContact() to discover the first in the list of contacts between

sprites made during the current time period.

± Use GetNextContact() to access each subsequent contact.

± Use GetSpriteContactID1() and GetSpriteContactID2() to find the IDs of
the sprites involved in the current collision.

± Use GetContactWorldX() and GetContactWorldY() to find the point of
collision for the current contact.

± Use GetSpriteFirstContact() to access the first in the list of contacts made
with a specific sprite.

± Use GetSpriteNextContact() to access subsequent contacts for a given sprite.

± Use GetSpriteContactID2() to discover the ID of the second sprite involved
in the current collision.

± Use GetSpriteContactWorldX() and GetSpriteWorldContactY() to
determine the point of contact between the specified sprite and second sprite.

± Physics sprites can be assigned to groups and categories in the same way as
regular sprites.

± Use SetSpriteCollideBits() to specify which categories of sprite will be

FIG-20.79 PhysicsRayCastCategory()

PhysicsRayCastCategoryinteger ()icat y1x1 x2 y2

Hands On AGK BASIC: Physics 657

included when checking for a collision.

± Use SetSpriteCollideBit() to set a specific bit in the collision category
mask.

± Use CreateDummySprite() to create a dummy sprite.

± Use PhysicsRayCast() to create a ray cast which only detects physics-enabled
sprites.

± Use SetPhysicsRayCastGroup() to specify which sprite group can be detected
when ray casting.

± Use SetPhysicsRayCastCategory() to specify which categories can be
detected by a ray cast.

658 Hands On AGK BASIC: Physics

Joints

Introduction
Joints allow us to join two physics-activated sprites so that they automatically interact
with each other in some specific way.

Joints attempt to simulate real-world situations where two elements have a fixed
relationship to each other. For example, we might wish to simulate one car being
towed by another, how a piston moves, how a human head moves in relation to the
torso, or how the gears of a mechanical devise interact.

Exactly how the linked sprites interact depends on the joint option selected.

Joint Statements
CreateWeldJoint()

Perhaps the simplest joint is the weld joint which fixes the position of two sprites
relative to each other. We may think of the two sprites as being magnetically attracted
to each other, unable to move apart or to rotate in relation to each other. Under normal
forces, the sprites will stay together and cannot rotate relative to one another, but if a
strong enough force is applied, they can be forced apart - at least temporarily.

A weld joint is achieved using the CreateWeldJoint() statement whose format is
given in FIG-20.80.

where

 id is an integer value giving the ID to be assigned to the joint.

 sprId1 is an integer value giving the ID of the first sprite involved in the
 joint.

 sprId2 is an integer value giving the ID of the second sprite involved in
 the joint.

 x,y are real values giving the coordinates of the anchor point of the
 joint.

 icold is an integer value specifying whether the sprites may, under
 certain circumstances, collide.

If the concept of joints is new to you, they may take a little getting used to. So to try
and give a better idea of how they operate, we will create a program containing the
setup shown in FIG-20.81.

FIG-20.80

CreateWeldJoint()

CreateWeldJoint

CreateWeldJoint

()id sprId1 sprId2

integer ()sprId1 sprId2 x

Format 1

Format 2

x y icold

y icold

Hands On AGK BASIC: Physics 659

The top two sprites (day and month) have been placed side-by-side and joined using
a weld joint. Gravity will cause these two dynamic sprites to fall onto the third, static
sprite (mountain).

The code for the demonstration is given FIG-20.82.

FIG-20.81

Sprites in a Weld Joint

FIG-20.82

Using a Weld Joint rem *** A Weld Joint ***

rem *** Load Images ***
LoadImage(1,”Day.png”)
LoadImage(2,”Month.png”)
LoadImage(3,”Mountain.png”)

rem *** Create sprites ***
CreateSprite(1,1)
SetSpriteSize(1,10,10)
SetSpritePosition(1,30,10)
CreateSprite(2,2)
SetSpriteSize(2,10,10)
SetSpritePosition(2,40,10)
CreateSprite(3,3)
SetSpriteSize(3,15,-1)
SetSpritePosition(3,32.5,60)
rem *** Create polygon bounding area for triangle ***
SetSpriteShape(3,3)

rem *** Switch on physics ***
SetSpritePhysicsOn(1,2) //Dynamic
SetSpritePhysicsOn(2,2) //Dynamic
SetSpritePhysicsOn(3,1) //Static

rem *** Create Weld Joint ***
CreateWeldJoint(1,1,2,40,15,1)

rem *** Watch results ***
do
 Sync()
loop

660 Hands On AGK BASIC: Physics

Note that the mountain sprite’s bounding area is changed from the default rectangle
to a more accurate polygon using the line:

SetSpriteShape(3,3)

Also, since the mountain sprite is static, it will not be effected by the gravitational
pull.

We can gain a greater insight into what is going on by using the physics debug option.
This will not only show the bounding areas of the sprites but also the joint between
the two sprites.

By using enough force, we can get the sprites to separate - at least temporarily.

Although it will not reflect real-life situations, it is possible to start with the two

Activity 20.32

Start a new project called Joints01 and implement the code given in FIG-20.82.

Copy the files Day.png, Month.png and Mountain.png into the project’s media
folder.

Test your project, observing how the two joined sprites behave.

Save your project.

Activity 20.33

Modify Joints01 by adding the lines

 rem *** Switch on physics debug ***
 SetPhysicsDebugOn()

after all three sprites have had the physics engine activated.

Test your project, observing the line showing the joint between the sprites.

Save your project.

Activity 20.34

Modify Joints01 by adding the lines

 rem *** Set gravity ***
 SetPhysicsGravity(0,120)

after physics debug has been activated.

Test your project, observing the line showing the joint between the sprites.

Change the gravitational force downwards from 120 to 1200 and see how this
changes the result.

Save your project.

Hands On AGK BASIC: Physics 661

sprites some distance apart. The weld joint will attempt to maintain this gap.

GetJointReactionForceX() and GetJointReactionForceY()

As we saw when running Joints01, a joint can be subjected to forces which attempt
to break it apart (see FIG-20.83).

When the joined rectangles hit the triangular sprite, they are temporarily separated
by those forces. Like a velocity, a force can be described in terms of its x and y
components (see FIG-20.84).

You can determine the forces acting on a joint using the GetJointReactionForceX()
and GetJointReactionForceY() statements which return the x and y components of
that force (see FIG-20.85).

where

 id is an integer value giving the ID of the joint.

Activity 20.35

Modify Joints01 by changing the starting position of sprite 2 from (40,10) to
(60,10).

Test your project, observing the line showing the joint between the sprites.

Save your project.

FIG-20.83

Forces on a Joint

When the welded sprites
fall onto the third sprite,
forces act on the weld
attempting to separate
the joined sprites.

Falling sprites

ForceForce

FIG-20.84

Force Components

y-component

x-componentForce

FIG-20.85

GetJointReactionForceX()

GetJointReactionForceY()

GetJointReactionForceXfloat ()id

GetJointReactionForceYfloat ()id

662 Hands On AGK BASIC: Physics

As you saw from the results of Activity 20.36, the largest force can often occur when
the blocks come to rest. The weight of one block is pushing down on the joint.
However, this force is not attempting to break the joint; in fact, it only helps strengthen
the bond between the two blocks.

DeleteJoint()

A joint can be deleted using the DeleteJoint() statement (see FIG-20.86).

where

 id is an integer value giving the ID of the joint to be deleted.

Activity 20.36

Modify Joints01 by returning the starting position of sprite 2 to (40,10).

Add the lines

 x# = GetJointReactionForceX(1)
 y# = GetJointReactionForceY(1)
 Print(“Force on joint X: “+Str(x#)+” Y: “+Str(y#))

between the
 do
and
 Sync()
statements.

Test your project, observing the values displayed as the blocks fall.

It is difficult to see how strong the force on the joint becomes since it changes
so quickly. It might help if only the strongest force is displayed.

Modify the do..loop code to read

 do
 x# = GetJointReactionForceX(1)
 y# = GetJointReactionForceY(1)
 force# = Sqrt(x#*x# + y#*y#)
 if force# > largestforce#
 largestforce# = force#
 largestx# = x#
 largesty# = y#
 endif
 Print(“Largest force on joint x: “+Str(largestx#)+
 ” Y: “+Str(largesty#))Sync()
 loop

Run your program several times and watch for when the largest force is applied
to the joint.

Save your project.

FIG-20.86

DeleteJoint() DeleteJoint ()id

Hands On AGK BASIC: Physics 663

CreateDistanceJoint()

The distance joint is similar to the weld joint but, in this case, the joint ensures that
the anchor points on the two sprites stay a fixed distance apart (which is similar to a
weld joint) but the sprites may rotate relative to each other.

Once the sprites are in their initial position on the screen, the distance joint should be
created. This involves creating two anchor points (one on each sprite) and the distance
joint will ensure these two points remain a fixed distance apart. The idea of the joint
is expressed visually in FIG-20.87.

A distance joint is created using the CreateDistanceJoint() statement (see FIG-
20.88).

where

 id is an integer value giving the ID to be assigned to the joint.

 sprId1 is an integer value giving the ID of the first sprite involved in the
 joint.

 sprId2 is an integer value giving the ID of the second sprite involved in
 the joint.

 x1,y1 are real values giving the coordinates of the anchor point for the
 first sprite. Normally, this will be a point within the body of the
 sprite.

 x2,y2 are real values giving the coordinates of the anchor point for the
 second sprite (normally, within the sprite’s body).

 icold is an integer value specifying whether the sprites may, under
 certain circumstances, collide.

FIG-20.87

Characteristics of a Distance
Joint

Sprite 1

Sprite 2

Anchor 1

Anchor 2

Distance

Each sprite is free
to rotate as long as
the two anchor
points remain a fixed
distance apart.

FIG-20.88 CreateDistanceJoint()

CreateDistanceJoint ()id sprId1 sprId2 x1 y1 x2 y2 icold

CreateDistanceJointinteger ()sprId1 sprId2 x1 y1 x2 y2 icold

Format 1

Format 2

664 Hands On AGK BASIC: Physics

Once set up, the physics will attempt to maintain the distance between anchor points
1 and 2. The anchor points can be at any point within each sprite. Often the anchor
points will be at the centre of each sprite, but you are free to position the anchor
points anywhere - even outside the area of the sprite.

The program in FIG-20.89 demonstrates the effect of a distance joint.
FIG-20.89

Using a Distance Joint rem *** A Distance Joint ***

rem *** Load Images ***
LoadImage(1,”Day.png”)
LoadImage(2,”Month.png”)
LoadImage(3,”Mountain.png”)

rem *** Create sprites ***
CreateSprite(1,1)
SetSpriteSize(1,10,10)
SetSpritePosition(1,30,10)
CreateSprite(2,2)
SetSpriteSize(2,10,10)
SetSpritePosition(2,60,10)
CreateSprite(3,3)
SetSpriteSize(3,15,-1)
SetSpritePosition(3,32.5,60)
SetSpriteShape(3,3)

rem *** Switch on physics ***
SetSpritePhysicsOn(1,2)
SetSpritePhysicsOn(2,2)
SetSpritePhysicsOn(3,1)

rem *** Set gravity ***
SetPhysicsGravity(0,120)

rem *** Switch on physics debug ***
SetPhysicsDebugOn()

rem *** Create Distant Joint ***
CreateDistanceJoint(1,1,2,GetSpriteX(1),GetSpriteY(1),
GetSpriteX(2),GetSpriteY(2),1)

rem *** Run simulation ***
do
 Sync()
loop

Activity 20.37

Create a new project called JointDistance and copy the three images required
into the media folder. Implement and test the code given in FIG-20.89.

Modify the code so that the centre of each sprite is given as an anchor point for
the distance joint.

Test and save your project.

Hands On AGK BASIC: Physics 665

CreateMouseJoint()

The mouse joint is used to force the anchor point within a sprite to try to reach a
specific position in 2D space. Often this point will be the position of the mouse
pointer - hence the name of the joint. A mouse joint is created using the
CreateMouseJoint() statement (see FIG-20.90).

where

 id is an integer value giving the ID to be assigned to the joint.

 sprId1 is an integer value giving the ID of the sprite involved in the
 joint.

 x,y are real values giving the coordinates of the anchor point of the
 sprite.

 force is an real value specifying the maximum force that can be applied
 to move the sprite towards the target point.

SetJointMouseTarget()

Creating a mouse joint is only half the job needed. The second stage is to specify the
target point. It is this position that the anchor point of the mouse joint sprite will
attempt to reach.

The target point is defined using the SetJointMouseTarget() statement (see FIG-
20.91).

where

 id is an integer value giving the ID of the existing mouse joint.

 x,y are real values giving the world coordinates of the target position
 for the mouse joint anchor point.

Creating a target point has no visual effect on the screen.

The program in FIG-20.92 creates a ball (placed initially near the top-left corner) and
a target point near the bottom-right corner. As the ball falls under the pull of gravity
it rolls towards the target point.

FIG-20.90

CreateMouseJoint()

CreateMouseJoint

CreateMouseJoint

()id sprId1

integer ()sprId1 x

Format 1

Format 2

x y force

y force

FIG-20.91

SetJointMouseTarget()

SetJointMouseTarget ()id x y

666 Hands On AGK BASIC: Physics

It only takes a little more code to set the target point using the mouse, thereby making
the name of the joint a little more appropriate.

CreateRevoluteJoint()

Perhaps the most widely used joint is the revolute joint. A revolute joint allows you
to specify a common point about which one sprite can revolve in relation to another.
For example, we could use this type of joint to simulate the blades of a windmill
revolving about the windmill tower, wheels turning on a car, a door swinging about

FIG-20.92

Using a Mouse Joint and
Target

rem *** A Mouse Joint ***

rem *** Load Image ***
LoadImage(1,”Shape02.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,7,-1)
SetSpritePosition(1,10,10)

rem *** Switch on physics ***
SetSpritePhysicsOn(1,2)
rem *** Set circular bounding box ***
SetSpriteShape(1,1)

rem *** Create mouse joint ***
CreateMouseJoint(1,1,GetSpriteXByOffset(1),
GetSpriteYByOffset(1),2)

rem *** Create target ***
SetJointMouseTarget(1,80,96.5)

rem *** Run simulation ***
do
 Sync()
loop

Activity 20.38

Start a new project called JointMouse and implement the code in FIG-20.92.
Copy Shape02.png to the media folder.

Run the program and observe the effect produced. Save your project.

Activity 20.39

Modify JointMouse by adding the lines

 if GetPointerPressed()=1
 SetJointMouseTarget(1,GetPointerX(),GetPointerY())
 endif

at the start of the do..loop structure.

Test your program by clicking on various positions within the app window.

Hands On AGK BASIC: Physics 667

a door frame, or your head moving in relation to your torso. Of course, in the last two
cases, only a limited amount of movement can be achieved.

A revolute joint is produced using the CreateRevoluteJoint() statement (see FIG-
20.93).

 where

 id is an integer value giving the ID to be assigned to the joint.

 sprId1 is an integer value giving the ID of the first sprite involved in the
 joint.

 sprId2 is an integer value giving the ID of the second sprite involved in
 the joint.

 x,y are real values giving the coordinates of the anchor point about
 which the sprites will revolve.

 icold is an integer value specifying whether the sprites may, under
 certain circumstances, collide.

FIG-20.94 shows a seesaw simulation setup with a seating bar balanced on a central
pivot. In this situation, the position of the pivot is fixed and the bar can rotate about
the apex of the pivot.

The program in FIG-20.95 uses this setup to demonstrate one use of a revolute joint.

FIG-20.93 CreateRevoluteJoint()

CreateRevoluteJoint ()id sprId1 sprId2 x y icold

CreateRevoluteJointinteger ()sprId1 sprId2 x y icold

Format 1

Format 2

FIG-20.94

A Typical Pivot

Point of
rotation

FIG-20.95

Using a Revolute Joint rem *** A Revolute Joint Pivot ***

rem *** Load Image ***
LoadImage(1,”Pivot.png”)
LoadImage(2,”Bar.png”)

rem *** Create sprites ***
rem *** Pivot ***
CreateSprite(1,1)
SetSpriteSize(1,8,-1)
SetSpritePosition(1,46,69)
rem *** Balance ***

668 Hands On AGK BASIC: Physics

In this next example, two wheels are used to create a moving vehicle (see FIG-
20.96).

The wheels are attached to the vertical struts using revolute joints, while the struts
are attached to the body of the vehicle using weld joints.

FIG-20.97 shows the code used to create the setup.

FIG-20.95
(continued)

Using a Pivot Joint

CreateSprite(2,2)
SetSpriteSize(2,40,-1)
SetSpritePosition(2,30,67)
rem *** Set background colour ***
SetClearColor(120,120,120)
Sync()
rem *** Switch on physics ***
SetSpritePhysicsOn(1,1)
SetSpritePhysicsOn(2,2)
rem *** Change pivot bounding box to a polygon ***
SetSpriteShape(1,3)
rem *** Create joint ***
CreateRevoluteJoint(1,1,2,GetSpriteXByOffset(1),GetSpriteY(1),1)
rem *** Set gravity ***
SetPhysicsGravity(0,32)
rem *** Run simulation ***
do
 Sync()
loop

Activity 20.40

Start a new project called JointRevolute01 and, from AGKDownloads/
Chapter20, copy the files Pivot.png and Bar.png to the project’s media folder.

Implement the code given in FIG-20.95. Why does the bar not move?

Change the position of the bar sprite from (30,67) to (31,67). How does this
affect the simulation?

Modify the CreateRevoluteJoint() statement so that the sprites do not
collide. How does this affect the result? Save your project.

 Ë For this project,
set the window size to
768 x 1024.

FIG-20.96

A Model Using Revolute
Joints

FIG-20.97

Using a Pivot Joint
rem *** A Revolute Joint Wheels ***
rem *** Load Image ***
LoadImage(1,”Wheel.png”)
LoadImage(2,”Strut.png”)
LoadImage(3,”Container.png”)
rem *** Create sprites ***
rem *** Wheel ***
CreateSprite(1,1)
SetSpriteSize(1,8,-1)
SetSpritePosition(1,5,90)

Hands On AGK BASIC: Physics 669

FIG-20.97
(continued)

Using a Pivot Joint

rem *** Strut ***
CreateSprite(2,2)
SetSpriteSize(2,2,-1)
SetSpritePosition(2,8,86)

rem *** Container ***
CreateSprite(3,3)
SetSpriteSize(3,30,-1)
SetSpritePosition(3,5,80)
SetSpriteDepth(3,9)

rem *** Create second wheel ***
CloneSprite(4,1)
SetSpritePosition(4,27,90)

rem *** Create second strut ***
CloneSprite(5,2)
SetSpritePosition(5,30,86)

rem *** Set background colour ***
SetClearColor(120,120,120)

rem *** Switch on physics ***
SetSpritePhysicsOn(1,2) //Dynamic
SetSpritePhysicsOn(2,2) //Dynamic
SetSpritePhysicsOn(3,2) //Dynamic
SetSpritePhysicsOn(4,2) //Dynamic
SetSpritePhysicsOn(5,2) //Dynamic
SetSpriteShape(1,1) //Circular bounding box
SetSpriteShape(4,1) //Circular bonding box

rem *** Create joints ***
rem *** Struts to body ***
CreateWeldJoint(3,2,3,GetSpriteX(2),GetSpriteY(2),1)
CreateWeldJoint(4,3,5,GetSpriteX(5),GetSpriteY(5),1)

rem *** Struts to wheels ***
CreateRevoluteJoint(1,1,2,GetSpriteXByOffset(1),
GetSpriteYByOffset(1),0)
CreateRevoluteJoint(2,4,5,GetSpriteXByOffset(4),
GetSpriteYByOffset(4),0)

rem *** Set gravity ***
SetPhysicsGravity(0,2)

rem *** Run simulation ***
do
 Sync()
loop

Activity 20.41

Create a new project called JointRevolute02. Copy to the media folder the files
AGKDownloads/Chapter20/Wheel.png, Strut.png and Container.png.

Implement and test the code given in FIG-20.97. What happens to the buggy?

Save your project.

670 Hands On AGK BASIC: Physics

SetJointMotorOn()

Our buggy from the last project isn’t going to go anywhere if there is no motor to
supply power to the wheels. And this is exactly what we can do using the
SetJointMotorOn() statement. This statement can be used to supply a continuous
turning force to revolute joints (and some other joints). The SetJointMotorOn()
statement has the format shown in FIG-20.98.

where

 id is an integer value giving the ID of the joint to which the motor
 is to be added.

 fspeed is an real value giving the desired speed of rotation. Use a
 negative number for clockwise rotation.

 fmax is the maximum force to be applied in order to achieve the
 desired speed.

A motor may not achieve the required speed if frictional forces or other restraints are
too large.

SetJointMotorOff()

A motor can be switched off using the SetJointMotorOff() statement which has the
format shown in FIG-20.99.

where

 id is an integer value giving the ID of the joint which has been
 assigned the motor.

FIG-20.98

SetJointMotorOn() SetJointMotorOn ()id fspeed fmax

Activity 20.42

In project JointRevolute02, add the following lines immediately after all joints
have been created:

 rem *** Add motor to left wheel ***
 SetJointMotorOn(1,-2,200)

Test the new code. What effect does this have on the buggy?

Modify your code so that after 15 seconds the motor reverses direction.

Save your project.

FIG-20.99

SetJointMotorOff() SetJointMotorOff ()id

Activity 20.43

Modify JointRevolute02 so that the motor is switched off after 25 seconds.

Test and save your project.

Hands On AGK BASIC: Physics 671

The final example of the revolute joint creates a chain of links to produce an effect
similar to a segmented toy snake (see FIG-20.100).

Each of the body sprites has two revolute joints; one to the sprite ahead of it and one
to the sprite behind it. In addition, the head and tail sprites (which each contain only
a single joint) have motors attached to create some movement in the snake.

The model is demonstrated in the program listed in FIG-20.101.

FIG-20.100

Multiple Resolute Joints
and Motors

Resolute
Joints

FIG-20.101

Using Motors on Resolute
Joints

rem *** A Revolute Joint Snake ***

rem *** Load Image ***
LoadImage(1,”SnakeHead.png”)
LoadImage(2,”SnakeLink.png”)
LoadImage(3,”SnakeTail.png”)

rem *** Create sprites ***
rem *** Head ***
CreateSprite(1,1)
SetSpriteSize(1,4,-1)
SetSpritePosition(1,48,10)
rem *** Body ***
CreateSprite(2,2)
SetSpriteSize(2,4,-1)
SetSpritePosition(2,48,15)
CloneSprite(3,2)
SetSpritePosition(3,48,22.5)
CloneSprite(4,2)
SetSpritePosition(4,48,30)
CloneSprite(5,2)
SetSpritePosition(5,48,37.5)
rem *** Tail
CreateSprite(6,3)
SetSpriteSize(6,4,6)
SetSpritePosition(6,48,45)

rem *** Set background colour ***
SetClearColor(120,120,120)
rem *** Switch on physics ***
SetSpritePhysicsOn(1,2) //Dynamic
SetSpritePhysicsOn(2,2) //Dynamic
SetSpritePhysicsOn(3,2) //Dynamic
SetSpritePhysicsOn(4,2) //Dynamic
SetSpritePhysicsOn(5,2) //Dynamic
SetSpritePhysicsOn(6,2) //Dynamic

672 Hands On AGK BASIC: Physics

As you have seen from the Activity above, when a sprite rotates into its neighbour,
they pass by each other without colliding. This is because we selected not to allow
collisions when creating the revolute joints (as specified in the final, zero, parameter
in the function call). But collisions between sprites that are not connected directly are
dealt with in the usual way, meaning that those sprites cannot slip past each other.

SetJointLimitOn()

The movement of the snake’s head and tail appear unrealistic because they are able
to perform a full rotation. In a real toy, the degree to which each segment can rotate
about its neighbour would be limited. We can emulate this restriction using the
SetJointLimitOn() statement which allows us to specify a limit to the degree of
rotation allowed. The SetJointLimitOn() statement has the format shown in FIG-
20.102.

FIG-20.101

Using Motors on Resolute
Joints

rem *** Create joints between each segment of the snake ***
CreateRevoluteJoint(1,1,2,GetSpriteXByOffset(1),GetSpriteY(1)+
GetSpriteHeight(1),0)
CreateRevoluteJoint(2,2,3,GetSpriteXByOffset(2),GetSpriteY(2)+
GetSpriteHeight(2),0)
CreateRevoluteJoint(3,3,4,GetSpriteXByOffset(3),GetSpriteY(3)+
GetSpriteHeight(3),0)
CreateRevoluteJoint(4,4,5,GetSpriteXByOffset(4),GetSpriteY(4)+
GetSpriteHeight(4),0)
CreateRevoluteJoint(5,5,6,GetSpriteXByOffset(5),GetSpriteY(5)+
GetSpriteHeight(5),0)
rem *** Switch on motors in the head and tail segments ***
SetJointMotorOn(1,-4,400)
SetJointMotorOn(5,4,400)

rem *** Set gravity ***
SetPhysicsGravity(0,1)

rem *** Run simulation ***
time = GetSeconds()
do
 if GetSeconds() > time
 SetJointMotorOn(1,Random(0,8)-4,800)
 SetJointMotorOn(5,Random(0,8)-4,800)
 time = GetSeconds()
 endif
 Sync()
loop

Activity 20.44

Create a new project called JointRevolute03. Copy the files AGKDownloads/
Chapter20/SnakeHead.png, SnakeLink.png, SnakeTail.png into the project’s
media folder. Implement the code given in FIG-20.101.

Test your project. What happens when a sprite collides with a non-adjacent
sprite?

Save your project.

Hands On AGK BASIC: Physics 673

where

 id is an integer value giving the ID of the joint whose movement
 is to be restricted

 flower is a real value giving the lowest displacement allowed.

 fupper is a real number giving the highest displacement allowed.

Since the motor is creating a rotational movement, flower gives the maximum angle
to which the joint can rotate in a counterclockwise direction (given as a negative
value) and fupper gives the maximum angle allowed in a clockwise direction.

Both angles are given in radians.

SetJointLimitOff()

A joint limit can be deactivated using the SetJointLimitOff() statement (see FIG-
20.103).

where

 id is an integer value giving the ID of the joint whose motor’s limit
 is to be removed.

CreatePrismaticJoint()

A prismatic joint is one which allows two sprites to separate and come together along
a fixed axis. Typical real-world examples of this type of movement are a train moving
along a straight track, the plunger of a syringe being pushed in or pulled out, or an
elevator moving up and down within the elevator shaft.

To create a prismatic joint between to sprites in AGK, we make use of the
CreatePrismaticJoint() statement (see FIG-20.104).

FIG-20.102

SetJointLimitOn()
SetJointLimitOn ()id flower fupper

Activity 20.45

Modify JointRevolute03 by limiting the rotation of the head to ±2 radians and
the tail to ±2.5 radians.

Add the required lines immediately after the motors are activated.

Test and save your project.

FIG-20.103

SetJointLimitOff() SetJointLimitOff ()id

FIG-20.104 CreatePrismaticJoint()

CreatePrismaticJoint ()id sprId1 sprId2 x1 y1 icold

CreatePrismaticJointinteger ()sprId1 sprId2 x1 y1 icold

x2 y2

x2 y2

Format 1

Format 2

674 Hands On AGK BASIC: Physics

where

 id is an integer value giving the ID to be assigned to the joint.

 sprId1 is an integer value giving the ID of the first sprite involved in the
 joint.

 sprId2 is an integer value giving the ID of the second sprite involved in
 the joint.

 x1,y1 are real values giving the coordinates of the anchor point for the
 first sprite.

 x2,y2 are real values giving the coordinates of a point along the axis
 along which the sprites can move. These are measured relative
 to the anchor point.

 icold is an integer value specifying whether the sprites may collide.

A typical setup for this joint is shown in FIG-20.105.

In this example, the centre of sprite 1 is given as the anchor point and the second
point is offset in the x direction only, making the line of movement allowed horizontal.
This setup could be achieved with the line:

CreatePrismaticJoint(1,1,2,GetSpriteXByOffset(1),
GetSpriteYByOffset(1),1,0,0)

A force will be required to move the sprites. This force could be gravity, the result of
a collision, or by applying a force directly to one of the sprites. However, another
option is to add a motor to one of the sprites using the SetJointMotorOn() statement.
Of course, in this case, the motor will create a linear movement rather than a circular
one.

The program in FIG-20.106 demonstrates the use of this joint in the setup shown
above. A motor is applied to sprite 2 (the plunger) to create movement.

FIG-20.105

A Typical Prismatic Joint

Sprite 2

Point
on axis

Sprite 1

Anchor
point

Line of
movement

FIG-20.106

Using a Prismatic Joint rem *** A Prismatic Joint ***

rem *** Load Image ***
LoadImage(1,”Tube.png”)
LoadImage(2,”Plunger.png”)

rem *** Create sprites ***
rem *** Tube ***
CreateSprite(1,1)
SetSpriteSize(1,14,-1)
SetSpritePosition(1,43,40)

Hands On AGK BASIC: Physics 675

To stop the plunger moving all the way out of the tube, we can make use of the
SetJointLimitOn() statement. This time the parameters of the statement are used to
determine the distance that the sprite can move to either side of its starting position.
Unfortunately, there is no obvious relationship between the parameter’s value and the
actual distance allowed, so you just have to try various values until you get one that
suits the restraints you wish to apply.

FIG-20.106
(continued)

Using a Prismatic Joint

Using a negative value for
the second parameter of
the SetJointMotorOn()
statement will make
the plunger move in the
opposite direction.

Activity 20.46

Create a new project called JointPrismatic. Copy the files AGKDownloads/
Chapter20/Tube.png and Plunger.png into the project’s media folder.

Implement the code given in FIG-20.106.

Test your program. What happens when the plunger moves?

Save your project.

rem *** Plunger ***
CreateSprite(2,2)
SetSpriteSize(2,14,-1)
SetSpritePosition(2,45.5,41)

rem *** Set background colour ***
SetClearColor(120,120,120)

rem *** Switch on physics ***
SetSpritePhysicsOn(1,1) //Static
SetSpritePhysicsOn(2,2) //Dynamic

rem *** Create a joint between tube and plunger ***
CreatePrismaticJoint(1,1,2,GetSpriteXByOffset(1),
GetSpriteYByOffset(1),1,0,0)

rem *** Switch on motor ***
SetJointMotorOn(1,0.2,400)

rem *** Set gravity ***
SetPhysicsGravity(0,0)

rem *** Run simulation ***
do
 Sync()
loop

Activity 20.47

Modify JointPrismatic by adding the lines

 rem *** Limit movement ***
 SetJointLimitOn(1,0,0.4)

Test your program. What happens when the plunger moves this time?

Save your project.

676 Hands On AGK BASIC: Physics

CreateLineJoint()

The line joint (also known as a wheel joint) is similar to a prismatic joint, with one
sprite moving along a specified axis, but a line joint also allows that same sprite to
rotate. FIG-20.107 shows an example of the type of movement allowed by this joint.

In AGK, a line joint is produced using the CreateLineJoint() statement (see FIG-
20.108).

where

 id is an integer value giving the ID to be assigned to the joint.

 sprId1 is an integer value giving the ID of the first sprite involved in the
 joint.

 sprId2 is an integer value giving the ID of the second sprite involved in
 the joint.

 x1,y1 are real values giving the coordinates of the anchor point for the
 first sprite.

 x2,y2 are real values giving the coordinates of a point on the axis
 along which the sprites can move. These are measured relative
 to the anchor point.

 icold is an integer value specifying whether the sprites may collide.

A program demonstrating the setup shown above is given in FIG-20.109.

FIG-20.107

How a Line Joint
Operates

The wheel is free
to spin and move
up and down along
the vertical bars

In the program we
will have a side-on
view of the setup.

FIG-20.108

CreateLineJoint()

CreateLineJoint

CreateLineJoint

()id sprId1 sprId2 x1 y1 x2 y2 icold

)x1 y1 x2 y2 icoldinteger (sprId1 sprId2

Format 1

Format 2

Hands On AGK BASIC: Physics 677

You can add a motor to a line joint. This will cause the moveable sprite to rotate but
does not affect its linear movement.

FIG-20.109

Using a Line Joint

rem *** A Line Joint ***

rem *** Load Images ***
LoadImage(1,”Wheel2.png”)
LoadImage(2,”Rail.png”)

rem *** Create sprites ***
rem *** Wheel ***
CreateSprite(1,1)
SetSpriteSize(1,10,-1)
SetSpritePosition(1,45,40)
rem *** Rail ***
CreateSprite(2,2)
SetSpriteSize(2,0.5,40)
SetSpritePosition(2,50,20)

rem *** Switch on physics ***
SetSpritePhysicsOn(1,2) //Dynamic
SetSpritePhysicsOn(2,1) //Static

rem *** Make wheel’s bounding box round ***
SetSpriteShape(1,1)

rem *** Create line joint ***
CreateLineJoint(1,2,1,GetSpriteXByOffset(1),
GetSpriteYByOffset(1),0,0.5,0)

rem *** Set gravity ***
SetPhysicsGravity(0,12)

rem *** Run simulation ***
do
 Sync()
loop

Activity 20.48

Create a new project called JointLine. Copy the files AGKDownloads/
Chapter20/Wheel2.png and Rail.png into the project’s media folder.

Implement the code given in FIG-20.109.

Test your program and observe the results.

Save your project.

Activity 20.49

Modify JointLine by adding a SetJointMotorOn() statement immediately after
CreateLineJoint() statement. The speed and power settings should be 10 and
200 respectively.

Test your program and observe the results. Save your project.

678 Hands On AGK BASIC: Physics

CreateGearJoint()

A gear joint creates a link between two existing revolute joints ensuring that both
revolve in synchronisation with each other. The obvious example of a gear joint in
the real world is a pair of gear wheels (see FIG-20.110).

A gear joint can be created using the CreateGearJoint() statement (see FIG-20.111).

where

 id is an integer value giving the ID to be assigned to the gear joint.

 jntId1 is an integer value giving the ID of the first existing revolute
 joint to become part of the gear joint.

 jntId2 is an integer value giving the ID of the second existing revolute
 joint to become part of the gear joint.

 fratio is a real number giving the ratio of the speeds of the two joints.
 For example, a value of 2 would mean that the revolving sprite
 attached to the first joint would spin twice as fast as the sprite
 attached to the second joint.

The program in FIG-20.112 uses a cog wheel sprite and a round sprite to create a
revolute joint. The round sprite (positioned at the centre of the cog wheel) is then
made invisible. A second, but smaller, cog wheel and joint is created alongside the
first. These two joints are then linked to form a gear joint.

FIG-20.110

How a Gear Joint
Operates

FIG-20.111

CreateGearJoint() CreateGearJoint

CreateGearJoint

()id jntId1 jntId2 fratio

integer ()jntId1 jntId2 fratio

Format 1

Format 2

FIG-20.112

Using a Gear Joint
rem *** A Gear Joint ***

rem *** Load Images ***
LoadImage(1,”Cog1.png”)
LoadImage(2,”Cog2.png”)
LoadImage(3,”Shape02.png”)

rem *** Create sprites ***
rem *** Large cog ***
CreateSprite(1,1)
SetSpriteSize(1,20,-1)
SetSpritePosition(1,45,10)

Hands On AGK BASIC: Physics 679

CreatePulleyJoint2() and FinishPulleyJoint()

Most people will have seen a pulley system at some time (see FIG-20.113).

FIG-20.112
(continued)

Using a Gear Joint

rem *** Small cog ***
CreateSprite(2,2)
SetSpriteSize(2,13,-1)
SetSpritePosition(2,64,16.5)
rem *** Cog centres ***
CreateSprite(3,3)
SetSpriteSize(3,2,-1)
SetSpritePositionByOffset(3,GetSpriteXByOffset(1),
GetSpriteYByOffset(1))
CloneSprite(4,3)
SetSpritePositionByOffset(4,GetSpriteXByOffset(2),
GetSpriteYByOffset(2))

rem *** Switch on physics ***
SetSpritePhysicsOn(1,2) //Dynamic
SetSpritePhysicsOn(2,2) //Dynamic
SetSpritePhysicsOn(3,1) //Static
SetSpritePhysicsOn(4,1) //Static
rem *** Use round bounding boxes ***
SetSpriteShape(1,1)
SetSpriteShape(3,1)
SetSpriteShape(2,1)
SetSpriteShape(4,1)

rem *** Make sentral sprites invisible ***
SetSpriteVisible(3,0)
SetSpriteVisible(4,0)

rem *** Create revolute joints ***
CreateRevoluteJoint(1,3,1,GetSpriteXByOffset(1),
GetSpriteYByOffset(1),0)
CreateRevoluteJoint(2,4,2,GetSpriteXByOffset(2),
GetSpriteYByOffset(2),0)

rem *** Switch on motor for first cog ***
SetJointMotorOn(1,2,200)

rem *** Create gear joint ***
CreateGearJoint(3,1,2,4)

rem *** Run simulation ***
do
 Sync()
loop

Activity 20.50

Create a new project called JointGear. Copy the files AGKDownloads/
Chapter20/Cog1.png, Cog2.png and Shape02.png into the project’s media
folder.

Implement the code given in FIG-20.112.

Test your program, observe the results and save your project.

680 Hands On AGK BASIC: Physics

In AGK BASIC, a pulley joint needs so many parameters that we need to use two
separate functions to set one up.

The first of these is the CreatePulleyJoint2() (see FIG-20.114).

where

 sprId1 is an integer value giving the ID of the first sprite.

 sprId2 is an integer value giving the ID of the second sprite.

 fratio is a real number giving the movement ratio between the first and
 second sprites.

 icold is an integer value (0 or 1) used to determine if the sprites collide
 or overlap when they come into contact with each other
 (0: overlap; 1: collide).

Once the CreatePulleyJoint() statement has been executed, this is followed by a
call to FinishPulleyJoint() which has the format shown in FIG-20.115.

where

 id is an integer value giving the ID to be assigned to the completed
 pulley joint.

 gx1,gy1 are a pair of real values giving the ground point for the first
 sprite. This point determines the maximum point to which the
 first sprite can be lifted.

 gx2,gy2 are a pair of real values giving the ground point for the second
 sprite.

FIG-20.113

A Typical Pulley System

Pulley System

FIG-20.114

CreatePulleyJoint2() CreatePulleyJoint2 ()sprId1 sprId2 fratio icold

Just in case you were
wondering, there is a
CreatePulleyJoint()

statement but it is only
available when using
AGK with C++.

FIG-20.115

FinishPulleyJoint()

FinishPulleyJoint (

)

id gx1 gy1 gx2 gy2

x1 y1 x2 y2

integer

Hands On AGK BASIC: Physics 681

 x1,y1 are a pair of real values giving the anchor point for the first sprite.

 x2,y2 are a pair of real values giving the anchor point for the second
 sprite.

To help understand the purpose of each parameter for these two statements, typical
points or values that would be used for each are shown in FIG-20.116.

The program in FIG-20.117 simulates this exact pulley setup. The only trick is to
adjust the height of the rope sprites as the blocks on the pulley move.

FIG-20.116

Pulley Joint Parameters

Pulley System

x1,y1

sprId1

sprId2

gx1,gy1 gx2,gy2

fratio

x2,y2

FIG-20.117

Using a Pulley Joint rem *** A Pulley Joint ***

rem *** Load Images ***
LoadImage(1,”Pulley.png”)
LoadImage(2,”Box.png”)
LoadImage(3,”Rope.png”)

rem *** Create sprites ***
rem *** Pulley ***
CreateSprite(1,1)
SetSpriteSize(1,24,-1)
SetSpritePosition(1,38,10)
rem *** Box 1 ***
CreateSprite(2,2)
SetSpriteSize(2,10,-1)
SetSpritePosition(2,40,40)
SetSpriteDepth(2,12)
rem *** Box 2 ***
CloneSprite(3,2)
SetSpritePosition(3,50,50)
rem *** Rope 1 ***
CreateSprite(4,3)
SetSpriteSize(4,0.5,23)
SetSpritePosition(4,45,18)
SetSpriteDepth(4,11)
rem *** Rope 2 ***
CloneSprite(5,4)
SetSpriteSize(5,0.5,33)
SetSpritePosition(5,55,18)

682 Hands On AGK BASIC: Physics

GetJointReactionTorque()

We saw earlier when looking at the weld joint, that joints can be subjected to linear
forces and that these are detected using the GetJointReactionForceX() and
GetJointReactionForceY(). Joints may also experience turning forces and these
can be detected using the GetJointReactionTorque() statement (see FIG-20.118).

where

 id is an integer value giving the ID of the joint to be tested.

GetJointExists()

To check if a joint of a specified ID currently exists, use the GetJointExists()
statement (see FIG-20.119).

FIG-20.117
(continued)

Using a Pulley Joint

rem *** Set background colour ***
SetClearColor(120,120,120)
rem *** Switch on physics ***

SetSpritePhysicsOn(1,1) //Static
SetSpritePhysicsOn(2,2) //Dynamic
SetSpritePhysicsOn(3,2) //Dynamic

rem *** Create pulley joint ***
CreatePulleyJoint2(2,3,1.25,0)
id = FinishPulleyJoint(45,20,55,20,GetSpriteXByOffset(2),
GetSpriteYByOffset(2),GetSpriteXByOffset(3),
GetSpriteYByOffset(3))

rem *** Run simulation ***
do
 rem *** Adjust the length of both ropes ***
 heightrope1#=GetSpriteY(3)-GetSpriteY(5)+1
 heightrope2#= GetSpriteY(2)-GetSpriteY(4)+1
 SetSpriteSize(5,0.5,heightrope1#)
 SetSpriteSize(4,0.5,heightrope2#)
 Sync()
loop

Activity 20.51

Start a new project called JointPulley. Copy the necessary image files from
AGKDownloads/Chapter20/ to the project’s media folder.

Set the app window’s size to 678 by 1024.

Implement and test the code given in FIG-20.117.

Change the ratio value in CreatePulleyJoint2() from 1.25 to 0.75. How does
this affect the result? Save your project.

FIG-20.118

GetJointReactionTorque() GetJointReactionTorque ()idfloat

FIG-20.119

GetJointExists() GetJointExists ()idinteger

Hands On AGK BASIC: Physics 683

where

 id is an integer value giving the ID to be tested.

The function returns 1 if the stated joint exists, otherwise zero is returned.

Summary
± Joints allow two or more physics-enabled sprites to be linked, setting up a

specific relationship between their interaction.

± In a weld joint, two sprites are joined together in a fashion similar to magnetic
attraction.

± Use CreateWeldJoint() to create a weld joint.

± Use GetJointReactionForceX() and GetJointReactionForceY() to find the
x and y components of any force acting on a joint.

± Use DeleteJoint() to delete a joint.

± A distance joint keeps two points (one in each sprite) a fixed distance apart at
all times.

± Use CreateDistanceJoint() to create a distance joint.

± A mouse joint is attracted to a specific point in space.

± Use CreateMouseJoint() to create a mouse joint.

± Use SetMouseJointTarget() to specify the point to which the mouse joint is
attracted.

± A revolute joint allows one sprite to revolve about a point on a second sprite.

± Use CreateRevoluteJoint() to create a revolute joint.

± A motor can be attached to certain types of joints, giving that joint power to
initiate movement.

± Use SetJointMotorOn() to power on a motor at a specified joint.

± Use SetJointMotorOff() to power off the motor at a specified joint.

± Use SetJointLimitOn() to limit the movement of a joint.

± Use SetJointLimitOff() to switch off any restriction on joint movement.

± A prismatic joint allows sprites to move along a fixed line relative to each
other.

± Use CreatePrismaticJoint() to create a prismatic joint.

± A line joint allows sprites to move along a fixed line relative to each other and
for the moving sprite to rotate.

± Use CreateLineJoint() to create a line joint.

± A gear joint links two existing revolute joints to ensure that the two rotating
sprites move in relation to each other.

± Use CreateGearJoint() to create a gear joint.

± A pulley joint is one in which two sprites move in opposite directions to each

684 Hands On AGK BASIC: Physics

other in the same way as a pulley system.

± Use CreatePulleyJoint2() and FinishPulleyJoint() to create a pulley
joint.

± Use GetJointReactionTorque() to find the turning force exerted on a joint.

± Use GetJointExists() to check that a joint exists.

Hands On AGK BASIC: Physics 685

Solutions
Activity 20.1

The ball speeds up as it falls - just as a real ball being pulled
towards the ground by gravity.

When the ball hits the bottom of the app window it bounces
slightly.

To change the sprite to a static object, the line
SetSpritePhysicsOn(1,2)

must be changed to
SetSpritePhysicsOn(1,1)

The ball does not move when the program is run.

To change the sprite to a kinematic object we must now
change the line

SetSpritePhysicsOn(1,1)

to
SetSpritePhysicsOn(1,3)

Like the static object, the kinematic one does not move.

Activity 20.2
Modified code for Physics01:

rem *** Basic Physics ***

rem *** Load image ***
LoadImage(1,”Ball.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,6,-1)
SetSpritePosition(1,50,5)
rem *** Apply kinematic physics ***
SetSpritePhysicsOn(1,3)
rem *** Add a velocity ***
SetSpritePhysicsVelocity(1,15*cos(60),15*sin(60))
do
 Sync()
loop

Activity 20.3
No solution required.

Activity 20.4
Modified code for Physics01:

rem *** Basic Physics ***

rem *** Load image ***
LoadImage(1,”Ball.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,6,-1)
SetSpritePosition(1,50,5)
rem *** Apply dynamic physics ***
SetSpritePhysicsOn(1,2)
rem *** Set ball’s bounce factor ***
SetSpritePhysicsRestitution(1,0.75)
rem *** Create text object ***
CreateText(1,””)
do
 rem *** Update text ***
 SetTextString(1,”Ball velocity Y : “+
 Str(GetSpritePhysicsVelocityY(1)))
 Sync()
loop

Activity 20.5
Modified code for Physics02:

rem *** Angular Velocity ***

rem *** Load image ***
LoadImage(1,”Tile.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,15,-1)
SetSpritePosition(1,10,10)
rem *** Apply dynamic physics ***
SetSpritePhysicsOn(1,2)
rem *** Apply angular velocity ***
SetSpritePhysicsAngularVelocity(1,50)
do
 Sync()
loop

This time the tile falls while spinning at a faster rate than
before.

Activity 20.6
Modified code for Physics02:

rem *** Angular Velocity ***

rem *** Load image ***
LoadImage(1,”Tile.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,15,-1)
SetSpritePosition(1,40,10)
rem *** Apply kinematic physics ***
SetSpritePhysicsOn(1,2)
rem *** Apply angular velocity ***
SetSpritePhysicsAngularVelocity(1,50)
rem *** Apply angular damping ***
SetSpritePhysicsAngularDamping(1,0.7)
do
 Sync()
loop

The angular damping reduces the speed of the spin as the tile
falls.

Activity 20.7
Modified code for Physics02:

rem *** Torque ***

rem *** Load image ***
LoadImage(1,”Tile.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,15,-1)
SetSpritePosition(1,40,10)
rem *** Apply dynamic physics ***
SetSpritePhysicsOn(1,2)
do
 rem *** Apply torque ***
 SetSpritePhysicsTorque(1,200)
 Sync()
loop

With such a high torque, the sprite continues to spin even
after hitting the ground.

Activity 20.8
Modified code for Physics02:

rem *** Torque ***

rem *** Create text ***
CreateText(1,””)
SetTextPosition(1,5,5)
SetTextSize(1,3)
rem *** Load image ***
LoadImage(1,”Tile.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,15,-1)
SetSpritePosition(1,40,10)

686 Hands On AGK BASIC: Physics

rem *** Apply dynamic physics ***
SetSpritePhysicsOn(1,2)
do
 rem *** Apply torque ***
 SetSpritePhysicsTorque(1,200)
 rem *** Display angular velocity ***
 SetTextString(1,”Angular velocity: “+
 Str(GetSpritePhysicsAngularVelocity(1)))
 Sync()
loop

Activity 20.9
Modified code for Physics02:

rem *** Torque ***

rem *** Create text ***
CreateText(1,””)
SetTextPosition(1,5,5)
SetTextSize(1,3)
rem *** Load image ***
LoadImage(1,”Tile.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,15,-1)
SetSpritePosition(1,40,10)
rem *** Apply dynamic physics ***
SetSpritePhysicsOn(1,2)
rem *** Switch off rotation ***
SetSpritePhysicsCanRotate(1,0)
do
 rem *** Apply torque ***
 SetSpritePhysicsTorque(1,200)
 rem *** Display angular velocity ***
 SetTextString(1,”Angular velocity: “+
 Str(GetSpritePhysicsAngularVelocity(1)))
 Sync()
loop

The sprite falls without spinning.

Activity 20.10
When the ship reaches the top of the window it stops.

Modified code for Physics03 (1):
rem *** Force to Right ***

rem *** Load image ***
LoadImage(1,”Rocketship.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,-1,20)
SetSpritePosition(1,45,80)
rem *** Turn on physics for sprite ***
SetSpritePhysicsOn(1,2)
do
 rem *** Apply horizontal force to the right ***
 SetSpritePhysicsForce(1,GetSpriteX(1)+
 GetSpriteWidth(1)/2.0, GetSpriteY(1)+
 GetSpriteHeight(1)/2.0,200,0)
 Sync()
loop

The new force causes the ship to move to the side and topple
over. There is a turning force on the craft caused by friction
with the ground.

Modified code for Physics03 (2):
rem *** Force Upwards ***

rem *** Load image ***
LoadImage(1,”Rocketship.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,-1,20)
SetSpritePosition(1,45,80)
rem *** Turn on physics for sprite ***
SetSpritePhysicsOn(1,2)
rem *** Single application of force ***
SetSpritePhysicsForce(1,GetSpriteX(1)+
 GetSpriteWidth(1)/2.0, GetSpriteY(1)+
 GetSpriteHeight(1)/2.0,0,-20000)
do

 Sync()
loop

The craft lifts and then falls back to the ground.

Activity 20.11
Modified code for Physics03(1) :

rem *** Force Upwards ***

rem *** Load image ***
LoadImage(1,”Rocketship.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,-1,20)
SetSpritePosition(1,45,80)
rem *** Turn on physics for sprite ***
SetSpritePhysicsOn(1,2)
rem *** Single application of force ***
SetSpritePhysicsForce(1,GetSpriteX(1)+
 GetSpriteWidth(1)/2.0, GetSpriteY(1)+
 GetSpriteHeight(1)/2.0,0,-2000)
do
 Sync()
loop

The craft will not lift off the ground.

Modified code for Physics03(2) :
rem *** Force Upwards ***

rem *** Load image ***
LoadImage(1,”Rocketship.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,-1,20)
SetSpritePosition(1,45,80)
rem *** Turn on physics for sprite ***
SetSpritePhysicsOn(1,2)
rem *** Single application of force ***
SetSpritePhysicsImpulse(1,GetSpriteX(1)+
GetSpriteWidth(1)/2.0, GetSpriteY(1)+
GetSpriteHeight(1)/2.0,0,-2000)
do
 Sync()

loop

This time the nose of the craft lifts to about 3/4 of the way up
the window.

Activity 20.12
Modified code for Physics03(1) :

rem *** Force Upwards ***

rem *** Create text object ***
CreateText(1,””)
SetTextPosition(1,5,5)
SetTextSize(1,3)
rem *** Load image ***
LoadImage(1,”Rocketship.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,-1,20)
SetSpritePosition(1,45,80)
rem *** Turn on physics for sprite ***
SetSpritePhysicsOn(1,2)
rem *** Display mass ***
SetTextString(1,Str(GetSpritePhysicsMass(1)))
rem *** Single application of force ***
SetSpritePhysicsImpulse(1,GetSpriteX(1)+
GetSpriteWidth(1)/2.0,GetSpriteY(1)+
GetSpriteHeight(1)/2.0,0,-2000.0)
do
 Sync()
loop

The mass reading is 3.75.

Modified code for Physics03(2) :
rem *** Force Upwards ***

rem *** Create text object ***

Hands On AGK BASIC: Physics 687

CreateText(1,””)
SetTextPosition(1,5,5)
SetTextSize(1,3)
rem *** Load image ***
LoadImage(1,”Rocketship.png”)
rem *** Create sprite ***

CreateSprite(1,1)
SetSpriteSize(1,-1,20)
SetSpritePosition(1,45,80)
rem *** Turn on physics for sprite ***
SetSpritePhysicsOn(1,2)
rem *** Increase mass 10 fold ***
SetSpritePhysicsMass(1,GetSpritePhysicsMass(1)*10)
rem *** Display mass ***
SetTextString(1,Str(GetSpritePhysicsMass(1)))
rem *** Single application of force ***
SetSpritePhysicsImpulse(1,GetSpriteX(1)+
GetSpriteWidth(1)/2.0,GetSpriteY(1)+
GetSpriteHeight(1)/2.0,0,-2000.0)
do
 Sync()
loop

The nose of the craft lifts to about half way up the screen.

Activity 20.13
To create a horizontal force, swap the positions of the last two
parameters of SetSpritePhysicsImpulse(), changing the line
from

SetSpritePhysicsImpulse(1,GetSpriteX(1)+
GetSpriteWidth(1)/2.0,GetSpriteY(1)+
GetSpriteHeight(1)/2.0,0,-2000.0)

to
SetSpritePhysicsImpulse(1,GetSpriteX(1)+
GetSpriteWidth(1)/2.0,GetSpriteY(1)+
GetSpriteHeight(1)/2.0,-2000.0,0)

The craft topples as it moves off to the left.

Modified code for Physics03 with a friction value of 0.25:
rem *** Force to the Left ***

rem *** Create text object ***
CreateText(1,””)
SetTextPosition(1,5,5)
SetTextSize(1,3)
rem *** Load image ***
LoadImage(1,”Rocketship.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,-1,20)
SetSpritePosition(1,45,80)
rem *** Turn on physics for sprite ***
SetSpritePhysicsOn(1,2)
rem *** Increase mass 10 fold ***
SetSpritePhysicsMass(1,GetSpritePhysicsMass(1)*10)
rem *** Display mass ***
SetTextString(1,Str(GetSpritePhysicsMass(1)))
rem *** Set friction ***
SetSpritePhysicsFriction(1,0.25)
rem *** Single application of force ***
SetSpritePhysicsImpulse(1,GetSpriteX(1)+
GetSpriteWidth(1)/2.0,GetSpriteY(1)+
GetSpriteHeight(1)/2.0,-2000.0,0)
do
 Sync()
loop

The craft now slides to the side without toppling. A friction
value as low as 0.28 causes the craft to fall over.

To set the friction to zero, change the
SetSpritePhysicsFriction() statement to read:

SetSpritePhysicsFriction(1,0)

With friction set to zero the craft slams into the left edge of
the app window and then starts to move to the right. With no
friction it continues moving at the same speed until it hits the
right edge and then slowly starts to move left again.

Activity 20.14
Modified code for Physics03:

rem *** Zero friction / 0.2 Damping ***

rem *** Create text object ***
CreateText(1,””)
SetTextPosition(1,5,5)
SetTextSize(1,3)
rem *** Load image ***
LoadImage(1,”Rocketship.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,-1,20)
SetSpritePosition(1,45,80)
rem *** Turn on physics for sprite ***
SetSpritePhysicsOn(1,2)
rem *** Increase mass 10 fold ***
SetSpritePhysicsMass(1,GetSpritePhysicsMass(1)*10)
rem *** Display mass ***
SetTextString(1,Str(GetSpritePhysicsMass(1)))
rem *** Set friction ***
SetSpritePhysicsFriction(1,0)
rem *** Set damping ***
SetSpritePhysicsDamping(1,0.2)
rem *** Single application of force ***
SetSpritePhysicsImpulse(1,GetSpriteX(1)+
GetSpriteWidth(1)/2.0,GetSpriteY(1)+
GetSpriteHeight(1)/2.0,-2000.0,0)
do
 Sync()
loop

With damping at 0.2 the craft slows to a stop after hitting the
left side.

Activity 20.15
No solution required.

Activity 20.16
Modified code for Physics04:

rem *** Physics collisions ***

rem *** Load images ***
LoadImage(1,”Bat.png”)
LoadImage(2,”Ball.png”)
rem *** Create text resource ***
CreateText(1,””)
rem *** Set up bat ***
CreateSprite(1,1)
SetSpriteSize(1,12,-1)
SetSpritePosition(1,44,48)
rem *** Make bat kinematic ***
SetSpritePhysicsOn(1,3)
rem *** Spin bat ***
SetSpritePhysicsAngularVelocity(1,100)
rem *** Set up ball ***
CreateSprite(2,2)
SetSpriteSize(2,6,-1)
SetSpritePosition(2,47,0)
rem *** Make ball dynamic ***
SetSpritePhysicsOn(2,2)
do
 if GetPhysicsCollision(1,2)
 SetTextString(1,”Hit”)
 endif
 Sync()
loop

Activity 20.17
The do..loop within Physics04 must be changed to:

do
 if GetPhysicsCollision(1,2)
 SetTextString(1,”Collision at (“+
 Str(GetPhysicsCollisionX())+”, “+
 Str(GetPhysicsCollisionY())+”)”)
 endif
 Sync()
loop

688 Hands On AGK BASIC: Physics

Activity 20.18
The do..loop within Physics04 must be changed to:

do
 if GetPhysicsCollision(1,2)
 SetTextString(1,”Collision at (“+
 Str(GetPhysicsCollisionWorldX())+”, “+
 Str(GetPhysicsCollisionWorldY())+”)”)

 endif
 Sync()
loop

Activity 20.19
In Physics04, add the line

SetSpritePhysicsDebugOn()

immediately before the
do .. loop

Activity 20.20
No solution required.

Activity 20.21
To have the screen represent a 100m x 100m area, change
the line

 SetPhysicsScale(0.5)

to
 SetPhysicsScale(1.0)

To change to lunar gravity (1.63m/sec2), we need to add the
lines

rem *** Set lunar gravity ***
SetPhysicsGravity(0,1.63)

immediately after the physics is switched on.

To make the screen represent a 25m x 25m area, we need to
change the SetPhysicsScale() statement to read

SetPhysicsScale(0.25)

We also need to take this rescaling into account when setting
the gravity, so the SetPhysicsGravity() statement must
change to

SetPhysicsGravity(0,1.63/0.25)

Activity 20.22
To change the gravitational pull and remove the appropriate
physics walls, use the lines

SetPhysicsGravity(1.63/0.25,-1.63/0.25)
rem *** Remove top and right walls ***
SetPhysicsWallTop(0)
SetPhysicsWallRight(0)

Activity 20.23
Change the call to CreatePhysicsForce() to read

forceid = CreatePhysicsForce(50,50,-4,20,15,1)

This will cause the sphere to be repelled by the moon.

Activity 20.24
No solution required.

Activity 20.25

If several sprites hit at the same time, only the tile in the first
collision is reduced in size.

Activity 20.26
The new code ensures that all collisions are handled and
so every contact results in a reduction in size of the tiles
involved.

Activity 20.27
No solution required.

Activity 20.28
No solution required.

Activity 20.29
No solution required.

Activity 20.30
To have the oranges collide with the green apples after 10
seconds, change the end of the program to:

rem *** Record start time ***
time = GetSeconds()
do
 rem *** If 10 seconds passed ***
 if GetSeconds() - time = 10
 rem *** Set all oranges to collide with
 green apples ***
 for c = 11 to 20
 SetSpriteCollideBit(c,4,1)
 next c
 endif
 Sync()
loop#

The code sets bit 4 (the one assigned to green apples) in the
hit categories for every orange.

Activity 20.31
No solution required.

Activity 20.32
Although the two sprites stay firmly attached, you may see
a little movement in their relative positions when various
forces act on the joint.

Activity 20.33
No solution required.

Activity 20.34
With gravity at 120, you should see a little more separation of
the two sprites as the forces involved become larger.

With a setting of 1200, gravity becomes so strong that the
two sprites may separate as they hit the triangle, but they will
then snap together again.

Activity 20.35
The initial gap between the two sprites is maintained by the
weld joint.

Activity 20.36

Hands On AGK BASIC: Physics 689

No solution required.

Activity 20.37
To set the centre of each sprite as an anchor point, change
the line

CreateDistanceJoint(1,1,2,GetSpriteX(1),
GetSpriteY(1),GetSpriteX(2),GetSpriteY(2),1)

to
CreateDistanceJoint(1,1,2,GetSpriteXByOffset(1),
GetSpriteYByOffset(1),GetSpriteXByOffset(2),
GetSpriteYByOffset(2),1)

Activity 20.38
The anchor point at the centre of the sprite is drawn towards
the target point at the bottom right of the screen.

Activity 20.39
The sprite will roll towards the selected point. Gravity stops
the ball lifting. However, if you were to switch off gravity,
the sprite would move towards any point on the screen.

Activity 20.40
The bar does not move because it is perfectly balanced on
the pivot.

When the position of the bar is changed, its right side is
heavier than the left and so the bar rotates about the pivot
point until the two sprites collide.

To stop the sprites bar and pivot sprites colliding, change the
last parameter of the CreateRevoluteJoint() to zero.

This causes the bar to continue rotating about the pivot point;
first in one direction and then the other.

Activity 20.41
The buggy falls a short distance to the bottom of the window.

Activity 20.42
Adding the motor gives power to the revolute joint and this
powers the buggy moving it towards the right edge of the
window.

To get the motor to reverse direction after 15 seconds, change
the run simulation part of the code to read

rem *** Run simulation ***
rem *** Record current time ***
time = GetSeconds()
rem *** Motor not reversed ***
reversed = 0
do
 rem *** After 15 seconds, reverse direction ***
 if GetSeconds()-time = 15 and reversed = 0
 SetJointMotorOn(1,2,200)
 reversed = 1
 endif
 Sync()

loop

Activity 20.43
To make the motor switch off after 25 seconds, change the
run simulation part of the code to read

rem *** Run simulation ***
rem *** Record current time ***
time = GetSeconds()
rem *** Motor not reversed ***
reversed = 0

do
 rem *** After 15 seconds, reverse direction ***
 if GetSeconds()-time = 15 and reversed = 0
 SetJointMotorOn(1,2,200)
 reversed = 1
 endif
 rem *** Switch motor off after 25 seconds ***
 if GetSeconds()-time = 25
 SetJointMotorOff(1)
 endif
 Sync()
loop

The buggy will continue to move even after the motor has
stopped because of low friction and damping.

Activity 20.44
Non-adjacent sprites contacts cause a collision event and the
sprites involved cannot flow past each other.

Activity 20.45
To limit the movement of the head and tail sections, add the
lines

rem *** Limit the movement of ***
rem *** the head and tail sections ***
SetJointLimitOn(1,-2,2) //Head
SetJointLimitOn(5,-2.5,2.5) //Tail

before the run simulation section of the code.

Activity 20.46
The plunger moves to the right, hitting the edge of the screen.

Activity 20.47
The plunger now stops when it reaches the end of the syringe.

Activity 20.48
No solution required.

Activity 20.49
By adding the lines

rem *** Activate motor ***
SetJointMotorOn(1,10,200)

you will see the wheel sprite rotate as it moves along the
other sprite.

Activity 20.50
No solution required.

Activity 20.51
Initially, the left box falls and the right box rises. When the
ratio value is changed from 1.25 to 0.75, it is the right box
that falls and the left box that rises.

690 Hands On AGK BASIC: Physics

Hands On AGK BASIC : Accessing a Network 691

In this Chapter:

T Hardware Requirements for Networking

T Host and Client Machines

T Joining a Network

T Client Names and IDs

T Handling Devices on the Network

T Sending and Receiving Messages

T Local Client Data

T Transmission Times and Delays

T Broadcasting

T Creating Multiplayer Games

T Using HTTP

Accessing a Network

692 Hands On AGK BASIC: Accessing a Network

Multiplayer Games

Introduction
Perhaps most games are played in single-player mode; you against the computer. But
a more enjoyable option is to play against another human player. After all, where’s
the fun in beating a piece of software?

Linking computers together gives us a lot more scope for a game; we can hide
information from other players, the players can be half a world apart and many
players can take part in a single game (assuming the game lends itself to multiple
players).

Hardware Requirements
To get computers to communicate with each other, they need to be connected in some
way. If only two machines are involved and they are located in the same building,
then a simple Wi-Fi signal from your router will be sufficient. Over a longer distance,
two machines could communicate using a phone line and routers.

A local area network (LAN) is one where the computers are in close physical
proximity to each other; perhaps in the same room, building or campus.

A wide area network (WAN) is one where the linked computers are spread over
greater distances, possibly even in different countries.

In setting up a network, there are choices to be made as to how the machines are to
communicate with each other.

In a peer-to-peer network, each machine has equal status. Information from one
machine is sent along a common connection and collected by the machine for which
it was destined. Every machine in the network has its own unique address and the
addresses of both the source computer and destination computer are sent as part of
the information transmitted.

In a client/server setup, one machine acts as a server and the others as clients. The
server has links to every client. While the server can communicate directly with any
client, communication between clients must be routed through the server. The client
machines send requests for data to the server and the server sends back the necessary
information.

The Host and its Clients
In AGK, setting up a multiplayer game requires a network of communicating devices.
This network is assigned a unique ID to ensure that any devices transmitting on a
separate network do not cause interference. The individual devices within your
network are also assigned a unique ID of their own. This ensures, amongst other
things, that data transmitted over the network can be received by the correct device.

One of the machines on the network has to act as the host (also known as the server).
The host machine is responsible for the overall control of the network. If the host
machine shuts down, then the transmission of data between the linked devices will
be terminated. Although a multiplayer game session only ever has one host device,
there may be many others machines (clients) linked to the host. All machines within

Hands On AGK BASIC: Accessing a Network 693

an AGK network - including the host - are known as clients.

The basic setup of a game network is shown in FIG-21.1.

Multiplayer Statements
HostNetwork()

The first requirement of a multiplayer game is to set up the host device. This is done
using the HostNetwork() statement (see FIG-21.2).

where

 snetName is a string giving the name to be used for the network
 hosting the game. Any name can be selected.

 sclient is a string giving the name to be assigned to this client.
 Any unique name can be used, but no two clients may be
 assigned the same name.

 iport is an integer value (1026 to 65535) giving the port to be
 used to access the game session. If the host machine is not
 capable of producing a Wi-Fi broadcast, then it will
 communicate via this port. For example, a PC will
 normally communicate through the port to your Wi-Fi
 router.

The function returns the integer ID assigned to the network.

A typical statement to set up the host machine might be:

netid = HostNetwork(“MyNetwork”,”Hostmachine”,1026)

FIG-21.1

A Typical Wi-Fi
Network

Host

Client

Client

Client

Client

DeviceID1

DeviceID2

DeviceID3

DeviceID4
NetworkID

FIG-21.2

HostNetwork() HostNetworkinteger (snetName sclient iport)

694 Hands On AGK BASIC: Accessing a Network

The short program in FIG-21.3 sets the computer up as the host machine for a network
and displays the ID assigned to that network.

IsNetworkActive()

To check that a network of a specified ID is currently active, we can use the
IsNetworkActive() statement (see FIG-21.4).

where

 id is an integer value giving the ID assigned to the network by the
 HostNetwork() statement.

The statement will return 1 when run on the host machine if a network setup was
successfully achieved using the HostNetwork() statement. The statement will return
1 when run on a client machine that has joined the network.

JoinNetwork()

Since a multiplayer app can have only one host, other devices must join using the
JoinNetwork() statement. This statement has two different formats depending on
whether you are joining your local LAN (format 1) or connecting over the internet
(format 2) (see FIG-21.5).

where

 snetName is a string giving the name to be used by the network

FIG-21.3

Setting up a Host

rem *** Host network ***
netid = HostNetwork(“MyNetwork”,”Hostmachine”,1026)

rem *** Display network’s ID ***
Print(“Network’s ID is “ + Str(netid))
Sync()

do
loop

Activity 21.1

Create a new project, Multiplayer01, and implement the code given in FIG-
21.3.

What ID is assigned to the network?

Save the project.

FIG-21.4

IsNetworkActive()

IsNetworkActiveinteger (id)

FIG-21.5

JoinNetwork() JoinNetworkinteger (snetName sclient

iport

)

JoinNetworkinteger (sIP sclient)

Format 1

Format 2

Hands On AGK BASIC: Accessing a Network 695

 hosting the game. This must be the same value as used in
 the HostNetwork() statement.

 sclient is a string giving the name to be assigned to this client.
 Any unique name can be used but no two clients may be
 assigned the same name.

 sIP is a string giving the IP address of the host machine.

 iport is an integer value (1026 to 65535) giving the port to be
 accessed on the host machine.

When creating your app, it’s quite possible for the host machine to run different code
than that executed on the client devices, but it is no problem to run exactly the same
code on all machines as long as there is some mechanism for making one machine
the host and the others clients.

The program in FIG-21.6 demonstrates the basic ideas involved in setting up a
connection between two machines, both running the same code. The program uses
the following logic:

	 Display	Host	and	Join	buttons	
	 DO	
	 	 IF	the	Host	button	is	pressed	THEN	
	 	 	 Host	the	network	
	 	 ENDIF	
	 	 IF	the	Join	button	is	pressed	THEN	
	 	 	 Join	as	client	
	 	 ENDIF	
	 	 IF	connected	to	the	network	THEN	
	 	 	 Display	active	status	
	 	 ENDIF	
	 LOOP

FIG-21.6

Creating a Network

rem *** Testing Multiplayer Statements ***

rem *** Create Host/Join buttons ***
AddVirtualButton(1,10,20,10)
SetVirtualButtonText(1,”Host”)
AddVirtualButton(2,30,20,10)
SetVirtualButtonText(2,”Join”)
rem *** Not yet joined the network ***
joined = 0
do
 rem *** If Host button pressed and not already joined ***
 if GetVirtualButtonPressed(1)= 1 and joined = 0
 rem *** Host the app ***
 netid = HostNetwork(“MyNetwork”,”Hostmachine”,1026)
 rem *** Record as joined ***
 joined = 1
 endif
 rem *** If Join button pressed and not already joined ***
 if GetVirtualButtonPressed(2)=1 and joined = 0
 rem *** Join as client ***
 netid = JoinNetwork(“MyNetwork”,”Client1”)
 rem *** Record as joined ***
 joined = 1
 endif

696 Hands On AGK BASIC: Accessing a Network

The code used in Activity 21.2 only allows two machines to be linked. The reason for
this may not be immediately obvious, but the problem is the line

 netid = JoinNetwork(“MyNetwork”,”Client1”)

This assigns the name Client1 to any machine joining the network as a client. Since
no two machines may use the same name, an attempt by a third machine to join the
network will fail.

A better version of the code would be

 netid = JoinNetwork(“MyNetwork”,Str(GetSeconds()))

which will assign the time since startup as the client’s name. This way, each machine
can be assigned, its own unique identity.

FIG-21.6
(continued)

Creating a Network

Activity 21.2

Start a new project called MultiPlayer02 and implement the code shown in
FIG-21.6.

We now need to run the program on two devices.

Run the AGK Player on your tablet or phone. Hit the Compile/Run/Broadcast
button in the AGK editor.

The app should now appear on your computer and on your second device.

Click on the Host button on the computer’s version of the app and on the Join
button on your second device.

Both devices should now display a Connected message.

Close down the app on the main computer. What happens to the second
device?

Save your project.

 rem *** If joined, check network is active ***
 if joined = 1
 if IsNetworkActive(netid)
 Print(“Connected”)
 else
 Print(“Not connected”)
 endif
 endif
 rem *** Display the network’s ID ***
 Print(“Network ID : “+Str(netid))
 Sync()
loop

Activity 21.3

Modify Multiplayer02 as suggested above. Save the project.

Hands On AGK BASIC: Accessing a Network 697

GetNetworkNumClients()

The number of machines connected to a network can be discovered using the
GetNetworkNumClients() (see FIG-21.7).

where

 id is an integer value giving the ID assigned to the network.

The function returns the number of devices linked. This includes the host itself.
Before a device joins the link, the value zero will be returned by the function when
called from that device.

GetNetworkServerID()

Not only is the network assigned an ID, but each device on that network is also
assigned a client ID. The client ID assigned to the host machine can be discovered
using the GetNetworkServerID() statement (see FIG-21.8).

where

 id is an integer value giving the ID assigned to the network.

GetNetworkMyClientID()

To discover the client ID of the machine currently running the program code, you can
use the GetNetworkMyClientID() statement (see FIG-21.9).

where

 id is an integer value giving the ID assigned to the network.

The diagram in FIG-21.10 shows a network of four devices and the ID assigned to
each device as well as the network ID. When exactly the same code is executed on

FIG-21.7

GetNetworkNumClients()

GetNetworkNumClientsinteger (id)

Activity 21.4

Modify Multiplayer02 changing the

 Print(“Connected”)
to
 Print(“Number of clients : “+Str(GetNetworkNumClients
 (netid)))

Load the program onto as many devices as you have available and check that
the count displayed matches the number of devices linked.

Save your project.

FIG-21.8

GetNetworkServerID() GetNetworkServerIDinteger (id)

FIG-21.9

GetNetworkMyClientID() GetNetworkMyClientIDinteger (id)

698 Hands On AGK BASIC: Accessing a Network

all four machines, the values returned by calls to GetNetworkServerID() and
GetNetworkMyClientID() are shown.

GetNetworkClientName()

The name assigned to any device on the network can be discovered using the
GetNetworkClientName() statement (see FIG-21.11).

where

 id is an integer value giving the ID assigned to the network by the
 host.

 idclient is an integer value giving the ID of the client whose name is to
 be returned.

FIG-21.10

Host and Client IDs Host

Client

Client

Client

Client

ID: 1

ID: 2

ID: 3

ID: 4

N
et

workID : 10001

GetNetworkServerID() returns 1
GetNetworkMyClientID() returns 1

GetNetworkServerID() returns 1
GetNetworkMyClientID() returns 3

GetNetworkServerID() returns 1
GetNetworkMyClientID() returns 4

GetNetworkServerID() returns 1
GetNetworkMyClientID() returns 2

Activity 21.5

Modify Multiplayer02 so that the host’s ID and the current machine’s client ID
are displayed. Test your code.

Modify the program again so that the message This is the host machine is
displayed only on the host machine. Test and save your program.

FIG-21.11

GetNetworkClientName() GetNetworkClientNamestring (id)idclient

Activity 21.6

Modify Multiplayer02 so that the name of each device in the network is
displayed. Test and save your code.

Hands On AGK BASIC: Accessing a Network 699

SetNetworkNoMoreClients()

It is likely that most of the games you write will only cater for a limited number of
players at any one time, so we need to control the maximum number of devices that
can join a particular session.

We can impose a limit on the number of devices linked by executing the
SetNetworkNoMoreClients() statement from the host device. The statement has the
format shown in FIG-21.12.

where

 id is an integer value giving the ID assigned to the network.

As you can see in the description, this is a statement that should only be executed by
the host machine. But if all the machines in our network are executing exactly the
same code, how are we to create statements which are executed only by the host? The
simple way to do this is to start with the following condition:

 if GetNetworkServerID(netid) = GetNetworkMyClientID(netid)

This condition can only be true when executed on the host machine, so to limit the
number of clients to, say 2, we would use the lines

 if GetNetworkServerID(netid) = GetNetworkMyClientID(netid)
 if GetNetworkNumClients(netid) = 2
 SetNetworkNoMoreClients(netid)
 endif
 endif

CloseNetwork()

Of course you can just close down the app to disconnect a device from the network,
but the correct way to achieve disconnection is to get the machine to execute a
CloseNetwork() statement. When executed on the host machine, this statement will
shut down the complete network, but when executed from a client, only that client is
disconnected. The statement has the format shown in FIG-21.13.

where

 id is an integer value giving the ID assigned to the network.

FIG-21.12

SetNetworkNoMoreClients() SetNetworkNoMoreClients (id)

Activity 21.7

Modify Multiplayer02 so that no more than two clients are allowed (host + one
other). The necessary code must be added inside the if joined = 1..endif
structure.

If you have three devices available, test your program by attempting to add all
three devices to the network.

The third device cannot join the network, but can it detect the network’s ID and
the host’s ID? Save you project.

FIG-21.13

CloseNetwork()

CloseNetwork (id)

700 Hands On AGK BASIC: Accessing a Network

GetNetworkClientDisconnected()

The host maintains a list of the machines connected to it. When a device disconnects
from the network, that list needs to be updated. The first step in updating the list is to
check to see if a client has disconnected. This is done using the
GetNetworkClientDisconnected() statement (see FIG-21.14) which returns 1 if a
specified client has disconnected from the network.

where

 id is an integer value giving the ID assigned to the network.

 idclient is an integer value giving the client device’s ID.

DeleteNetworkClient()

When a client has disconnected, it needs to be removed from the list maintained by
the host machine. This is done using the DeleteNetworkClient() statement (see
FIG-21.15).

where

 id is an integer value giving the ID assigned to the network.

 idclient is an integer value giving the ID of the client to be removed from
 the list.

GetNetworkFirstClient()

If we want the host’s list of currently connected clients to remain up to date, then we
need to implement code which performs the equivalent of:

	 FOR	each	client	ID	DO	
	 	 IF	GetNetworkClientDisconnected(networkID,	clientID)	=	1	
	 	 	 DeleteNetworkClient(networkID,clientID)	
	 	 ENDIF	
	 ENDFOR

The only problem we have is identifying the client IDs. From the displays we have
seen in previous Activities, we can see that these IDs seem to start at 1 and increment
by 1. So we have client IDs of 1, 2, 3 etc. However, this is hardly a foolproof way of
finding out the client IDs.

Luckily, AGK provides us with two statements for identifying client IDs. The first of
these is GetNetworkFirstClient() which returns the ID of the first client held in the
host’s list of clients. This statement has the format shown in FIG-21.16.

where

 id is an integer value giving the ID assigned to the network.

FIG-21.14

GetNetworkClient
Disconnected()

GetNetworkClientDisconnectedinteger (id)idclient

FIG-21.15

DeleteNetworkClient() DeleteNetworkClient (id)idclient

FIG-21.16

GetNetworkFirstClient() GetNetworkFirstClient (id)integer

Hands On AGK BASIC: Accessing a Network 701

The function returns the ID of the first client in the list maintained by the host. If there
are no clients, zero is returned.

GetNetworkNextClient()

Having found the ID of the first client, we can discover the ID of subsequent clients
using the GetNetworkNextClient() statement which returns the next client in that
list.

The statement has the format shown in FIG-21.17.

where

 id is an integer value giving the ID assigned to the network.

The function will return zero if all IDs have already been returned.

To work our way through the complete list of clients, we would use the code:

 clientID = GetNetworkFirstClient(netid)
 while clientID <> 0
 rem --- do something with client details here ---
 GetNetworkNextClient(netid)
 endwhile

The program in FIG-21.18 displays a list of the current client IDs on the host machine.
The ID of any client disconnecting from the network is removed from the list.

FIG-21.17

GetNetworkNextClient() GetNetworkNextClient (id)integer

FIG-21.18

Managing Network
Clients

rem *** Joining and Leaving a Network ***
global netid
global joined = 0

SetUpButtons()
JoinTheNetwork()
do
 HandleButtons()
 rem *** Get Host to maintain a list of devices ***
 if joined = 1
 if GetNetworkServerID(netid) = GetNetworkMyClientID(netid)
 MaintainHostList()
 endif
 endif
 Sync()
loop

function SetUpButtons()
 rem *** Create Host, Client and Exit buttons ***
 AddVirtualButton(1,10,20,10)
 SetVirtualButtonText(1,”Host”)
 AddVirtualButton(2,30,20,10)
 SetVirtualButtonText(2,”Join”)
 AddVirtualButton(3,50,20,10)
 SetVirtualButtonText(3,”Exit”)
endfunction

702 Hands On AGK BASIC: Accessing a Network

FIG-21.18
(continued)

Managing Network
Clients

function JoinTheNetwork()
 rem *** Wait for button press ***
 repeat
 HandleButtons()
 Sync()
 until joined = 1
endfunction

function HandleButtons()
 rem *** If Host button pressed and not already joined ***
 if GetVirtualButtonPressed(1)= 1 and joined = 0
 rem *** Host the app ***
 netid = HostNetwork(“MyNetwork”,”Hostmachine”,1026)
 rem *** Record as joined ***
 joined = 1
 endif
 rem *** If Client button pressed and not already joined ***
 if GetVirtualButtonPressed(2)=1 and joined = 0
 rem *** Join as client ***
 clientname$ = Str(GetSeconds())
 netid = JoinNetwork(“MyNetwork”,clientname$)
 joined = 1
 rem *** Record as joined ***
 endif
 rem *** If Exit button pressed, leave network ***
 if GetVirtualButtonPressed(3)=1 and joined = 1
 CloseNetwork(netid)
 joined = 0
 endif
endfunction

function MaintainHostList()
 rem *** Start with empty list ***
 list$=””
 rem *** Get first clientID ***
 clientid = GetNetworkFirstClient(netid)
 rem *** Deal with all the clients ***
 while clientid <> 0
 rem *** If this device has disconnected, display message
 and remove for list ***
 if GetNetworkClientDisconnected(netid,clientid)=1
 Print(“Disconnected “+str(clientid))
 DeleteNetworkClient(netid,clientid)
 else
 rem *** Add a connected client to the list ***
 list$ = list$ +Str(clientid)+” “
 endif
 rem *** Get the next client ***
 clientid = GetNetworkNextClient(netid)
 endwhile
 rem *** Display ID of all clients and number of clients ***
 Print(list$+” Number of clients : “+
 Str(GetNetworkNumClients(netid)))
endfunction

Hands On AGK BASIC: Accessing a Network 703

CreateNetworkMessage()

A common requirement of multiplayer games is the need to send information from
one device to another. One method of achieving this is to send a message over the
network. Constructing a message requires several steps, the first of these being the
creation of the empty message structure. This is done using CreateNetworkMessage()
(see FIG-21.19).

This statement returns an ID assigned to the new message structure.

AddNetworkMessageFloat(), AddNetworkMessageInteger() and
AddNetworkMessageString()

Once a message has been created, we can add data to the message using the
AddNetworkMessageFloat() , AddNetworkMessageInteger() , or
AddNetworkMessageString() as appropriate. The format for each of these statements
is shown in FIG-21.20.

where

 idmsg is an integer value giving the ID of the message to which the
 value is to be added.

Activity 21.8

Start a new project called MultiPlayer03 and implement the code given in FIG-
21.18.

Run the AGK on as many devices as you have available and broadcast the
program to the devices.

Make your PC the host and have the other devices join as clients. You should
see a list of client IDs and the total number of clients displayed only on the PC.

Press the Exit button on each client (not the host). You may have to press more
than once for the press to be detected. The list of clients should reduce as each
device leaves the network.

Run the setup again. This time have the clients leave the network by simply
closing down the app (don’t press the Exit button). The clients should
disconnect just as before.

Save your project.

FIG-21.19

CreateNetworkMessage()

CreateNetworkMessage ()integer

FIG-21.20

AddMessageValueFloat()
AddMessageValueInteger()
AddMessageValueString()

AddMessageValueFloat (idmsg)fval

AddMessageValueString (idmsg)sval

AddMessageValueInteger (idmsg)ival

704 Hands On AGK BASIC: Accessing a Network

 fval is the real value to be added to the message.

 ival is the integer value to be added to the message.

 sval is the string value to be added to the message.

You are free to add as many values as you wish to a message. For example, let’s
assume we wish to send the screen coordinates of sprite 1 to other devices on the
network, we would construct that message using the following commands:

 messageid = CreateNetworkMessage()
 AddMessageValueFloat(messageid,GetSpriteX(1))
 AddMessageValueFloat(messageid,GetSpriteY(1))

SendNetworkMessage()

With the complete message prepared, we now need to send it to a specific client or to
all other clients. This is done using the SendNetworkMessage() statement (see FIG-
21.21).

where

 id is an integer value giving the ID assigned to the network.

 idclient is an integer value giving the ID of the client to which the
 message is to be sent. If a value of zero is used, the message will
 be sent to all clients (excluding the client sending the message).

 idmsg is an integer value giving the ID of the message to which the
 value is to be added.

Once a message has been sent, that message resource is deleted from the client
sending the message and the ID value it was assigned can be reused.

GetNetworkMessage()

Any client expecting to receive a message must execute the GetNetworkMessage()
statement in order to gain access to that message.

The statement returns the ID of any message that has been received; if no message
has been received, zero is returned.

The GetNetworkMessage() statement has the format shown in FIG-21.22.

where

 id is an integer value giving the ID assigned to the network.

The function returns the ID of the message. This will be used to retrieve the data from
the message.

FIG-21.21

SendNetworkMessage() SendNetworkMessage ()idmsgid idclient

FIG-21.22

GetNetworkMessage() GetNetworkMessage ()idinteger

Hands On AGK BASIC: Accessing a Network 705

GetNetworkMessageFloat(), GetNetworkMessageInteger() and
GetNetworkMessageString()

When a message has been received, the data it contains can be extracted using the
GetNetworkMessageFloat() , GetNetworkMessageInteger() and
GetNetworkMessageString() statements (see FIG-21.23).

where

 idmsg is an integer value giving the ID assigned to the message by a
 previously executed GetNetworkMessage() statement.

DeleteNetworkMessage()

Once all the required data has been extracted from a message, the message should be
deleted by the receiving client using the DeleteNetworkMessage() statement (see
FIG-21.24).

where

 idmsg is an integer value giving the ID of the message to be deleted.

Since several messages may be received, it is best to handle them in a loop structure
of the form:

 rem *** Get the message ***
 messageId = GetNetworkMessage(netid)
 rem *** Deal with all messages received ***
 while messageId <> 0
 rem --- Extract data from message at this point ---
 rem *** Delete message ***
 DeleteNetworkMessage(messageId)
 rem *** Get next message ***
 messageId = GetNetworkMessage(netid)
 endwhile

The program in FIG-21.25 sets up a sprite on the host machine and then allows the
user on a second machine to move that sprite around the host’s screen. When the
screen of the client machine is being touched (or a mouse button pressed), that client
machine sends a message to the host giving the coordinates of the pointer. The host
machine receives the message and uses the coordinates in the message to position the
sprite.

FIG-21.23

GetNetworkMessageFloat()

GetNetworkMessageInteger()

GetNetworkMessageString()

GetNetworkMessageFloat (idmsg)float

GetNetworkMessageString (idmsg)string

GetNetworkMessageInteger (idmsg)integer

FIG-21.24

DeleteNetworkMessage() DeleteNetworkMessage ()idmsg

FIG-21.25

Using Messages

rem *** Sending Messages over a Network ***
global netid
global joined = 0

706 Hands On AGK BASIC: Accessing a Network

FIG-21.25
(continued)

Using Messages

SetUpButtons()
JoinTheNetwork()
do
 rem *** If machine has joined the network ***
 if joined = 1
 rem *** If it’s the host, move the sprite ***
 if GetNetworkServerID(netid) = GetNetworkMyClientID(netid)
 MoveHostSprite()
 else
 rem *** If it’s the client send the pointer
 coordinates ***
 SendPointerPosition()
 endif
 endif
 Sync()
loop

function SetUpButtons()
 rem *** Create Host and Client buttons ***
 AddVirtualButton(1,10,20,10)
 SetVirtualButtonText(1,”Host”)
 AddVirtualButton(2,30,20,10)
 SetVirtualButtonText(2,”Join”)
endfunction

function JoinTheNetwork()
 rem *** Wait for button press ***
 repeat
 HandleButtons()
 Sync()
 until joined = 1
 rem *** Delete all buttons ***)
 DeleteVirtualButton(1)
 DeleteVirtualButton(2)
endfunction

function HandleButtons()
 rem *** If Host button pressed and not already joined ***
 if GetVirtualButtonPressed(1)= 1 and joined = 0
 rem *** Host the app ***
 netid = HostNetwork(“MyNetwork”,”Hostmachine”,1026)
 rem *** Create the sprite to be displayed ***
 CreateHostSprite()
 rem *** Record as joined ***
 joined = 1
 endif
 rem *** If Client button pressed and not already joined ***
 if GetVirtualButtonPressed(2)=1 and joined = 0
 rem *** Join as client ***
 clientname$ = Str(GetSeconds())
 netid = JoinNetwork(“MyNetwork”,clientname$)
 joined = 1
 rem *** Record as joined ***
 endif
endfunction

Hands On AGK BASIC: Accessing a Network 707

GetNetworkMessageFromClient()

A machine which receives a message can discover the sender’s ID using the
GetNetworkMessageFromClient() statement (see FIG-21.26).

FIG-21.25
(continued)

Using Messages

function SendPointerPosition()
 rem *** If the pointer is pressed ***
 if GetPointerState() = 1
 rem *** Send message with coordinates ***
 messageId = CreateNetworkMessage()
 AddNetworkMessageFloat(messageId, GetPointerX())
 AddNetworkMessageFloat(messageId, GetPointerY())
 SendNetworkMessage(netid,GetNetworkServerID(netid),
 messageId)
 endif
endfunction

function CreateHostSprite()
 rem *** Create grey background ***
 SetClearColor(180,180,180)
 rem *** Create sprite ***
 LoadImage(1,”Crosshairs.png”)
 CreateSprite(1,1)
 SetSpriteSize(1,10,-1)
endfunction

function MoveHostSprite()
 rem *** Get the message ***
 messageId = GetNetworkMessage(netid)
 rem *** Deal with all messages received ***
 while messageId <> 0
 rem *** Extract coordinates ***
 x# = GetNetworkMessageFloat(messageId)
 y# = GetNetworkMessageFloat(messageId)
 rem *** Move sprite ***
 SetSpritePosition(1,x#,y#)
 rem *** Delete message ***
 DeleteNetworkMessage(messageId)
 rem *** Get next message ***
 messageId = GetNetworkMessage(netid)
 endwhile
endfunction

Activity 21.9

Start a new project called Multiplayer04. Copy Crosshairs.png from
AGKDownloads/Chapter21/ into the project’s media folder.

Implement the code given in FIG-21.25.

Create the PC as host and a second device as client. Touch the client’s screen
(or drag its mouse) and watch the host’s sprite move in response.

Save your project.

FIG-21.26

GetNetworkMessage
FromClient()

GetNetworkMessageFromClient (idmsg)integer

708 Hands On AGK BASIC: Accessing a Network

where

 idmsg is an integer value giving the ID of the message whose sender’s
 ID is to be returned.

SetNetworkLocalFloat() and SetNetworkLocalInteger()

We have already seen that a client can send messages to other clients, but messages
are sender-initiated and the receiving client needs to handle the message.

A more informal way of handling data sharing between clients is to set up local real
or integer variables using the SetNetworkLocalFloat() and
SetNetworkLocalInteger() statements, which can then be read by other clients
when required.

The variables set up in this way are given explicit names and other clients can refer
to these named variables to discover their contents.

The formats of the SetNetworkLocalFloat() and SetNetworkLocalInteger()
statements are shown in FIG-21.27.

Activity 21.10

In this Activity we are going to modify Multiplayer04 so that the host displays
two sprites, each controlled from different clients.

Copy Sphere.png from AGKDownloads/Chapter21/ into the project’s media
folder.

Modify the code for CreateHostSprite() to read

 function CreateHostSprite()
 rem *** Create grey background ***
 SetClearColor(180,180,180)
 rem *** Create sprite ***
 LoadImage(1,”Crosshairs.png”)
 CreateSprite(1,1)
 SetSpriteSize(1,10,-1)
 LoadImage(2,”Sphere.png”)
 CreateSprite(2,2)
 SetSpriteSize(2,10,-1)
 endfunction

In the MoveHostSprite() function, modify the code so that sprite 1 is moved
only if the ID of the client sending the message is 2; otherwise move sprite 2.

Run the program on three devices and try moving the sprites using the two
client machines.

Save your project.

FIG-21.27

SetNetworkLocalFloat()

SetNetworkLocalInteger()

SetNetworkLocalFloat ()id svar fval ireset

SetNetworkLocalInteger ()id svar ival ireset

Hands On AGK BASIC: Accessing a Network 709

where

 id is an integer value giving the ID assigned to the network.

 svar is a string giving the name of the variable to be used.

 fval is the real value to be assigned to the variable.

 ival is the integer value to be assigned to the variable.

 ireset is an integer value (0 or 1) which determines if the variable in
 question is to be reset to zero after it has been read by a client (1)
 or have its contents remain unchanged after reading (0).
 NOTE: Even if the reset option is selected, the variable is reset
 to zero only for the client reading the variable; if
 that same variable is read by a different client, that variable’s
 original contents will still be available.

GetNetworkClientFloat() and GetNetworkClientInteger()

For a client to read the contents of the variables set up by SetNetworkLocalFloat()
and SetNetworkLocalInteger(), the GetNetworkClientFloat() and
GetNetworkClientInteger() statements must be used. These statements have the
format shown in FIG-21.28.

where

 id is an integer value giving the ID assigned to the network.

 idclient is an integer value giving the ID of the client from which a value
 is to be read.

 svar is a string giving the name of the variable to be read.

The functions return the value held in the named variable. A client can read the
contents of a variable that it has itself set up simply by specifying its own client ID
number.

If the variable was set up using the reset option, once a client has read the contents
of that variable, should the same client attempt another read of the same variable,
zero will be returned (unless the client which set up the variable has subsequently
assigned it a new value).

The program in FIG-21.29 is designed to run on three devices (although it will work
on two). Each device displays its own sprite and that sprite can be moved by touching
the screen or dragging the mouse. Each screen also displays the sprites belonging to
the other devices.

Once a device has joined the network, there are two main functions which control the
program. The first of these is SetOwnSpriteDetails() which reads the screen pointer
position and records this in local variables x and y. The second is MoveAllSprites()

FIG-21.28

GetNetworkClientFloat()

GetNetworkClientInteger()

GetNetworkClientFloat ()idfloat idclient svar

GetNetworkClientInteger ()idinteger idclient svar

710 Hands On AGK BASIC: Accessing a Network

which reads the contents of the variables x and y from each client and moves the
sprites accordingly.

FIG-21.29

Using Local Variables

rem *** Using a Device’s Local Values ***

global netid
global joined = 0

SetUpButtons()
JoinTheNetwork()
CreateSprites()
do
 SetOwnSpriteDetails()
 MoveAllSprites()
 Sync()
loop

function SetUpButtons()
 rem *** Create Host and Client buttons ***
 AddVirtualButton(1,10,20,10)
 SetVirtualButtonText(1,”Host”)
 AddVirtualButton(2,30,20,10)
 SetVirtualButtonText(2,”Join”)
endfunction

function JoinTheNetwork()
 rem *** Wait for button press ***
 repeat
 HandleButtons()
 Sync()
 until joined = 1
 rem *** Delete all buttons ***)
 DeleteVirtualButton(1)
 DeleteVirtualButton(2)
endfunction

function HandleButtons()
 rem *** If Host button pressed and not already joined ***
 if GetVirtualButtonPressed(1)= 1 and joined = 0
 rem *** Host the app ***
 netid = HostNetwork(“MyNetwork”,”Hostmachine”,1026)
 rem *** Record as joined ***
 joined = 1
 endif
 rem *** If Client button pressed and not already joined ***
 if GetVirtualButtonPressed(2)=1 and joined = 0
 rem *** Join as client ***
 clientname$ = Str(GetSeconds())
 netid = JoinNetwork(“MyNetwork”,clientname$)
 joined = 1
 rem *** Record as joined ***
 endif
endfunction

Hands On AGK BASIC: Accessing a Network 711

FIG-21.29
(continued)

Using Local Variables

function CreateSprites()
 rem *** Create grey background ***
 SetClearColor(180,180,180)
 rem *** Create sprites ***
 LoadImage(1,”Square.png”)
 CreateSprite(1,1)
 SetSpriteSize(1,10,-1)
 LoadImage(2,”Sphere.png”)
 CreateSprite(2,2)
 SetSpriteSize(2,10,-1)
 LoadImage(3,”Triangle.png”)
 CreateSprite(3,3)
 SetSpriteSize(3,10,-1)
endfunction

function SetOwnSpriteDetails()
 rem *** Get pointer position ***
 if GetPointerState() = 1
 x# = GetPointerX()
 y# = GetPointerY()
 rem *** Make position available for all devices ***
 SetNetworkLocalFloat(netid,”x”,x#)
 SetNetworkLocalFloat(netid,”y”,y#)
 endif
endfunction

function MoveAllSprites()
 rem *** Get first device ID ***
 clientid = GetNetworkFirstClient(netid)
 rem *** Deal with all the clients ***
 while clientid <> 0
 rem *** Get coordinates from device ***
 x# = GetNetworkClientFloat(netid,clientid,”x”)
 y# = GetNetworkClientFloat(netid,clientid,”y”)
 rem *** Position device’s sprite ***
 SetSpritePosition(clientid,x#,y#)
 rem *** Get the next client ***
 clientid = GetNetworkNextClient(netid)
 endwhile
endfunction

Activity 21.11

Start a new project called Multiplayer05. Copy the files Sphere.png, Triangle.
png and Square.png from AGKDownloads/Chapter21/ into the project’s media
folder.

Implement the code given in FIG-21.29.

Create the PC as host and two other devices as clients.

Drag the sprite on each device and watch it move on all three machines.

Save your project.

712 Hands On AGK BASIC: Accessing a Network

SetNetworkClientUserData()

If you want to store values unique to each client, then one option is use the client’s
data area. This is a 5-slot integer data area created specifically for the client device.
The information in this data area cannot be read by other clients. To place a value in
one of these slots, the SetNetworkClientUserData() statement is used (see FIG-
21.30).

where

 id is an integer value giving the ID assigned to the network.

 idclient is an integer value giving the ID assigned to the client. This must
 be the ID of the client running the code.

 indx is an integer value (0 to 4) giving the slot to be assigned a value.

 ival is the integer value to be assigned to the slot.

For example, the statement

 SetNetworkClientUserData(netid,1,0,20)

would store the value 20 in slot zero of the host machine (always client 1).

GetNetworkClientUserData()

To retrieve a value held in a client’s data area, the GetNetworkClientUserData()
statement is used (see FIG-21.31).

where

 id is an integer value giving the ID assigned to the network.

 idclient is an integer value giving the ID assigned to the client. This must
 be the ID of the client running the code.

 indx is an integer value (0 to 4) giving the slot whose value is to be
 retrieved.

For example,

 num = GetNetworkClientUserData(netid,1,0)

would retrieve the value stored in slot zero of the host machine.

It is worth noting that the same effect can be achieved by simply using any variable
declared within your program code, since each variable is local to the machine on
which it is running.

FIG-21.30 SetNetworkClientUserData()

SetNetworkClientUserData ()id idclient indx ival

FIG-21.31 GetNetworkClientUserData()

GetNetworkClientUserData ()idinteger idclient indx

Hands On AGK BASIC: Accessing a Network 713

GetNetworkClientPing()

We can check the time it takes to send information from a client to the host using the
GetNetworkClientPing() statement which has the format shown in FIG-21.32.

where

 id is an integer value giving the ID assigned to the network.

 idclient is an integer value giving the ID of the client to be pinged.

To determine how long it takes to pass data from one client to another, we must sum
the ping times for each client involved since all data passes through the host machine.

SetNetworkLatency()

In a computer network, the term latency is used when referring to the delay between
messages on the network.

AGK has a latency setting of 15 milliseconds. This means it allows 15 milliseconds
for data to travel between clients before attempting to retrieve more data. This will
be fine if you have a fast Wi-Fi connection and little data is being transferred.
However, for poor connections or large amounts of data, the latency time should be
increased.

You can change the network latency setting using the SetNetworkLatency()
statement (see FIG-21.33).

where

 id is an integer value giving the ID assigned to the network.

 ilat is an integer value giving the latency setting in milliseconds.

CreateBroadcastListener()

A broadcast is a message sent by one or more devices which can be received by all
machines with access to the network. When you set up an AGK multiplayer game,
the AGK software automatically transmits the network name and other details on
port 45631. A device can listen in on these messages using CreateBroadcastListener()
(see FIG-21.34).

where

 iport is an integer value giving the port to be listened to.

The function returns the ID assigned to the listener created.

FIG-21.32

GetNetworkClientPing() GetNetworkClientPing (id)idclientfloat

FIG-21.33

SetNetworkLatency() SetNetworkLatency (id)ilat

FIG-21.34

CreateBroadcastListener() CreateBroadcastListener ()iportinteger

714 Hands On AGK BASIC: Accessing a Network

GetBroadcastMessage()

Once a listener has been created, you can check if the listener has detected a message
using the GetBroadcastMessage() statement which has the format shown in FIG-
21.35.

where

 idListen is an integer value giving the ID of the listener.

The function returns the ID of any message detected. If no message is detected, then
zero is returned. Once a message is detected, GetNetworkMessageInteger(),
GetNetworkMessageFloat() and GetNetworkMessageString() can be used to
extract the contents of the message.

GetNetworkMessageFromIP()

The IP address of the device sending a message which has been received by a listener
can be determined using the GetNetworkMessageFromIP() statement (see FIG-
21.36).

where

 idmsg is an integer value giving the ID of the message whose sender’s
 IP address is to be returned.

DeleteBroadcastListener()

When a listener is no longer required, it can be deleted and resources freed up using
the DeleteBroadcastListener() statement (see FIG-21.37).

where

 idListen is an integer value giving the ID of the listener to be deleted.

The program in FIG-21.38 gives a simple example of a listener and how data is
extracted from the received message.

GetBroadcastMessage ()idListeninteger
FIG-21.35

GetBroadcastMessage()

GetNetworkMessageFromIP (idmsg)string
FIG-21.36

GetNetworkMessageFromIP()

FIG-21.37

DeleteBroadcastListener()

DeleteBroadcastListener ()idListen

FIG-21.38

Using a Listener

rem *** Using a Listener ***
rem *** Create text object ***
CreateText(1,””)
SetTextSize(1,3)
rem *** Create listener ***
listenId = CreateBroadcastListener(45631)
do
 rem *** IF broadcast received ***
 messID = GetBroadcastMessage(listenId)
 if messiD <> 0
 rem *** Extract data from message and display it ***

Hands On AGK BASIC: Accessing a Network 715

AGK broadcasts a message whenever an app is broadcast.

The text displayed is the default AGK network name, but if you set up your own
network, then the name of that network is automatically broadcast. The program in
FIG-21.39 hosts a network called MyNetwork, a name which will then automatically
be broadcast by AGK.

FIG-21.38
(continued)

Using a Listener

 message$ = GetNetworkMessageString(messID)
 SetTextString(1,message$)
 endif
 Sync()
loop

FIG-21.39

Broadcasting the Network

rem *** Broadcasting the Network Name ***

rem *** Host the app ***
netid = HostNetwork(“MyNetwork3”,”Hostmachine”,1026)
Sync()

do
loop

Activity 21.13

Create a new project called Broadcasting and implement the code in FIG-
21.39.

Save your project.

Load the AGK Player on your tablet or phone. Load Listening (created in
Activity 21.12) and broadcast this to your tablet/phone.

Load Broadcasting and run it on your PC. What text appears on the tablet/
phone?

Modify the SetTextString() statement in Listening to read:

 SetTextString(1,message$+Chr(10)+”at IP address “+
 GetNetworkMessageFromIP(messID))

Save Listening and broadcast it to your device then rerun Broadcasting from
your PC.

Activity 21.12

Start a new project called Listening and implement the code given in FIG-
21.38.

Hit the Compile, Run and Broadcast button.

What messages are displayed?

Save your project.

716 Hands On AGK BASIC: Accessing a Network

Summary
± A Wi-Fi transmission is normally required to set up a local network.

± A network requires one machine to act as host.

± All machines added to a network (including the host) are clients.

± The network has its own unique name and ID.

± Every client on the network has its own unique name and ID.

± Use HostNetwork() to set up the network and host machine.

± All data on a network is transmitted via the host.

± The host maintains a list of all clients connected to the network.

± Use IsNetworkActive() to determine if a network of a specified ID is active.

± Use JoinNetwork() to join the network as a client machine.

± Use GetNetworkNumClients() to discover the number of clients a network has
(this includes the host machine).

± Use SetNetworkNoMoreClients() to stop any new clients joining a network.

± Use GetNetworkServerID() to find the ID of the host machine.

± Use GetNetworkMyClient() to find the ID of the machine on which the app is
running.

± Use GetNetworkClientName() to discover the name assigned to a specific
client.

± Use CloseNetwork() to close a specified network (when run from the host) or
to disconnect from a network (when run from a client).

± Use GetNetworkClientDisconnected() to determine if a specified client has
disconnected from the network.

± Use DeleteNetworkClient() to remove a disconnected client from the list of
clients maintained by the host machine.

± Use GetNetworkFirstClient() to discover the ID of the first machine in the
host’s list of clients. This will normally be the ID of the host machine).

± Use GetNetworkNextClient() to determine the ID of the next client in the
host’s list of clients.

± Data can be transmitted between clients using a message.

± Each message has a unique ID.

± Use CreateNetworkMessage() to create an empty message.

± Use AddNetworkMessageFloat(), AddNetworkMessageInteger(), or
AddNetworkMessageString() to add data to a message.

± Use SendNetworkMessage() to transmit a message to a specific client or to all
clients.

± Use GetNetworkMessage() to retrieve the ID of a message received by a
client.

Hands On AGK BASIC: Accessing a Network 717

± Use GetNetworkMessageFloat(), GetNetworkMessageInteger(), or
GetNetworkMessageString() to retrieve data from a message.

± Use DeleteNetworkMessage() to delete a received message.

± Use GetNetworkMessageFromClient() to discover the ID of the client which
sent a message.

± Use SetNetworkLocalFloat() and SetNetworkLocalInteger() to assign
values to local variables that can be accessed by other clients.

± Use GetNetworkLocalFloat() and GetNetworkLocalInteger() to access the
local values set up by other clients.

± Use SetNetworkClientUserData() to assign a value to the client-specific 5
element integer data block.

± Use GetNetworkClientUserData() to retrieve a value from the client-specific
5 element integer data block.

± Use GetNetworkClientPing() to determine the time taken for a message to
travel from a client to the host machine.

± Use SetNetworkLatency() to set the delay between data transmissions over
the network.

± A broadcast is data which can be accessed by any device, even those that have
not yet joined a network.

± Use CreateBroadcasterListener() to create a listener capable of picking up
broadcasts.

± Use GetBroadcastMessage() to determine if a broadcast has been made.

± When a broadcast has been detected, the GetNetworkMessage functions can be
used to retrieve the contents of the broadcast.

± GetNetworkMessageFromIP() to get the IP address of any device sending a
message or broadcast.

± Use DeleteBroadcastListener() to destroy a listener which is no longer
required.

718 Hands On AGK BASIC: Accessing a Network

Multi-Player Tic Tac Toe

Introduction
The game of Tic Tac Toe (called Noughts and Crosses in the UK) must be familiar to
almost everyone on the planet, but just in case there are a few of you out there who
have never played ...

Tic Tac Toe has a play area divided into 9 squares (3 by 3). Two players take turns at
entering an X or an O (one symbol for each player). The first to get three of their
symbols in a horizontal, vertical or diagonal row is the winner.

The layout of the app is shown in FIG-21.40.

Game Logic
The app makes use of the following logic:

	 Set	up	network	connections		
	 Show	game	layout	
	 Player	is	X	
	 REPEAT	
	 	 IF	it’s	your	turn	THEN	
	 	 	 Enter	your	move	
	 	 ELSE	
	 	 	 Get	other	player’s	move	
	 	 ENDIF	
	 	 Update	the	screen	
	 	 Player	is	next	player	
	 UNTIL	game	complete	
	 Show	end	screen

FIG-21.40

TicTacToe Layout

Symbol for
this player

Player to
enter next

move

Other
client will show

O

Hands On AGK BASIC: Accessing a Network 719

Program Code
Global Variables

As usual, there are a few global variables needed by the program. These are:

rem *** Global Variables ***
global dim board[9]=[0,0,0,0,0,0,0,0,0] //The playing area
(0:empty,1:X,2:O)
global player //Current player
(1:X,2:O)
global joined=0 //Joined network
(0:no,1:yes)
global netid //Network ID
global clientid //This client’s ID
global movesmade //Number of moves made

The board array is used to represent the state of the game, with one cell of the array
representing one square on the board. How the squares map to the array is shown in
FIG-21.41.

As you can see from FIG-21.41, an empty square on the board is represented by a
zero in the corresponding cell of the array, while an X is represented by a 1 and an O
by a 2.

Main Program Logic

The main logic of the program reflects the structured English logic given earlier:

SetupNetwork()
SetUpBoard()
rem *** X to play ***
player = 1
 repeat
 rem *** IF this client’s turn ***

FIG-21.41

How the Game Layout
Maps to the Array

Game Board board Array

1

2

3

4

5

6

7

8

9

Element
zero is not

shown1

0

0

2

0

0

0

0

0

720 Hands On AGK BASIC: Accessing a Network

 if player = clientid
 rem *** Enter move ***
 move = MakeMove()
 else
 rem *** IF other client’s turn, get their move ***
 move = GetMove()
 endif
 rem *** Update screen with new move ***
 UpdateScreen(move)
 rem *** Change player to move ***
 player = 3 - player
 rem *** Check to see if game is finished ***
 r = IsComplete()
 Sync()
 until r<>0
 rem *** Show winning line or game drawn message ***
 FinishGame(r mod 10)
 Sync()
end

Although the parameters to the various function calls may not yet be clear, we can
easily see the overall logic from this code. Perhaps the most unusual line is:

 player = 3 - player

The player variable is set to 1 if it is X’s turn to play and 2 if it is O’s turn. The line
of code used ensures that the variable player switches between these two values each
time the line is executed (3-1 is 2 and 3-2 is 1).

SetUpNetwork()

This function connects the two machines to the network using Host and Join buttons.
It will shut down the app if there are not two machines in the network within 30
seconds. The code for the function is:

function SetUpNetwork()
 rem *** Create Host and Client buttons ***
 AddVirtualButton(1,10,20,10)
 SetVirtualButtonText(1,”Host”)
 AddVirtualButton(2,30,20,10)
 SetVirtualButtonText(2,”Join”)
 rem *** Wait till button pressed ***
 repeat
 HandleButtons()
 Sync()
 until joined = 1
 rem *** Wait until both machines connected or timed out (30
 seconds)***
 time = GetSeconds()
 repeat
 until GetNetworkNumClients(netid)=2 or GetSeconds()-time>30
 rem *** If we don’t have 2 clients, close game ***

Activity 21.14

Start a new project called TicTacToe and implement the code given so far.

Add test stubs for each of the functions called. Use square as the parameter for
UpdateScreen() and status as the parameter for FinishGame(). Test and save
your project.

Hands On AGK BASIC: Accessing a Network 721

 if GetNetworkNumClients(netid)<>2
 CloseGame()
 endif
 rem *** Get client’s id ***
 clientid = GetNetworkMyClientID(netid)
 rem *** Delete the network buttons ***
 DeleteVirtualButton(1)
 DeleteVirtualButton(2)
endfunction

As you can see, this function calls to helper functions, HandleButtons() and
CloseGame(). These are coded as:

function HandleButtons()
 rem *** If Host button pressed and not already joined ***
 if GetVirtualButtonPressed(1)= 1 and joined = 0
 rem *** Host the app ***
 netid = HostNetwork(“TicTakToe”,”Hostmachine”,1026)
 rem *** Record as joined ***
 joined = 1
 endif
 rem *** If Client button pressed and not already joined ***
 if GetVirtualButtonPressed(2)=1 and joined = 0
 rem *** Join as client ***
 clientname$ = Str(GetSeconds())
 netid = JoinNetwork(“TicTacToe”,clientname$)
 rem *** Record as joined ***
 joined = 1
 endif
endfunction

function CloseGame()
 rem *** Display message ***
 CreateText(1,”Game needs two machines to play”)
 SetTextSize(1,3)
 SetTextPosition(1,10,47)
 Sync()
 rem *** Wait 5 seconds then close game ***
 Sleep(5000)
 end
endfunction

SetUpBoard()

This function displays the visuals of the game and also creates a set of hidden sprites
- one over each of the nine squares of the board. It is these hidden sprites which will
be used to detect the position selected by the player.

The function’s code is:

function SetUpBoard()
 rem *** Set aspect ratio ***
 SetDisplayAspect(768/1024.0)

Activity 21.15

Add the new functions to TicTacToe and identifying comments to your
program. Compile and save your project.

722 Hands On AGK BASIC: Accessing a Network

 SetClearColor(180,180,180)
 Sync()
 rem *** Load Images ***
 LoadImage(1,”TTTX.png”)
 LoadImage(2,”TTTO.png”)
 LoadImage(3,”TTTTitle.png”)
 LoadImage(4,”TTTBoard.png”)
 LoadImage(5,”TTTMySymbol.png”)
 LoadImage(6,”TTTNxtPlay.png”)
 LoadImage(7,”TTTTile01.png”)
 rem *** Title ***
 CreateSprite(3,3)
 SetSpriteSize(3,60,-1)
 SetSpritePosition(3,20,5)
 rem *** Board ***
 CreateSprite(4,4)
 SetSpriteSize(4,80,-1)
 SetSpritePosition(4,10,15)
 rem *** My Symbol Legend ***
 CreateSprite(5,5)
 SetSpriteSize(5,25,-1)
 SetSpritePosition(5,10,80)
 rem *** Symbol Box ***
 CreateSprite(7,7)
 SetSpriteSize(7,12,-1)
 SetSpritePosition(7,36,78)
 rem *** Player Shape ***
 CreateSprite(1,clientid)
 SetSpriteSize(1,8,-1)
 SetSpritePosition(1,38,79.5)
 rem *** Next Player Legend ***
 CreateSprite(6,6)
 SetSpriteSize(6,25,-1)
 SetSpritePosition(6,50,80)
 rem *** Symbol Box ***
 CreateSprite(8,7)
 SetSpriteSize(8,12,-1)
 SetSpritePosition(8,76,78)
 rem *** Next Player Shape ***
 CreateSprite(9,1)
 SetSpriteSize(9,8,-1)
 SetSpritePosition(9,78,79.5)
 rem *** Both symbols (X and O) in sprite ***
 SetSpriteAnimation(9,153,164,1)
 AddSpriteAnimationFrame(9,2)
 rem *** Create a set of hidden sprites ***
 rem *** one over each of the 9 areas on board ***
 id = 100
 for row = 0 to 2
 for col = 0 to 2
 inc id
 CreateSprite(id,0)
 SetSpriteDepth(id,9)
 SetSpriteSize(id,25,-1)
 SetSpritePosition(id,10+col*27,16.5+row*20)
 SetSpriteVisible(id,0)
 next col
 next row
 Sync()
endfunction

Hands On AGK BASIC: Accessing a Network 723

MakeMove()

The MakeMove() function detects a press on an empty square on the board, records
the move in the board array and sends a network message of the move made. The
function also returns the move made as a value between 1 and 9 (the square’s number
in the board array).

The function’s code is:

function MakeMove()
 rem *** Get empty square selected by player ***
 state = 0
 repeat
 repeat
 if GetPointerState() = 1 and state = 0
 id = GetSpriteHit(GetPointerX(),GetPointerY())
 state= 1
 else
 state = 0
 endif
 Sync()
 until id >= 101 and id <= 109
 square = id - 100
 until board[square]=0
 rem *** Record player’s move in array ***
 board[square] = player
 rem *** Send message of move made to other device ***
 messageID = CreateNetworkMessage()
 AddNetworkMessageInteger(messageID,player)
 AddNetworkMessageInteger(messageID,square)
 SendNetworkMessage(netid,3-clientid,messageID)
endfunction square

GetMove()

When it is the opponent’s turn to move, then the details of that move are retrieved
over the network using the GetMove() function.

function GetMove()
 rem *** Get message from network ***
 repeat
 messageID = GetNetworkMessage(netid)
 until messageID <> 0

Activity 21.16

From AGKDownloads/Chapter21, copy the necessary image files used by
SetUpBoard() into the project’s media folder.

Add the code for SetUpBoard() to your program.

Start up the AGKPlayer in your second device and broadcast the program.

Create a host and client, then check that the game board appears on both
devices. Check that one device shows X and the other O beside the My Symbol
text.

Save your project.

724 Hands On AGK BASIC: Accessing a Network

 player = GetNetworkMessageInteger(messageID)
 square = GetNetworkMessageInteger(messageID)
 rem *** Update board array ***
 board[square] = player
 rem *** Delete the message ***
 DeleteNetworkMessage(messageID)
endfunction square

UpdateScreen()

This function updates the appearance of the screen, placing an X or O symbol at the
position of the latest move, changing the symbol of the next player and incrementing
the number of moves made.

The code is:

function UpdateScreen(square)
 rem *** Create the sprite to be placed on board ***
 spriteid = 20+square
 CreateSprite(spriteid,player)
 SetSpriteSize(spriteid,12,-1)
 rem *** Position sprite ***
 SetSpritePosition(spriteid,17+(spriteid-21) mod 3*27,
 21+(spriteid-21)/3*20)
 rem *** Change Next Player symbol ***
 SetSpriteFrame(9,3-player)
 Sync()
 rem *** Add 1 to the number of moves made ***
 inc movesmade
endfunction

IsComplete()

The IsComplete() function returns two pieces of information stored in a single
variable.

The first value determines if the game is complete. This value is 0 if the game is not
complete; if the game has finished, it is a number between 1 and 9. The value
determines where on the board the winning line has occurred (1: top horizontal, 2:
middle horizontal, 3: bottom horizontal, 4: left vertical, 5: middle vertical, 6: right
vertical, 7 diagonal top-left to bottom-right, 8: diagonal bottom-left to top-right. The
final value, 9, is used to indicate a draw.

The second value is the winner of the game (0: no winner, 1: X wins, 2: O wins).

To return both pieces of information in a single value, the winner value is multiplied

Activity 21.17

Add the MakeMove(), GetMove() and UpdateScreen() functions to your
program.

Start up the AGKPlayer in your second device and broadcast the program.

Check that you can now play the game over the two devices.

Save your project.

Hands On AGK BASIC: Accessing a Network 725

by 10 and added to the game-complete value. For example, if O wins with a line on
the left vertical, then the function would return the value 24. The two values can be
extracted from this returned value using the following formulae:

winner		 	 	 =		 returned-value	/	10	
game-complete		 =		 returned-value	mod	10

FinishGame()

The game finishes by either displaying a GAME DRAWN message or by drawing a
line through the winning three squares. Both of these options are actually performed
by other routines.

The code for FinishGame() is:

function FinishGame(status)
 rem *** Draw or win ***
 if status = 9
 GameDrawn()
 else
 ShowWinningLine(status)
 endif
endfunction

GameDrawn()

GameDrawn() displays GAME DRAWN at the centre of the board for 5 seconds.

The routine’s code is:

function GameDrawn()
 rem *** Load image used ***
 LoadImage(99,”TTTDraw.png”)
 rem *** Display message ***
 CreateSprite(99,99)
 SetSpriteSize(99,60,-1)
 SetSpritePositionByOffset(99,50,47)
 Sync()
 rem *** Wait 5 seconds ***
 Sleep(5000)
endfunction

ShowWinningLine()

This function draws a line through the winning squares. The position of the line is
determined by the function’s parameter.

The function contains the following code:

Activity 21.18

Create the code for the IsComplete() function and add it to your project.

To test the function, get the program to display the value returned, splitting it
into the original two values.

Save your project.

726 Hands On AGK BASIC: Accessing a Network

function ShowWinningLine(line)
 rem *** Load image used ***
 LoadImage(99,”TTTLine.png”)

 rem *** Create sprite ***
 CreateSprite(99,99)
 SetSpriteSize(99,-1,60)
 rem *** Place horizontally ...***
 if line <= 2
 SetSpriteAngle(99,90)
 SetSpritePositionByOffset(99,49,26+line*20)
 endif
 rem *** Place vertically ...***
 if line >= 3 and line <= 5
 SetSpritePosition(99,20+(line-3)*27,16)
 endif
 rem *** Diagonal TL to BR ***
 if line = 6
 SetSpriteAngle(99,135)
 SetSpritePositionByOffset(99,49,47)
 endif
 rem *** Diagonal BL to TR ***
 if line = 7
 SetSpriteAngle(99,45)
 SetSpritePositionByOffset(99,49,47)
 endif
 Sync()
 rem *** Wait for 5 seconds ***
 Sleep(5000)
endfunction

Activity 21.19

From AGKDownloads/Chapter21, copy the necessary image files used by
GameDrawn() and ShowWinningLine() into the project’s media folder.

Add the code for IsComplete(), GameDrawn() and ShowWinningLine() to
your program.

Start up the AGKPlayer in your second device and broadcast the program.

Check that the game is now complete.

Save your project.

Hands On AGK BASIC: Accessing a Network 727

HTTP

Introduction
The letters HTTP stand for HyperText Transfer Protocol.

Hypertext is the term used for text which has clickable links to other text. It’s the sort
of stuff you use all the time when you’re on the internet clicking links to take you
from one page to another.

Transfer Protocol refers to the agreed format for transferring data between devices.

In an HTTP environment, the client machine makes a request for data and the host
(also known as the server) fulfills that request by sending the appropriate file.

A variation is the HTTPS connection. The extra S stands for Security. The data
transferred in this way is encrypted for greater security.

When you use your browser software to connect to the Internet, you are sending and
receiving data using HTTP. If you purchase items from an online store, then your
details will be encrypted using HTTPS.

HTTP Statements
OpenBrowser()

The simplest way to make an HTTP connection is simply to run your browser
software. You can do this from within a program using OpenBrowser() (see FIG-
21.42).

where

 surl is a string giving the URL (web address) to be opened when the
 browser is loaded.

After opening your browser the app will continue to execute separately on some
devices.

The program in FIG-21.43 loads your device’s Internet browser when you press the
Browse button and then displays an incrementing count.

FIG-21.42

OpenBrowser() OpenBrowser ()surl

FIG-21.43

Loading a Browser from
an App

Rem *** Use Internet Browser ***

rem *** Create browse button ***
LoadImage(1,”BrowseButton.png”)
CreateSprite(1,1)
SetSpriteSize(1,20,-1)
SetSpritePositionByOffset(1,50,50)

rem *** Start count at zero ***
count = 0

728 Hands On AGK BASIC: Accessing a Network

CreateHTTPConnection()

The first stage in the file transfer request is to set up a connection resource. This is
done using the CreateHTTPConnection() statement (see FIG-21.44).

The function returns an integer giving the ID assigned to the HTTP resource.

A typical statement would be:

 id = CreateHTTPConnection()

SetHTTPHost()

Once the HTTP resource has been created, you need to specify the domain on the host
machine along with any username and password that may be required. This is done
using the SetHTTPHost() statement (see FIG-21.45).

where

 id is an integer value giving the ID previously assigned to the
 connection.

 sdomain is a string giving the domain on the server that is to be accessed.

 itype is an integer (0 or 1) giving the type of connection (0: HTTP, 1:
 HTTPS).

FIG-21.43
(continued)

Loading a Browser from
an App

do
 rem *** Display count ***
 Print(count)
 Sync()
 rem *** Add 1 to count ***
 inc count
 rem If button pressed, start browser ***
 if GetSpriteHit(GetPointerX(),GetPointerY()) = 1 and
 GetPointerPressed() = 1
 OpenBrowser(“www.digital-skills.co.uk”)
 endif
loop

Activity 21.20

Start a new project called UseInternet and implement the code given in FIG-
21.43. Copy the file AGKDownloads/Chapter21/BrowseButton.png to the
media folder.

Run the program, press the Browse button and check how the displayed count
goes on increasing while the browser is running. Save your project.

FIG-21.44

CreateHTTPConnection() CreateHTTPConnection ()integer

FIG-21.45 SetHTTPHost()

SetHTTPHost ()integer id itypesdomain spasssuser

Hands On AGK BASIC: Accessing a Network 729

 suser is a string giving the username required for site access.

 spass is a string giving the user’s password.

The function returns 1 if a successful connection is made, otherwise zero is returned.

To access a standard public website, we would use a command such as:

 SetHTTPHost(id,”www.digital-skills.co.uk”,0)

GetHTTPFile()

Once your app has connected to a domain, you can download a file from that site
using the GetHTTPFile() statement (see FIG-21.46).

where

 id is an integer value previously assigned to the connection.

 sfile is a string giving the name of the file on the server which is to be
 downloaded.

 save is a string giving the name of the file where the downloaded data
 is to be saved on the client.

 spost is a string giving any data that the client wishes to send to the
 server.

The function returns 1 if the specified file was located and transfer started, otherwise
zero is returned.

To download the typical homepage file of a website and save it in a file called saved.
html, we could use a line such as:

 success = GetHTTPFile(id,”index.html”,”saved.html”)

The transfer of a large file may take some time and continues in the background while
subsequent statements in your program continue to be executed.

GetHTTPFileProgress()

To check on the progress of a file download initiated by a GetHTTPFile() command,
use GetHTTPProgress() (see FIG-21.47).

where

 id is an integer value previously assigned to the connection.

The function returns a real value in the range 0 to 100 which indicates (not always
accurately) what percentage of the file has been downloaded.

For example, we could display the progress of the download with a statement such

FIG-21.46

GetHTTPFile() GetHTTPFile ()integer id savesfile spost

FIG-21.47

GetHTTPFileProgress()

This function can also
be used to check on the
progress of file uploads -
as we will see later.

GetHTTPFileProgress ()float id

730 Hands On AGK BASIC: Accessing a Network

as:

 Print(GetHTTPFileProgress(id))

GetHTTPFileComplete()

Even if GetHTTPProgress() returns a value of 100, that is not a guarantee that the
download is complete. The only way to be sure that all the data has safely arrived is
to call GetHTTPFileComplete() (see FIG-21.48).

where

 id is an integer value previously assigned to the connection.

The function returns 1 if the transfer is complete, otherwise zero is returned.

CloseHTTPConnection()

When you no longer require an HTTP connection to a specific host, you can disconnect
using CloseHTTPConnection() (see FIG-21.49).

where

 id is an integer value previously assigned to the connection.

Once disconnected, you can reattach to a different host by making a new call to
SetHTTPHost().

DeleteHTTPConnection()

Once an HTTP connection has been closed and is no longer required, then you can
delete the resource using DeleteHTTPConnection() (see FIG-21.50).

where

 id is an integer value previously assigned to the connection.

A complete example of how to download a public accessible file is shown in FIG-
21.51.

FIG-21.48

GetHTTPFileComplete() GetHTTPFileComplete ()integer id

FIG-21.49

CloseHTTPConnection() CloseHTTPConnection ()id

FIG-21.50

DeleteHTTPConnection() DeleteHTTPConnection ()id

FIG-21.51

How to Download a File
Using HTTP

rem *** Download a file from a website ***

rem *** Create HTTP connection Resource ***
id = CreateHTTPConnection()

rem *** Specify unsecured web address ***
result = SetHTTPHost(id,”www.digital-skills.co.uk”,0)

Hands On AGK BASIC: Accessing a Network 731

SendHTTPRequest()

A second option when retrieving a file is to have the contents of that file returned as
a single string. You can do this by using the SendHTTPRequest() statement (see FIG-
21.52) .

where

 id is an integer value previously assigned to the connection.

 sfile is a string giving the name of the file on the server which is to be
 downloaded.

 spost is a string giving any additional data that needs to be sent to the
 server.

FIG-21.51
(continued)

How to Download a File
Using HTTP

rem *** If found try to download a file ***
if result = 1
 rem *** If file found download it ***
 if GetHTTPFile(id,”AGK-Ch14.pdf”,”AGK14-TextResources.pdf”)=1
 rem *** Wait until download complete ***
 repeat
 rem *** Print progress ***
 Print(GetHTTPFileProgress(id))
 Sync()
 until GetHTTPFileComplete(id)=1
 else
 rem *** Error if file not found ***
 Print(“File not found”)
 Sync()
 endif
 rem *** Close the connection ***
 CloseHTTPConnection(id)
else
 rem *** Error if address not found ***
 Print(“Not connected”)
 Sync()
endif

rem *** Delete HTTP resource ***
DeleteHTTPConnection(id)

rem *** Display end messgae ***
Print(“Program Completed”)
do
loop

Activity 21.21

Start a new project called Download01 and implement the code in FIG-21.51.

Run and save your project.

Go to the folder used by your project and check that the file has been correctly
downloaded.

FIG-21.52

SendHTTPRequest() SendHTTPRequest ()string id sfile spost

732 Hands On AGK BASIC: Accessing a Network

The string returned by the function represents the contents of the file. If the file
cannot be accessed, an empty string is returned.

After executing CreateHTTPConnection() and SetHTTPHost(), a typical
SendHTTPRequest() statement would be:

 result$ = SendHTTPRequest(id,”index.html”)

Unlike, GetHTTPFile() which allows the download to happen in the background
while your app continues to execute, SendHTTPRequest() will halt your program
until the contents of the file have been loaded into the specified string variable.

The code in FIG-21.53 gives a simple example of how the statement can be used.

SendHTTPRequestASync()

If you want the contents of a file returned as a string (as offered by SendHTTPRequest()),
but you don’t want the program to stop while the data is sent, you can begin a request
for a download using SendHTTPRequestASync() (see FIG-21.54).

where

 id is an integer value previously assigned to the connection.

 sfile is a string giving the name of the file on the server which is to be
 downloaded.

 spost is a string giving any additional data that needs to be sent to the
 server.

FIG-21.53

Using
SendHTTPRequest()

rem *** Download a file from a website ***

rem *** Create HTTP connection Resource ***
id = CreateHTTPConnection()

rem *** Specify unsecured web address ***
result = SetHTTPHost(id,”www.digital-skills.co.uk”,0)

rem *** Get file’s contents ***
r$ = SendHTTPRequest(id,”index.html”)

rem *** Display the file ***
Print(r$)
Sync()

do
loop

Activity 21.22

Start a new project called Download02 and implement the code in FIG-21.53.

Run and save your project. What output is produced?

FIG-21.54

SendHTTPRequest
ASync() SendHTTPRequestASync ()integer id sfile spost

Hands On AGK BASIC: Accessing a Network 733

GetHTTPResponseReady()

To check if the server is ready to respond to the client’s request to send data, use
GetHTTPResponseReady() (see FIG-21.55).

where

 id is an integer value previously assigned to the connection.

The function will return 1 if the server is ready to give a response to a previous
SendHTTPRequestASync() call.

GetHTTPResponse()

Once we know the server is ready to respond (having called GetHTTPResponseReady()),
we can finally receive the contents of the requested file using GetHTTPResponse()
(see FIG-21.56).

where

 id is an integer value previously assigned to the connection.

The function returns a string containing the contents of the requested file. If the file
could not be accessed, an empty string is returned.

The program in FIG-21.57 demonstrates how SendHTTPRequestASync() is used.
While the program awaits a response, it increments a displayed value to demonstrate
the ability of the program to continue execution.

FIG-21.55

GetHTTPResponse
Ready()

GetHTTPResponseReady ()integer id

FIG-21.56

GetHTTPResponse() GetHTTPResponse ()string id

FIG-21.57

Using Asynchronous
Download

rem *** Download a file from a website 2 ***

rem *** Create HTTP connection Resource ***
id = CreateHTTPConnection()
rem *** Specify unsecured web address ***
result = SetHTTPHost(id,”www.digital-skills.co.uk”,0)

rem *** Request a file ***
SendHTTPRequestASync(id,”AGK-Ch14.pdf”)

rem *** Count until server ready ***
count = 0
repeat
 inc count
 Print(count)
 Sync()
until GetHTTPResponseReady(id)=1
rem *** Get the file ***
r$ = GetHTTPResponse(id)
rem *** Display the file ***
Print(r$)
Sync()
do
loop

734 Hands On AGK BASIC: Accessing a Network

SendHTTPFile()

As well as receiving files from a server, you may also want to upload files. This
would allow your app to do things such as keep a list of the highest scores achieved
by all users.

Of course, you need to persuade the server to accept an uploaded file. Normally, you
would begin by creating a script file on the server that accepts and handles the file
your app wants to upload.

Although it is outside the scope of this book to discuss the creation of the necessary
script, a sample PHP file is shown in FIG-21.58.

Activity 21.23

Start a new project called Download03 and implement the code in FIG-21.57.

Run and save your project.

FIG-21.58

PHP Script for Uploading
a File

Thanks to Paul Johnston
for supplying this script.

<?
 function fail($msg) { echo $msg; exit(); }

 //uploaded file
 if ($_FILES[“myfile”][“tmp_name”] == “”) fail(“No file
 uploaded.”);

 if ($_FILES[“myfile”][“error”] > 0)
 {
 switch ($_FILES[‘myfile’][‘error’])
 {
 case 1: fail(‘File exceeded maximum server upload
 size.’); break;
 case 2: fail(‘File exceeded maximum file size.’);
 break;
 case 3: //partial file
 case 4: fail(‘An error occurred during file upload,
 please try again’); break; //no file
 }
 }

 $filename = basename($_FILES[“myfile”][‘name’]);
 $size = (int) $_FILES[“myfile”][“size”];

 //check file does not exist and place it in its new location
 $filepath = “gamesfolder/$filename.dat”;

 if (file_exists($filepath)) fail(“That file has already been
 uploaded. If this should not be the case please contact
 support quoting the filename.”);
 if (@move_uploaded_file($_FILES[“myfile”][“tmp_name”],
 $filepath) == FALSE) fail(“Could not move uploaded file,
 please try again.”);
 if (@chmod($filepath, 0744) == FALSE) fail(“Could not
 modify uploaded file, please contact support.”);
?>

Hands On AGK BASIC: Accessing a Network 735

This script will accept the uploaded file and copy it to a folder named gamesfolder.

To upload a file to the server use SendHTTPFile() which has the format shown in
FIG-21.59.

where

 id is an integer value previously assigned to the connection.

 script is a string specifying the script file to be run on the server.
 The string may include path details if the script is not in the same
 folder as your index.html file.

 spost is a string giving any additional data that needs to be sent to the
 server.

 sfile is a string giving the name of the file to be sent to the server. If
 the file is not in the media folder, then relative path details need
 to be included.

If the script expects to read the value of one or more variables, then the names and
values of the variables would be given in the spost parameter. For example, if we
wanted to specify that variables myvar and desc have the values 5.6 and test
respectively, the value of the spost parameter would be “myvar=5.6&desc=test”.

If a variable contains a string value, any non-alphanumeric characters such as a
space, comma, question mark, etc. must be encoded using a % symbol followed by
the required character’s ASCII code given in hexadecimal. For example, if you
wanted to pass the string “Is this correct?” in a variable called myvar2, the spost
parameter would be written as

 “myvar2=Is%20this%20correct%3F”

In the PHP script, variables myvar and desc would be accessed using the terms

 $_POST[‘myvar’]

and

 $_POST[‘desc’]

FIG-21.59

SendHTTPFile() SendHTTPFile ()integer id sfilescript spost

Activity 21.24

To perform this activity you will need to have your own website on which you
can store and run PHP files.

Create a file called upload.php containing the text shown in FIG-21.58.

Use your website’s file manager to upload the file to the main directory of your
website.

Using your website’s file manager, create a sub-folder called gamesfolder off
your main directory.

Your server will almost
certainly use a Unix-
based setup. Since Unix
is a case-sensitive system,
it is important that you
make sure the file and
folder names match
exactly throughout.

736 Hands On AGK BASIC: Accessing a Network

When you use SendHTTPFile(), the upload takes places as a background event,
allowing your program to continue execution. We can use GetHTTPFileProgress()
to discover what percentage of the file has been uploaded and GetHTTPResponseReady()
to check when the upload is complete.

If a problem has occurred (such as the file being too large, or a file of that name
already exists) then GetHTTPResponse() will return the appropriate message
generated by the script.

The program in FIG-21.60 uploads a file called scores.dat to www.digital-skills.co.uk
in a subfolder called gamesfolder.

Summary
± HTTP stands for HyperText Transfer Protocol.

± HTTPS stands for HyperText Transfer Protocol Secure.

± Normally, communicating with a website requires the use of HTTP or HTTPS.

± Use OpenBrowser() to open your web browser from within an AGK app.

± Use CreateHTTPConnection() to set up an HTTP connection resource.

FIG-21.60

Uploading a File

rem *** Upload a file to a website ***

rem *** Create HTTP connection Resource ***
id = CreateHTTPConnection()

rem *** Specify unsecured web address ***
result = SetHTTPHost(id,”www.digital-skills.co.uk”,0)

rem *** Upload file ***
SendHTTPFile(id,”upload.php”,””,”scores.dat”)
repeat
 Print(GetHTTPFileProgress(id))
 Sync()
until GetHTTPResponseReady(id)=1

rem *** Display script’s response ***
Print(GetHTTPResponse(id))

rem *** Display end of program ***
Print(“Transfer complete”)
Sync()

do
loop

Activity 21.25

This activity follows on from Activity 21.24.

Create a project called UploadFile and implement the code given in FIG-21.60.

Run the program and then check the contents of gamesfolder on your web
server and ensure that it now contains a file called scores.dat.

Hands On AGK BASIC: Accessing a Network 737

± Use SetHTTPHost() to specify the website with which you wish to
communicate.

± Use GetHTTPFile() to start downloading a specified file from the website.

± Your app will continue to run while the file is being downloaded.

± Use GetHTTPFileProgress() to discover what percentage of the requested file
has been downloaded.

± Use GetHTTPFileComplete() to check if the file download is complete.

± Use CloseHTTPConnection() to terminate the connection to the host.

± Use DeleleteHTTPConnection() to delete the HTTP resource created earlier.

± Use SendHTTPRequest() to download the contents of a named file as a single
string.

± When using SendHTTPRequest(), your app will halt until the download is
complete.

± Use SendHTTPRequestASync() to download a file as a string while your
program continues execution.

± Use GetHTTPResponseReady() to check that the server is ready to transmit the
requested string.

± Use GetHTTPResponse() to retrieve the required string.

± Use SendHTTPFile() to upload a file to the server.

± When uploading a file to the server, make sure the appropriate script exists on
the server to accept and handle the uploaded file.

738 Hands On AGK BASIC: Accessing a Network

Solutions
Activity 21.1

The network ID on my setup was 100001.

Activity 21.2
The message on the second device changes to Not connected
shortly after the host machine’s app is closed.

Activity 21.3
No solution required.

Activity 21.4
No solution required.

Activity 21.5
Modified code for Multiplayer02:

rem *** Testing Multiplayer Statements ***
rem *** Create Host/Join buttons ***
AddVirtualButton(1,10,20,10)
SetVirtualButtonText(1,”Host”)
AddVirtualButton(2,30,20,10)
SetVirtualButtonText(2,”Join”)
rem *** Not yet joined the network ***
joined = 0
do
 rem *** If Host button pressed and not already
 joined ***
 if GetVirtualButtonPressed(1)= 1 and joined = 0
 rem *** Host the app ***
 netid = HostNetwork(“MyNetwork”,
 ”Hostmachine”,1026)
 rem *** Record as joined ***
 joined = 1
 endif
 rem *** If Join button pressed and not already
 joined ***
 if GetVirtualButtonPressed(2)=1 and joined = 0
 rem *** Join as client ***
 netid = JoinNetwork(“MyNetwork”,
 Str(GetSeconds()))
 rem *** Record as joined ***
 joined = 1
 endif
 rem *** If joined, check network is active ***
 if joined = 1
 if IsNetworkActive(netid)
 Print(“Number of clients : “+
 Str(GetNetworkNumClients(netid)))
 else
 Print(“Not connected”)
 endif
 Print(“Host ID : “+
 Str(GetNetworkServerID(netid)))
 Print(“This client’s ID : “+
 Str(GetNetworkMyClientID(netid)))
 if GetNetworkServerID(netid) =
 GetNetworkMyClientID(netid)
 Print(“This is the host machine”)
 endif
 endif
 rem *** Display the network’s ID ***
 Print(“Network ID : “+Str(netid))
 Sync()
loop

Activity 21.6
In Multiplayer02, the if joined =1..endif structure’s code
is changed to

if joined = 1
 if IsNetworkActive(netid)
 Print(“Number of clients : “+
 Str(GetNetworkNumClients(netid)))

 else
 Print(“Not connected”)
 endif
 Print(“Host ID : “+
 Str(GetNetworkServerID(netid)))
 Print(“This client’s ID : “+
 Str(GetNetworkMyClientID(netid)))
 Print(“This client’s name : “+
 GetNetworkClientName(netid,
 GetNetworkMyClientID(netid)))
 if GetNetworkServerID(netid) =
 GetNetworkMyClientID(netid)
 Print(“This is the host machine”)
 endif
 endif

Activity 21.7
In Multiplayer02, the if joined =1..endif structure’s code
is changed to:

if joined = 1
 if IsNetworkActive(netid)
 Print(“Number of clients : “+
 Str(GetNetworkNumClients(netid)))
 else
 Print(“Not connected”)
 endif
 Print(“Host ID : “+
 Str(GetNetworkServerID(netid)))
 Print(“This client’s ID : “+
 Str(GetNetworkMyClientID(netid)))
 Print(“This client’s name : “+
 GetNetworkClientName(netid,
 GetNetworkMyClientID(netid)))
 if GetNetworkServerID(netid) =
 GetNetworkMyClientID(netid)
 Print(“This is the host machine”)
 if GetNetworkNumClients(netid) = 2
 SetNetworkNoMoreClients(netid)
 endif
 endif
 endif

Even although only two devices may be part of the network,
other devices can detect the network’s ID and the host’s ID.

Activity 21.8
No solution required.

Activity 21.9
No solution required.

Activity 21.10
The modified code for MoveHostSprite():

function MoveHostSprite()
 rem *** Get the message ***
 messageId = GetNetworkMessage(netid)
 rem *** Deal with all messages received ***
 while messageId <> 0
 rem *** Extract coordinates ***
 x# = GetNetworkMessageFloat(messageId)
 y# = GetNetworkMessageFloat(messageId)
 rem *** Move sprite ***
 if GetNetworkMessageFromClient(messageID)=2
 SetSpritePosition(1,x#,y#)
 else
 SetSpritePosition(2,x#,y#)
 endif
 rem *** Delete message ***
 DeleteNetworkMessage(messageId)
 rem *** Get next message ***
 messageId = GetNetworkMessage(netid)
 endwhile
endfunction

Activity 21.11
No solution required.

Hands On AGK BASIC: Accessing a Network 739

Activity 21.12
Two messages are displayed:

 App Viewer Network

and

 App Control Network

Activity 21.13
The message displayed is:

 MyNetwork3

The IP address should also appear when the Print()
statement is modified.

Activity 21.14
Code for TicTacToe:

rem *** Global Variables ***
global dim board[9]=[0,0,0,0,0,0,0,0,0] //The
playing area (0:empty,1:X,2:O)
global player //Current
player (1:X,2:O)
global joined=0 //Joined
network (0:no,1:yes)
global netid //Network ID
global clientid //This
client’s ID
global movesmade //Number of
moves made

SetUpNetwork()
SetUpBoard()
rem *** X to play ***
player = 1
 repeat
 rem *** IF this client’s turn ***
 if player = clientid
 rem *** Enter move ***
 move = MakeMove()
 else
 rem *** IF other client’s turn, get
 their move ***
 move = GetMove()
 endif
 rem *** Update screen with new move ***
 UpdateScreen(move)
 rem *** Change player to move ***
 player = 3 - player
 rem *** Check to see if game is finished ***
 r = IsComplete()
 Sync()
 until r<>0
 rem *** Show winning line or game drawn message

 FinishGame(r mod 10)
 Sync()
end

function SetUpNetwork()
 Print(“SetUpNetwork()”)
endfunction

function SetUpBoard()
 Print(“SetUpBoard()”)
endfunction

function MakeMove()
 Print(“MakeMove()”)
endfunction 1

function GetMove()
 Print(“GetMove()”)
endfunction 1

function UpdateScreen(square)
 Print(“UpdateScreen()”)
endfunction

function IsComplete()

 Print(“IsComplete()”)
endfunction 0
function FinishGame(status)
 Print(“FinishGame()”)

endfunction

Activity 21.15
Modified code for TicTacToe:

rem ***
rem *** TicTakToe ***
rem ***

rem *** Global Variables ***
global dim board[9]=[0,0,0,0,0,0,0,0,0] //The
playing area (0:empty,1:X,2:O)
global player //Current
player (1:X,2:O)
global joined=0 //Joined
network (0:no,1:yes)
global netid //Network ID
global clientid //This
client’s ID
global movesmade //Number of
moves made

rem ***
rem *** Main Program Logic ***
rem ***

SetUpNetwork()
SetUpBoard()
rem *** X to play ***
player = 1
 repeat
 rem *** IF this client’s turn ***
 if player = clientid
 rem *** Enter move ***
 move = MakeMove()
 else
 rem *** IF other client’s turn, get
 their move ***
 move = GetMove()
 endif
 rem *** Update screen with new move ***
 UpdateScreen(move)
 rem *** Change player to move ***
 player = 3 - player
 rem *** Check to see if game is finished ***
 r = IsComplete()
 Sync()
 until r<>0
 rem *** Show winning line or game drawn message

 FinishGame(r mod 10)
 Sync()
end

rem ***
rem *** Level 1 Functions ***
rem ***

function SetUpNetwork()
 rem *** Create Host and Client buttons ***
 AddVirtualButton(1,10,20,10)
 SetVirtualButtonText(1,”Host”)
 AddVirtualButton(2,30,20,10)
 SetVirtualButtonText(2,”Join”)
 rem *** Wait till button pressed ***
 repeat
 HandleButtons()
 Sync()
 until joined = 1
 rem *** Wait until both machines connected or
 timed out (30 seconds)***
 time = GetSeconds()
 repeat
 until GetNetworkNumClients(netid)=2 or
 GetSeconds()-time>30
 rem *** If we don’t have 2 clients, close game

 if GetNetworkNumClients(netid)<>2
 CloseGame()
 endif
 rem *** Get client’s id ***
 clientid = GetNetworkMyClientID(netid)

740 Hands On AGK BASIC: Accessing a Network

 rem *** Delete the network buttons ***
 DeleteVirtualButton(1)
 DeleteVirtualButton(2)
endfunction

function SetUpBoard()
 Print(“SetUpBoard()”)
endfunction

function MakeMove()
 Print(“MakeMove()”)
endfunction 1

function GetMove()
 Print(“GetMove()”)
endfunction 1

function UpdateScreen(square)
 Print(“UpdateScreen()”)
endfunction

function IsComplete()
 Print(“IsComplete()”)
endfunction 0

function FinishGame(status)
 Print(“FinishGame()”)
endfunction

rem **
rem *** Level 2 Functions ***
rem **

function HandleButtons()
 rem *** If Host button pressed and not already
 joined ***
 if GetVirtualButtonPressed(1)= 1 and joined = 0
 rem *** Host the app ***
 netid = HostNetwork(“TicTacToe”,
 ”Hostmachine”,1026)
 rem *** Record as joined ***
 joined = 1
 endif
 rem *** If Client button pressed and not already
 joined ***
 if GetVirtualButtonPressed(2)=1 and joined = 0
 rem *** Join as client ***
 clientname$ = Str(GetSeconds())
 netid = JoinNetwork(“TicTacToe”,clientname$)
 rem *** Record as joined ***
 joined = 1
 endif
endfunction

function CloseGame()
 rem *** Display message ***
 CreateText(1,”Game needs two machines to play”)
 SetTextSize(1,3)
 SetTextPosition(1,10,47)
 Sync()
 rem *** Wait 5 seconds then close game ***
 Sleep(5000)
 end
endfunction

Activity 21.16
Modified code for TicTacToe:

rem ***
rem *** TicTacToe ***
rem ***

rem *** Global Variables ***
global dim board[9]=[0,0,0,0,0,0,0,0,0] //The
playing area (0:empty,1:X,2:O)
global player //Current
player (1:X,2:O)
global joined=0 //Joined
network (0:no,1:yes)
global netid //Network ID
global clientid //This
client’s ID
global movesmade //Number of
moves made

rem ***
rem *** Main Program Logic ***
rem ***

SetUpNetwork()
SetUpBoard()
rem *** X to play ***
player = 1
 repeat
 rem *** IF this client’s turn ***
 if player = clientid
 rem *** Enter move ***
 move = MakeMove()
 else
 rem *** IF other client’s turn, get
 their move ***
 move = GetMove()
 endif
 rem *** Update screen with new move ***
 UpdateScreen(move)
 rem *** Change player to move ***
 player = 3 - player
 rem *** Check to see if game is finished ***
 r = IsComplete()
 Sync()
 until r<>0
 rem *** Show winning line or game drawn message

 FinishGame(r mod 10)
 Sync()
end

rem ***
rem *** Level 1 Functions ***
rem ***

function SetUpNetwork()
 rem *** Create Host and Client buttons ***
 AddVirtualButton(1,10,20,10)
 SetVirtualButtonText(1,”Host”)
 AddVirtualButton(2,30,20,10)
 SetVirtualButtonText(2,”Join”)
 rem *** Wait till button pressed ***
 repeat
 HandleButtons()
 Sync()
 until joined = 1
 rem *** Wait until both machines connected or
 timed out (30 seconds)***
 time = GetSeconds()
 repeat
 until GetNetworkNumClients(netid)=2 or
 GetSeconds()-time>30
 rem *** If we don’t have 2 clients, close game

 if GetNetworkNumClients(netid)<>2
 CloseGame()
 endif
 rem *** Get client’s id ***
 clientid = GetNetworkMyClientID(netid)
 rem *** Delete the network buttons ***
 DeleteVirtualButton(1)
 DeleteVirtualButton(2)
endfunction

function SetUpBoard()
 rem *** Set aspect ratio ***
 SetDisplayAspect(768/1024.0)
 SetClearColor(180,180,180)
 Sync()
 rem *** Load Images ***
 LoadImage(1,”TTTX.png”)
 LoadImage(2,”TTTO.png”)
 LoadImage(3,”TTTTitle.png”)
 LoadImage(4,”TTTBoard.png”)
 LoadImage(5,”TTTMySymbol.png”)
 LoadImage(6,”TTTNxtPlay.png”)
 LoadImage(7,”TTTTile01.png”)
 rem *** Title ***
 CreateSprite(3,3)
 SetSpriteSize(3,60,-1)
 SetSpritePosition(3,20,5)
 rem *** Board ***
 CreateSprite(4,4)
 SetSpriteSize(4,80,-1)
 SetSpritePosition(4,10,15)
 rem *** My Symbol Legend ***
 CreateSprite(5,5)
 SetSpriteSize(5,25,-1)
 SetSpritePosition(5,10,80)
 rem *** Symbol Box ***
 CreateSprite(7,7)

Hands On AGK BASIC: Accessing a Network 741

 SetSpriteSize(7,12,-1)
 SetSpritePosition(7,36,78)
 rem *** Player Shape ***
 CreateSprite(1,clientid)
 SetSpriteSize(1,8,-1)
 SetSpritePosition(1,38,79.5)
 rem *** Next Player Legend ***
 CreateSprite(6,6)
 SetSpriteSize(6,25,-1)
 SetSpritePosition(6,50,80)
 rem *** Symbol Box ***
 CreateSprite(8,7)
 SetSpriteSize(8,12,-1)
 SetSpritePosition(8,76,78)
 rem *** Next Player Shape ***
 CreateSprite(9,1)
 SetSpriteSize(9,8,-1)
 SetSpritePosition(9,78,79.5)
 rem *** Both symbols (X and O) in sprite ***
 SetSpriteAnimation(9,153,164,1)
 AddSpriteAnimationFrame(9,2)
 rem *** Create a set of hidden sprites ***
 rem *** one over each of the 9 areas on board

 id = 100
 for row = 0 to 2
 for col = 0 to 2
 inc id
 CreateSprite(id,0)
 SetSpriteDepth(id,9)
 SetSpriteSize(id,25,-1)
 SetSpritePosition(id,10+col*27,16.5+
 row*20)
 SetSpriteVisible(id,0)
 next col
 next row
 Sync()
endfunction

function MakeMove()
 Print(“MakeMove()”)
endfunction 1

function GetMove()
 Print(“GetMove()”)
endfunction 1

function UpdateScreen(square)
 Print(“UpdateScreen()”)
endfunction

function IsComplete()
 Print(“IsComplete()”)
endfunction 0

function FinishGame(status)
 Print(“FinishGame()”)
endfunction

rem **
rem *** Level 2 Functions ***
rem **

function HandleButtons()
 rem *** If Host button pressed and not already
 joined ***
 if GetVirtualButtonPressed(1)= 1 and joined = 0
 rem *** Host the app ***
 netid = HostNetwork(“TicTakToe”,
 ”Hostmachine”,1026)
 rem *** Record as joined ***
 joined = 1
 endif
 rem *** If Client button pressed and not already
 joined ***
 if GetVirtualButtonPressed(2)=1 and joined = 0
 rem *** Join as client ***
 clientname$ = Str(GetSeconds())
 netid = JoinNetwork(“TicTakToe”,clientname$)
 rem *** Record as joined ***
 joined = 1
 endif
endfunction

function CloseGame()
 rem *** Display message ***
 CreateText(1,”Game needs two machines to play”)
 SetTextSize(1,3)
 SetTextPosition(1,10,47)

 Sync()
 rem *** Wait 5 seconds then close game ***
 Sleep(5000)
 end
endfunction

Activity 21.17
Modified code for TicTacToe:

rem ***
rem *** TicTacToe ***
rem ***

rem *** Global Variables ***
global dim board[9]=[0,0,0,0,0,0,0,0,0] //The
playing area (0:empty,1:X,2:O)
global player //Current
player (1:X,2:O)
global joined=0 //Joined
network (0:no,1:yes)
global netid //Network ID
global clientid //This
client’s ID
global movesmade //Number of
moves made

rem ***
rem *** Main Program Logic ***
rem ***

SetUpNetwork()
SetUpBoard()
rem *** X to play ***
player = 1
 repeat
 rem *** IF this client’s turn ***
 if player = clientid
 rem *** Enter move ***
 move = MakeMove()
 else
 rem *** IF other client’s turn, get
 their move ***
 move = GetMove()
 endif
 rem *** Update screen with new move ***
 UpdateScreen(move)
 rem *** Change player to move ***
 player = 3 - player
 rem *** Check to see if game is finished ***
 r = IsComplete()
 Sync()
 until r<>0
 rem *** Show winning line or game drawn message

 FinishGame(r mod 10)
 Sync()
end

rem ***
rem *** Level 1 Functions ***
rem ***

function SetUpNetwork()
 rem *** Create Host and Client buttons ***
 AddVirtualButton(1,10,20,10)
 SetVirtualButtonText(1,”Host”)
 AddVirtualButton(2,30,20,10)
 SetVirtualButtonText(2,”Join”)
 rem *** Wait till button pressed ***
 repeat
 HandleButtons()
 Sync()
 until joined = 1
 rem *** Wait until both machines connected or
 timed out (30 seconds)***
 time = GetSeconds()
 repeat
 until GetNetworkNumClients(netid)=2 or
 GetSeconds()-time>30
 rem *** If we don’t have 2 clients, close game

 if GetNetworkNumClients(netid)<>2
 CloseGame()
 endif
 rem *** Get client’s id ***
 clientid = GetNetworkMyClientID(netid)

742 Hands On AGK BASIC: Accessing a Network

 rem *** Delete the network buttons ***
 DeleteVirtualButton(1)
 DeleteVirtualButton(2)
endfunction

function SetUpBoard()
 rem *** Set aspect ratio ***
 SetDisplayAspect(768/1024.0)
 SetClearColor(180,180,180)
 Sync()
 rem *** Load Images ***
 LoadImage(1,”TTTX.png”)
 LoadImage(2,”TTTO.png”)
 LoadImage(3,”TTTTitle.png”)
 LoadImage(4,”TTTBoard.png”)
 LoadImage(5,”TTTMySymbol.png”)
 LoadImage(6,”TTTNxtPlay.png”)
 LoadImage(7,”TTTTile01.png”)
 rem *** Title ***
 CreateSprite(3,3)
 SetSpriteSize(3,60,-1)
 SetSpritePosition(3,20,5)
 rem *** Board ***
 CreateSprite(4,4)
 SetSpriteSize(4,80,-1)
 SetSpritePosition(4,10,15)
 rem *** My Symbol Legend ***
 CreateSprite(5,5)
 SetSpriteSize(5,25,-1)
 SetSpritePosition(5,10,80)
 rem *** Symbol Box ***
 CreateSprite(7,7)
 SetSpriteSize(7,12,-1)
 SetSpritePosition(7,36,78)
 rem *** Player Shape ***
 CreateSprite(1,clientid)
 SetSpriteSize(1,8,-1)
 SetSpritePosition(1,38,79.5)
 rem *** Next Player Legend ***
 CreateSprite(6,6)
 SetSpriteSize(6,25,-1)
 SetSpritePosition(6,50,80)
 rem *** Symbol Box ***
 CreateSprite(8,7)
 SetSpriteSize(8,12,-1)
 SetSpritePosition(8,76,78)
 rem *** Next Player Shape ***
 CreateSprite(9,1)
 SetSpriteSize(9,8,-1)
 SetSpritePosition(9,78,79.5)
 rem *** Both symbols (X and O) in sprite ***
 SetSpriteAnimation(9,153,164,1)
 AddSpriteAnimationFrame(9,2)
 rem *** Create a set of hidden sprites ***
 rem *** one over each of the 9 areas on board

 id = 100
 for row = 0 to 2
 for col = 0 to 2
 inc id
 CreateSprite(id,0)
 SetSpriteDepth(id,9)
 SetSpriteSize(id,25,-1)
 SetSpritePosition(id,10+col*27,16.5+
 row*20)
 SetSpriteVisible(id,0)
 next col
 next row
 Sync()
endfunction

function MakeMove()
 rem *** Get empty square selected by player ***
 state = 0
 repeat
 repeat
 if GetPointerState() = 1 and state = 0
 id = GetSpriteHit(GetPointerX(),
 GetPointerY())
 state= 1
 else
 state = 0
 endif
 Sync()
 until id >= 101 and id <= 109
 square = id - 100
 until board[square]=0
 rem *** Record player’s move in array ***
 board[square] = player
 rem *** Send message of move made to other

 device ***
 messageID = CreateNetworkMessage()
 AddNetworkMessageInteger(messageID,player)
 AddNetworkMessageInteger(messageID,square)
 SendNetworkMessage(netid,3-clientid,messageID)
endfunction square

function GetMove()
 rem *** Get message from network ***
 repeat
 messageID = GetNetworkMessage(netid)
 until messageID <> 0
 player = GetNetworkMessageInteger(messageID)
 square = GetNetworkMessageInteger(messageID)
 rem *** Update board array ***
 board[square] = player
 rem *** Delete the message ***
 DeleteNetworkMessage(messageID)
endfunction square

function UpdateScreen(square)
 rem *** Create the sprite to be placed on board

 spriteid = 20+square
 CreateSprite(spriteid,player)
 SetSpriteSize(spriteid,12,-1)
 rem *** Position sprite ***
 SetSpritePosition(spriteid,17+(spriteid-21) mod
 3*27,21+(spriteid-21)/3*20)
 rem *** Change Next Player symbol ***
 SetSpriteFrame(9,3-player)
 Sync()
 rem *** Add 1 to the number of moves made ***
 inc movesmade
endfunction

function IsComplete()
 Print(“IsComplete()”)
endfunction 0

function FinishGame(status)
 Print(“FinishGame()”)
endfunction

rem **
rem *** Level 2 Functions ***
rem **

function HandleButtons()
 rem *** If Host button pressed and not already
 joined ***
 if GetVirtualButtonPressed(1)= 1 and joined = 0
 rem *** Host the app ***
 netid = HostNetwork(“TicTacToe”,
 ”Hostmachine”,1026)
 rem *** Record as joined ***
 joined = 1
 endif
 rem *** If Client button pressed and not already
 joined ***
 if GetVirtualButtonPressed(2)=1 and joined = 0
 rem *** Join as client ***
 clientname$ = Str(GetSeconds())
 netid = JoinNetwork(“TicTacToe”,clientname$)
 rem *** Record as joined ***
 joined = 1
 endif
endfunction

function CloseGame()
 rem *** Display message ***
 CreateText(1,”Game needs two machines to play”)
 SetTextSize(1,3)
 SetTextPosition(1,10,47)
 Sync()
 rem *** Wait 5 seconds then close game ***
 Sleep(5000)
 end
endfunction

Activity 21.18
One possible coding for IsComplete():

function IsComplete()

Hands On AGK BASIC: Accessing a Network 743

 winner = 0
 line = 0
 for c = 1 to 2
 rem *** Check rows ***
 for row = 1 to 7 step 3
 if board[row] = c and board[row+1] =c
 and board[row+2]=c
 winner = c
 line = (row-1) / 3
 endif
 next row
 rem *** Check columns ***
 for col = 1 to 3
 if board[col]=c and board[col+3]=c
 and board[col+6]=c
 winner = c
 line = 2+col
 endif
 next col
 rem *** Check diagonals ***
 if board[1]=c and board[5]=c
 and board[9]=c
 winner = c
 line = 6
 elseif board[3]=c and board[5]=c and
 board[7]=c
 winner = c
 line = 7
 endif
 next c
 result = winner*10+line
 rem *** If no winning line, check for a draw ***
 if result = 0 and movesmade = 9
 result = 9
 endif
endfunction result

To check the value returned by the IsComplete() function
we could add the following lines immediately before the
endfunction statement:

 Print(“Value returned : “+Str(result))

 Print(“Winner : “+Str(result / 10)

 Print(“Line/Draw : “+Str(result mod 10))

 Sync()

 Sleep(3000)

Activity 21.19
The complete code for TicTacToe():

rem ***
rem *** TicTacToe ***
rem ***

rem *** Global Variables ***
global dim board[9]=[0,0,0,0,0,0,0,0,0] //The
playing area (0:empty,1:X,2:O)
global player //Current
player (1:X,2:O)
global joined=0 //Joined
network (0:no,1:yes)
global netid //Network ID
global clientid //This
client’s ID
global movesmade //Number of
moves made

rem ***
rem *** Main Program Logic ***
rem ***

SetUpNetwork()
SetUpBoard()
rem *** X to play ***
player = 1
 repeat
 rem *** IF this client’s turn ***
 if player = clientid
 rem *** Enter move ***
 move = MakeMove()
 else
 rem *** IF other client’s turn, get
 their move ***
 move = GetMove()
 endif
 rem *** Update screen with new move ***

 UpdateScreen(move)
 rem *** Change player to move ***
 player = 3 - player
 rem *** Check to see if game is finished ***
 r = IsComplete()
 Sync()
 until r<>0
 rem *** Show winning line or game drawn message

 FinishGame(r mod 10)
 Sync()
end
rem ***
rem *** Level 1 Functions ***
rem ***

function SetUpNetwork()
 rem *** Create Host and Client buttons ***
 AddVirtualButton(1,10,20,10)
 SetVirtualButtonText(1,”Host”)
 AddVirtualButton(2,30,20,10)
 SetVirtualButtonText(2,”Join”)
 rem *** Wait till button pressed ***
 repeat
 HandleButtons()
 Sync()
 until joined = 1
 rem *** Wait until both machines connected or
 timed out (30 seconds)***
 time = GetSeconds()
 repeat
 until GetNetworkNumClients(netid)=2 or
 GetSeconds()-time>30
 rem *** If we don’t have 2 clients, close game

 if GetNetworkNumClients(netid)<>2
 CloseGame()
 endif
 rem *** Get client’s id ***
 clientid = GetNetworkMyClientID(netid)
 rem *** Delete the network buttons ***
 DeleteVirtualButton(1)
 DeleteVirtualButton(2)
endfunction

function SetUpBoard()
 rem *** Set aspect ratio ***
 SetDisplayAspect(768/1024.0)
 SetClearColor(180,180,180)
 Sync()
 rem *** Load Images ***
 LoadImage(1,”TTTX.png”)
 LoadImage(2,”TTTO.png”)
 LoadImage(3,”TTTTitle.png”)
 LoadImage(4,”TTTBoard.png”)
 LoadImage(5,”TTTMySymbol.png”)
 LoadImage(6,”TTTNxtPlay.png”)
 LoadImage(7,”TTTTile01.png”)
 rem *** Title ***
 CreateSprite(3,3)
 SetSpriteSize(3,60,-1)
 SetSpritePosition(3,20,5)
 rem *** Board ***
 CreateSprite(4,4)
 SetSpriteSize(4,80,-1)
 SetSpritePosition(4,10,15)
 rem *** My Symbol Legend ***
 CreateSprite(5,5)
 SetSpriteSize(5,25,-1)
 SetSpritePosition(5,10,80)
 rem *** Symbol Box ***
 CreateSprite(7,7)
 SetSpriteSize(7,12,-1)
 SetSpritePosition(7,36,78)
 rem *** Player Shape ***
 CreateSprite(1,clientid)
 SetSpriteSize(1,8,-1)
 SetSpritePosition(1,38,79.5)
 rem *** Next Player Legend ***
 CreateSprite(6,6)
 SetSpriteSize(6,25,-1)
 SetSpritePosition(6,50,80)
 rem *** Symbol Box ***
 CreateSprite(8,7)
 SetSpriteSize(8,12,-1)
 SetSpritePosition(8,76,78)
 rem *** Next Player Shape ***
 CreateSprite(9,1)
 SetSpriteSize(9,8,-1)
 SetSpritePosition(9,78,79.5)

744 Hands On AGK BASIC: Accessing a Network

 rem *** Both symbols (X and O) in sprite ***
 SetSpriteAnimation(9,153,164,1)
 AddSpriteAnimationFrame(9,2)
 rem *** Create a set of hidden sprites ***
 rem *** one over each of the 9 areas on board

 id = 100
 for row = 0 to 2
 for col = 0 to 2
 inc id
 CreateSprite(id,0)
 SetSpriteDepth(id,9)
 SetSpriteSize(id,25,-1)
 SetSpritePosition(id,10+col*27,16.5+
 row*20)
 SetSpriteVisible(id,0)
 next col
 next row
 Sync()
endfunction

function MakeMove()
 rem *** Get empty square selected by player ***
 state = 0
 repeat
 repeat
 if GetPointerState() = 1 and state = 0
 id = GetSpriteHit(GetPointerX(),
 GetPointerY())
 state= 1
 else
 state = 0
 endif
 Sync()
 until id >= 101 and id <= 109
 square = id - 100
 until board[square]=0
 rem *** Record player’s move in array ***
 board[square] = player
 rem *** Send message of move made to other
 device ***
 messageID = CreateNetworkMessage()
 AddNetworkMessageInteger(messageID,player)
 AddNetworkMessageInteger(messageID,square)
 SendNetworkMessage(netid,3-clientid,messageID)
endfunction square

function GetMove()
 rem *** Get message from network ***
 repeat
 messageID = GetNetworkMessage(netid)
 until messageID <> 0
 player = GetNetworkMessageInteger(messageID)
 square = GetNetworkMessageInteger(messageID)
 rem *** Update board array ***
 board[square] = player
 rem *** Delete the message ***
 DeleteNetworkMessage(messageID)
endfunction square

function UpdateScreen(square)
 rem *** Create the sprite to be placed on board

 spriteid = 20+square
 CreateSprite(spriteid,player)
 SetSpriteSize(spriteid,12,-1)
 rem *** Position sprite ***
 SetSpritePosition(spriteid,17+(spriteid-21) mod
 3*27,21+(spriteid-21)/3*20)
 rem *** Change Next Player symbol ***
 SetSpriteFrame(9,3-player)
 Sync()
 rem *** Add 1 to the number of moves made ***
 inc movesmade
endfunction

function IsComplete()
 winner = 0
 line = 0
 for c = 1 to 2
 rem *** Check rows ***
 for row = 1 to 7 step 3
 if board[row]=c and board[row+1]=c
 and board[row+2]=c
 winner = c
 line = (row-1) / 3
 endif
 next row

 rem *** Check columns ***
 for col = 1 to 3
 if board[col]=c and board[col+3]=c
 and board[col+6]=c
 winner = c
 line = 2+col
 endif
 next col
 rem *** Check diagonals ***
 if board[1]=c and board[5]=c
 and board[9]=c
 winner = c
 line = 6
 elseif board[3]=c and board[5]=c
 and board[7]=c
 winner = c
 line = 7
 endif
 next c
 result = winner*10+line
 if result = 0 and movesmade = 9
 result = 9
 endif
endfunction result

function FinishGame(status)
 rem *** Draw or win ***
 if status = 9
 GameDrawn()
 else
 ShowWinningLine(status)
 endif
endfunction

rem **
rem *** Level 2 Functions ***
rem **

function HandleButtons()
 rem *** If Host button pressed and not already
 joined ***
 if GetVirtualButtonPressed(1)= 1 and joined = 0
 rem *** Host the app ***
 netid = HostNetwork(“TicTacToe”,
 ”Hostmachine”,1026)
 rem *** Record as joined ***
 joined = 1
 endif
 rem *** If Client button pressed and not already
 joined ***
 if GetVirtualButtonPressed(2)=1 and joined = 0
 rem *** Join as client ***
 clientname$ = Str(GetSeconds())
 netid = JoinNetwork(“TicTacToe”,clientname$)
 rem *** Record as joined ***
 joined = 1
 endif
endfunction

function CloseGame()
 rem *** Display message ***
 CreateText(1,”Game needs two machines to play”)
 SetTextSize(1,3)
 SetTextPosition(1,10,47)
 Sync()
 rem *** Wait 5 seconds then close game ***
 Sleep(5000)
 end
endfunction

function GameDrawn()
 rem *** Load image used ***
 LoadImage(99,”TTTDraw.png”)
 rem *** Display message ***
 CreateSprite(99,99)
 SetSpriteSize(99,60,-1)
 SetSpritePositionByOffset(99,50,47)
 Sync()
 rem *** Wait 5 seconds ***
 Sleep(5000)
endfunction

function ShowWinningLine(line)
 rem *** Load image used ***
 LoadImage(99,”TTTLine.png”)
 rem *** Create sprite ***
 CreateSprite(99,99)
 SetSpriteSize(99,-1,60)

Hands On AGK BASIC: Accessing a Network 745

 rem *** Place horizontally ...***
 if line <= 2
 SetSpriteAngle(99,90)
 SetSpritePositionByOffset(99,49,26+line*20)
 endif
 rem *** Place vertically ...***
 if line >= 3 and line <= 5
 SetSpritePosition(99,20+(line-3)*27,16)
 endif
 rem *** Diagonal TL to BR ***
 if line = 6
 SetSpriteAngle(99,135)
 SetSpritePositionByOffset(99,49,47)
 endif
 rem *** Diagonal BL to TR ***
 if line = 7
 SetSpriteAngle(99,45)
 SetSpritePositionByOffset(99,49,47)
 endif
 Sync()
 rem *** Wait for 5 seconds ***
 Sleep(5000)
endfunction

Activity 21.20
No solution required.

Activity 21.21
No solution required.

Activity 21.22
The output is a string containing the HTML code contained
in the file index.html downloaded from the Digital Skills
website.

Activity 21.23
No solution required.

Activity 21.24
No solution required.

Activity 21.25
No solution required.

746 Hands On AGK BASIC: Accessing a Network

Hands On AGK BASIC : Bits and Pieces 747

In this Chapter:

T Date and Time Statements

T QR Coding

T Advert Insertion Statements

T Error Handling Statements

T Benchmarking Statements

T Resuming an App

Bits and Pieces

748 Hands On AGK BASIC: Bits and Pieces

Date and Time

Introduction
There are several commands which allow you to discover the date and time. These
are covered in this chapter.

Standard Date Statements
GetCurrentDate()

The current date (as held within the executing device) can be found using the
GetCurrentDate() statement which has the format shown in FIG-22.1.

The string returned is in the form YYYY-MM-DD so, for example, the second of
May 2012 would be returned as the string 2012-05-02.

The program in FIG-22.2 gets the current date and creates three strings, one for each
component of the date.

GetDayOfWeek()

The day on which the current date falls can be discovered using the GetDayOfWeek()
statement (see FIG-22.3).

FIG-22.1

GetCurrentDate()

GetCurrentDate ()string

FIG-22.2

Extracting the
Elements of a Date

rem *** Get today’s date ***
date$ = GetCurrentDate()

rem *** Extract the day, month and year ***
day$ = Right(date$,2)
year$ = Left(date$,4)
month$ = Mid(date$,6,2)

rem *** Display result in British format ***
do
 Print(day$+”/”+month$+”/”+year$)
 Sync()
loop

Activity 22.1

Start a new project called Date01 and implement the code given in FIG-22.2.

If your country uses a different date format, modify the Print() statement in
the program accordingly.

Test and save your project.

FIG-22.3

GetDayOfWeek()

GetDayOfWeek ()integer

Hands On AGK BASIC: Bits and Pieces 749

The date is returned as an integer value between 0 and 6. 0 represents Sunday, 1
Monday, etc.

The program in FIG-22.4 is a variation on Date01, this time adding the day of the
week to the displayed date.

GetLeapYear()

The GetLeapYear() function returns 1 if the current year is a leap year (a 366 day
year), otherwise zero is returned. The statement’s format is shown in FIG-22.5.

For example, the line

 result = GetLeapYear()

would set result to 1 if run in the years 2012, 2016, 2020, etc and return 0 for the years
2013, 2014, 2015, 2017, etc.

Unix Date Statements
The Unix operating system dates everything in seconds from midnight 1st January
1970 using the Coordinated Universal Time (UTC) standard. It may not be exactly
accurate with actual time since it does not take into account leap seconds which are
occasionally added.

AGK offers statements which convert a Unix time to day, month and year.

FIG-22.4

Displaying the Day
of the Week

rem *** Day names ***
dim dayNames[6] as string =
[“Sunday”,”Monday”,”Tuesday”,”Wednesday”,”Thursday”,”Friday”,
”Saturday”]

rem *** Get today’s date ***
date$ = GetCurrentDate()

rem *** Extract the day, month and year ***
day$ = Right(date$,2)
year$ = Left(date$,4)
month$ = Mid(date$,6,2)

rem *** Display result in British format ***
do
 Print(dayNames[GetDayOfWeek()]+” “+day$+”/”+month$+”/”+year$)
 Sync()
loop

Activity 22.2

Modify Date01 to match the code in FIG-22.4.

Test and save your project.

FIG-22.5

GetLeapYear()

GetLeapYear ()integer

750 Hands On AGK BASIC: Bits and Pieces

GetDayFromUnix()

To find the day element of a date based on Unix time, use the GetDayFromUnix()
statement (see FIG-22.6).

where

 iunixtime is an integer value giving the seconds since 1/1/1970.

GetMonthFromUnix()

To find the month element of a date based on Unix time, use the GetMonthFromUnix()
statement (see FIG-22.7).

where

 iunixtime is an integer value giving the seconds since 1/1/1970.

GetYearFromUnix()

To find the year element of a date based on Unix time, use the GetYearFromUnix()
statement (see FIG-22.8).

where

 iunixtime is an integer value giving the seconds since 1/1/1970.

The program in FIG-22.9 makes use of these routines to covert the Unix time
1335893487 to a standard date.

FIG-22.6

GetDayFromUnix()

GetDayFromUnix ()integer iunixtime

FIG-22.7

GetMonthFromUnix()

GetMonthFromUnix ()integer iunixtime

FIG-22.8

GetYearFromUnix()

GetYearFromUnix ()integer iunixtime

FIG-22.9

Obtaining a Standard
Date from Unix Time

rem *** Unix Date ***

rem *** Convert to day, month, year ***
day = GetDayFromUnix(1335893487)
month = GetMonthFromUnix(1335893487)
year = GetYearFromUnix(1335893487)

rem *** Display result in British format ***
do
 Print(Str(day)+”/”+Str(month)+”/”+Str(year))
 Sync()
loop

Activity 22.3

Start a new project called Date02 and implement the code in FIG-22.9.

Test and save your project.

Hands On AGK BASIC: Bits and Pieces 751

Time Statements
If you need the time in hours, minutes and seconds, then there are a set of routines
for that too.

GetCurrentTime()

The current time can be obtained as a string in the format HH-MM-SS using the
GetCurrentTime() statement (see FIG-22.10).

GetHoursFromUnix()

The hours component of a time can be derived from a Unix time using
GetHoursFromUnix() (see FIG-22.11).

where

 iunixtime is an integer value giving the seconds since 1/1/1970.

GetMinutesFromUnix()

The minutes component of a time can be derived from a Unix time using
GetMinutesFromUnix() (see FIG-22.12).

where

 iunixtime is an integer value giving the seconds since 1/1/1970.

GetSecondsFromUnix()

The seconds component of a time can be derived from a Unix time using
GetSecondsFromUnix() (see FIG-22.13).

where

 iunixtime is an integer value giving the seconds since 1/1/1970.

FIG-22.10

GetCurrentTime()

GetCurrentTime ()string

Use the
GetStringToken()

function to extract the
parts of the time from
the string.

Activity 22.4

Start a new project called Time01 which extracts the hours, minutes and
seconds as integer values from the string returned by GetCurrentTime().

Calculate and display the number of seconds passed since the start of the day.

Test and save your project.

FIG-22.11

GetHoursFromUnix()

GetHoursFromUnix ()integer iunixtime

FIG-22.12

GetMinutesFromUnix()

GetMinutesFromUnix ()integer iunixtime

FIG-22.13

GetSecondsFromUnix()

GetSecondsFromUnix ()integer iunixtime

752 Hands On AGK BASIC: Bits and Pieces

GetUnixFromDate()

To discover the Unix time for a given date and time, we can use GetUnixFromDate()
(see FIG-22.14).

where

 iyear, imonth, iday are integer values giving the date.

 ihour, imin, isec are integer values giving the time.

A typical call to the statement might be:

 seconds = GetUnixFromDate(2012,5,2,11,48,20)

Dates before 1/1/1970 will return negative values. On 32 bit systems, the dates must
lie between 1901 and 2038.

Summary
± Use GetCurrentDate() to obtain today’s date as a string in the format YYYY-

MM-DD.

± Use GetDayOfWeek() to obtain the day of the week in numeric form
(0: Sunday, 1: Monday, etc.)

± Use GetLeapYear() to check if the current year is a leap year.

± Unix time is measured in seconds from midnight on 1/1/1970.

± Use GetDayFromUnix(), GetMonthFromUnix(), and GetYearFromUnix() to get
the day, month and year of a Unix time.

± Use GetCurrentTime() to obtain the current time of day as a string in the
format HH-MM-SS.

± Use GetHoursFromUnix(), GetMinutesFromUnix(), and
GetSecondsFromUnix() to get the hours, minutes and seconds components of a
Unix time.

± Use GetUnixFromDate() to convert a standard date and time into Unix time.

Activity 22.5

Start a new project called Time02 and, using the same Unix time value shown
in FIG-22.9, display the time of day in hours, minutes and seconds.

Test and save your project.

FIG-22.14 GetUnixFromDate()

GetUnixFromDate ()integer iyear imonth iday ihour imin isec

Hands On AGK BASIC: Bits and Pieces 753

QR Coding

Introduction
Quick Response code (or QR code, as it is more usually called), is a two dimensional
barcoding system for coding text, binary or Japanese Kanji characters. A typical QR
code is shown in FIG-22.15.

The coding system was first used in the Japanese car industry but has since become
widely popular in many other areas. The reason for its growing popularity is that it
can be decoded using a smartphone or tablet with the appropriate software.

AGK contains two QR code-related statements. One to create a QR code and the
other to decode a QR code.

QR Code Statements
EncodeQRCode()

To create a QR code for a piece of text, use EncodeQRCode() (see FIG-22.16).

where

 text is a string giving the text to be encoded.

 ierr is an integer value (0 to 3) giving the level of automatic error
 correction to be embedded in the code (0: lowest, 3: highest).

The function creates an image of the QR code and returns the ID assigned to that
image. To see the QR code, all you need to do is assign the image to a sprite.

The program in FIG-22.17 allows the user to enter text and that text is then displayed
in the form of a QR code.

FIG-22.15

A QR Barcode

FIG-22.16

EncodeQRCode()

EncodeQRCode ()integer text ierr

FIG-22.17

Creating a QR Code rem *** Convert Text to QR Code ***

rem *** Create focused edit box ***
CreateEditBox(1)
SetEditBoxSize(1,40,5)
SetEditBoxPosition(1,20,10)
SetEditBoxFocus(1,1)
SetEditBoxTextSize(1,2)

754 Hands On AGK BASIC: Bits and Pieces

DecodeQRCode()

To decode an existing QR code, use DecodeQRCode() (see FIG-22.18).

where

 imgId is an integer value giving the ID of the image to be decoded.

The function returns an empty string if no QR code was found in the image or the
code could not be interpreted.

The program in FIG-22.19 uses a device’s built-in camera to scan a QR image. If the
image contains a web address, the browser is opened at that site, otherwise the QR
text is displayed. If you don’t have a camera on your device, a default QR code image
is loaded.

FIG-22.17
(continued)

Creating a QR Code

rem *** Create empty sprite ***
CreateSprite(1,0)
SetSpriteSize(1,40,-1)
SetSpritePosition(1,30,30)

do
 rem *** If edit box loses focus ***
 if GetEditBoxChanged(1) = 1
 rem *** Get its text ... ***
 text$ = GetEditBoxText(1)
 rem *** ... and convert to QR ***
 id = EncodeQRCode(text$,1)
 SetSpriteImage(1,id)
 endif
 Sync()
loop

Activity 22.6

Start a new project called QRCode01 and implement the code given in FIG-
22.17.

Test and save your project.

FIG-22.18

DecodeQRCode()

DecodeQRCode ()string imgId

FIG-22.19

Reading a QR Code

rem *** Get QR from Camera and load Site ***

rem *** Get an image from the camera ***
id = GetCameraImage()
rem *** If no image, use default image ***
if id = 0
 id = LoadImage(“QRExample.png”)
endif
rem *** Show image in sprite ***
CreateSprite(1,id)
SetSpriteSize(1,20,-1)
SetSpritePosition(1,20,20)

Hands On AGK BASIC: Bits and Pieces 755

Summary
± A QR code is a two-dimensional barcoding system which can store text, binary

or Japanese Kanji characters.

± Use EncodeQRCode() to create a QR code image from specified text.

± Use DecodeQRCode() to convert a QR code image to a string.

FIG-22.19
(continued)

Reading a QR Code

rem *** If text starts “www.” ***
rem *** open browser at site ***
if Lower(Left(text$,4)) = “www.”
 OpenBrowser(text$)
else
 rem *** else show text from QR ***
 CreateText(1,text$)
endif
do
 Sync()
loop

function GetCameraImage()
 rem *** If camera software operational ***
 if ShowImageCaptureScreen() = 1
 rem *** Wait until an image has been captured ***
 repeat
 Sync()
 until IsCapturingImage() = 0
 rem *** Get ID assigned to captured image ***
 id = GetCapturedImage()
 else
 id = 0
 endif
endfunction id

Activity 22.7

Start a new project called QRCode02 and implement the code given in FIG-
22.19.

If your device does not have a built-in camera, copy the file AGKDownloads/
Chapter22/QRExample.png to the media folder.

When running the program, take a snap of the QR code printed at the start of
this section. This will be decoded to give you access to a web address.

Save your project.

756 Hands On AGK BASIC: Bits and Pieces

Advertising

Introduction
If you intend to give your apps away for free but would still like to earn money, then
the way to go is to add advertisements to your product.

The first stage in adding adverts to your app is to sign up with an advertising agency
that specialises in this area. This will supply you with a unique code which must be
used when setting up the advertising areas within your app. The current version of
AGK (May 2012) specifically contains a command for using the inneractive agency.

The actual advert that is inserted will be up to the advertising agency and they will
pay you for each click on the advert.

AGK contains several commands to allow you to create, position and delete
advertising space within your app.

Ad Statements
SetInneractiveDetails()

The SetInneractiveDetails() function sets up the necessary details within your
app to allow live adverts to be placed within the area defined. To use this statement
you will need to have created an account with inneractive (you can find them at
inner-active.com).

The SetInneractiveDetails() statement has the format shown in FIG-22.20.

where

 icode is an integer value giving the account code supplied to you when
 you signed up with inneractive.

CreateAdvert()

To create an advertising window within your app, use the CreateAdvert() statement
(see FIG-22.21).

where

 itype is an integer value (0 only - at the moment) giving the type of
 advert space being created (0: 320x50 pixel).

 ihorz is an integer value (0,1 or 2) giving the horizontal positioning of
 the advert area (0: left, 1: centre, 2: right).

 ivert is an integer value (0,1 or 2) giving the vertical positioning of
 the advert area (0: top, 1: centre, 2: bottom).

FIG-22.20

SetInneractiveDetails

SetInneractiveDetails ()icode

FIG-22.21

CreateAdvert()

CreateAdvert ()itype ihorz ivert

Hands On AGK BASIC: Bits and Pieces 757

 itest is an integer value (0 or 1) used to specify if the displayed advert
 is for test purposes only (1) or is a real advert (0).

IMPORTANT: Make sure you always use the test advert option during the
development of your app, only changing to the real advert option when you are ready
to deploy your application through app stores. If the advertiser suspects you are
clicking a real advert during development, they will close your account and you will
not be able to benefit from advertising revenue with that agency.

SetAdvertPosition()

Some advertisers allow greater control about positioning and sizing of the advert.
Where this is possible, you can use the SetAdvertPosition() statement (see FIG-
22.22).

where

 x,y are real values giving the coordinates for the top-left corner of
 the advert.

 fwidth is a real number giving the width of the advert. The height of the
 advert will be adjusted automatically to maintain the width-to-
 height ratio.

DeleteAdvert()

If you want to remove an advertising area from your app, use the DeleteAdvert()
statement (see FIG-22.23).

Obviously, it is not possible to give you a working example of an advert in place
within an app, but the general approach is encapsulated in the function shown in FIG-
22.24.

Summary
± To add adverts to your app, you must first sign up with an advertising agency

such as inneractive.

± Use SetInneractiveDetails() to add your inneractive-assigned code to your
program. This enables test and live adverts.

± Use CreateAdvert() to create advertising space in your app.

FIG-22.22

SetAdvertPosition()

SetAdvertPosition ()x y fwidth

FIG-22.23

DeleteAdvert()

DeleteAdvert ()

FIG-22.24

General approach to
placing an advert in your
App

function PlaceAdvert()
 SetInnerActiveDetails(“agency code goes here”)
 CreateAdvert(0,1,2,1) //Test advert - change later
 SetAdvertPosition(0,89,100) //Position as required
endfunction

758 Hands On AGK BASIC: Bits and Pieces

± Make sure you use test mode for your adverts when developing and testing
your app.

± Change the advert option to live when you are about to submit your app to the
app store.

± Use SetAdvertPosition() to position and resize adverts where this is
allowed.

± Use DeleteAdvert() to remove the advert area from your app.

Hands On AGK BASIC: Bits and Pieces 759

Errors

Introduction
Somewhere in all the projects you’ve been working on you probably had your
program stop and display an error message. Perhaps a line such as Sprite 4 does not
exist at line 6.

You can gain some control over how your program handles this type of situation
using the various error control commands.

Error Handling Statements
SetErrorMode()

To specify how you want your program to react to these run-time errors, use the
SetErrorMode() statement (see FIG-22.25).

where

 imode is an integer value (0,1 or 2).

A value of 0 will cause the program to ignore the error entirely and attempt to carry
on executing your code. You can use the other error-handling statements (see below)
to discover what error occurred.

Setting imode to 1 will cause the program to report the error in a message window.
but the program will attempt to continue.

A value of 2 causes the program to terminate, reporting the error and throwing an
exception (which is also displayed in a message box).

GetErrorOccurred()

Once you have set the error mode, you can detect that an error has occurred using
GetErrorOccurred() (see FIG-22.26).

The function returns 1 if an error has occurred, otherwise zero is returned.

GetLastError()

A string giving a description of the last error to have occurred can be retrieved using
GetLastError() (see FIG-22.27).

A simple program making use of these three statements is shown in FIG-22.28.

FIG-22.25

SetErrorMode()

SetErrorMode ()imode

Throwing an exception
is a method of handling
error situations in C++
and similar languages.
It cannot be handled in
your BASIC program.

FIG-22.26

GetErrorOccurred()

GetErrorOccurred ()integer

FIG-22.27

GetLastError()

GetLastError ()string

760 Hands On AGK BASIC: Bits and Pieces

Summary
± Use SetErrorMode() to control how a program responds to a runtime error.

± Use GetErrorOccurred() to detect if an error has occurred during the
execution of the program.

± Use GetLastError() to access a message describing the last error to have
occurred.

FIG-22.28

Using Error-Handling
Statements

rem *** Handling errors ***

rem *** Ignore errors ***
SetErrorMode(0)

rem *** Try to load a non-existent image ***
LoadImage(1,”MyPic.png”)

rem *** Report any error ***
if GetErrorOccurred() = 1
 Print(GetLastError())
 Sync()
 Sleep(2000)
endif

do
 Print (“Program continues”)
 Sync()
loop

Activity 22.8

Start a new project called ErrorHandling and implement the code given in
FIG-22.28.

Test the program as it attempts to load the unavailable file.

Re-test the program using error modes 1 and 2, observing the difference
between each option.

Hands On AGK BASIC: Bits and Pieces 761

Benchmarking

Introduction
Any game that involves real-time movement requires a reasonably high frame rate.
Without that, movement will look unnatural and jerky.

If your game has a poor frame rate, AGK contains various benchmarking statements
that allow you to discover timings and counts for various elements in your program.
These timings can help you identify what aspects of the program are causing poor
performance and where to make changes to your code or game design. The counts
may be useful for finding out what components in your program are causing any
unacceptable timings.

Benchmarking Statements
GetDrawingSetupTime()

You can find out the time taken (in seconds) to set up the required visual elements of
a screen using GetDrawingSetupTime() (see FIG-22.29).

The time returned includes the time taken to send details to the graphics processing
unit (GPU).

GetDrawingTime()

To discover the time taken (in seconds) to swap screen buffers (as the back buffer
becomes the front buffer), use GetDrawingTime() (see FIG-22.30).

The time will include any delays caused by waiting for the GPU to become ready.

GetPhysicsTime()

If you are using the physics engine, you can find out the time spent calculating the
physics for each frame using GetPhysicsTime() (see FIG-22.31).

GetUpdateTime()

The time taken to do everything other than physics in the last frame build-up is
returned by the GetUpdateTime() function (see FIG-22.32).

GetManagedSpriteCount()

AGK contains a sprite manager. The sprite manager is responsible for handling all

FIG-22.29

GetDrawingSetupTime()

GetDrawingSetupTime ()float

FIG-22.30

GetDrawingTime()

GetDrawingTime ()float

FIG-22.31

GetPhysicsTime()

GetPhysicsTime ()integer

FIG-22.32

GetUpdateTime()

GetUpdateTime ()integer

762 Hands On AGK BASIC: Bits and Pieces

the sprites currently in existence. Amongst other things, it ensures that animated
sprites are displaying the correct frame and identifies which sprites are on-screen and
hence need to be drawn.

The number of sprites being handled by the program can be discovered using the
GetManagedSpritesCount() statement (see FIG-22.33).

GetManagedSpriteDrawnCount()

If a program contains sprites that are currently off-screen or invisible, then there will
be a difference between the number of sprites being managed and the number being
drawn. To discover how many sprites need to be drawn for the current frame, use
GetManagedSpriteDrawnCount() (see FIG-22.34).

GetManagedSpriteDrawCalls()

To find the number of OpenGL calls required to create the visible sprites, use the
GetManagedSpriteDrawCalls() statement (see FIG-22.35).

OpenGL (Open Graphics Library) is a set of multi-platform graphics routines and is
used by AGK to draw all visual components.

GetManagedSpriteSortedCount()

A count of the changes to the sprites’ depth or texture can be obtained using
GetManagedSpriteSortedCount() (see FIG-22.36).

GetParticleDrawnPointCount()

If your program is using particles (see Chapter 13), then the number of particles
drawn using the point method in the last frame can be found using
GetParticleDrawnPointCount() (see FIG-22.37).

GetParticleDrawnQuadCount()

When particles become larger (more than about 64 screen pixels), then they are
drawn using the quad method (a slower technique than point drawing). The number
of particles drawn using the quad method can be determined using
GetParticleDrawnQuadCount() (see FIG-22.38).

FIG-22.33

GetManagedSpriteCount() GetManagedSpriteCount ()integer

FIG-22.34

GetManagedSprite
DrawnCount()

GetManagedSpriteDrawnCount ()integer

FIG-22.35

GetManagedSprite
DrawCalls()

GetManagedSpriteDrawCalls ()integer

FIG-22.36

GetManagedSprite
SortedCount()

GetManagedSpriteSortedCount ()integer

FIG-22.37

GetParticleDrawn
PointCount()

GetParticleDrawnPointCount ()integer

FIG-22.38
GetParticleDrawn
QuadCount() GetParticleDrawnQuadCount ()integer

Hands On AGK BASIC: Bits and Pieces 763

GetPixelsDrawn()

The approximate number of pixels drawn in the last frame can be discovered using
GetPixelsDrawn() (see FIG-22.39).

The program in FIG-22.40 is the apples and oranges program we last saw in Chapter
20 with additional statements to display the various benchmark timings and counts
values.

FIG-22.39

GetPixelsDrawn()

GetPixelsDrawn ()integer

FIG-22.40

Displaying Benchmark
Values

rem *** Benchmark Counts and Times ***

rem *** Set background colour ***
SetClearColor(150,150,170)
Sync()

rem *** Load images ***
LoadImage(1,”Apple.png”)
LoadImage(2,”Orange.png”)
LoadImage(3,”GreenApple.png”)

rem *** Create 10 apple sprites ***
CreateSprite(1,1)
SetSpriteSize(1,6,-1)
SetSpritePosition(1,Random(0,92),Random(0,92))
rem *** Red apples ***
for c = 2 to 10
 CloneSprite(c,1)
 SetSpritePosition(c,Random(0,92),Random(0,92))
next c
rem *** Change 5 apples to green ***
for c = 6 to 10
 SetSpriteImage(c,3)
next c

rem *** Create 10 orange sprites ***
CreateSprite(11,2)
SetSpriteSize(11,6,-1)
SetSpritePosition(11,Random(0,92),Random(0,92))
for c = 12 to 20
 CloneSprite(c,11)
 SetSpritePosition(c,Random(0,92),Random(0,92))
next c

rem *** Group apples ***
for c = 1 to 10
 SetSpriteGroup(c,-1)
next c
rem *** Set the category for red apples ***
for c = 1 to 5
 SetSpriteCategoryBits(c,%100)
next c

rem *** Set the category for green apples ***
for c = 6 to 10
 SetSpriteCategoryBits(c,%1000)
next c

764 Hands On AGK BASIC: Bits and Pieces

FIG-22.40
(continued)

Displaying Benchmark
Values

rem *** Group and categorise oranges ***
for c = 11 to 20
 SetSpriteGroup(c,-2)
 rem *** Set the category for oranges ***
 SetSpriteCategoryBits(c,%10)
 rem *** Set the categories with which oranges can collide ***
 SetSpriteCollideBits(c,%101)
next c

rem *** Switch on physics ***
for c = 1 to 20
 SetSpriteShape(c,1)
 SetSpritePhysicsOn(c,2)
 angle = Random(0,359)
 SetSpritePhysicsVelocity(c,Cos(angle)*50,Sin(angle)*50)
 SetSpritePhysicsRestitution(c,1)
next c

rem *** No gravity ***
SetPhysicsGravity(0,0)

rem *** Record start time ***
time = GetSeconds()
do
 BenchMarkTimes()
 BenchMarkCounts()
 rem *** If 10 seconds passed ***
 if GetSeconds() - time = 10
 rem *** Set all oranges to collide with green apples ***
 for c = 11 to 20
 SetSpriteCollideBit(c,4,1)
 next c
 endif
 Sync()
loop

function BenchmarkTimes()
 Print(“Drawing setup time : “+Str(GetDrawingSetupTime()))
 Print(“Drawing time : “+Str(GetDrawingTime()))
 Print(“Physics time : “+Str(GetPhysicsTime()))
 Print(“Update time : “+Str(GetUpdateTime()))
endfunction

function BenchMarkCounts()
 Print(“Managed sprite count : “
 +Str(GetManagedSpriteCount()))
 Print(“Managed sprites drawn count : “
 +Str(GetManagedSpriteDrawnCount()))
 Print(“Managed sprites draw calls : “
 +Str(GetManagedSpriteDrawnCalls()))
 Print(“Managed sprite sorted count : “
 +Str(GetManagedSpriteSortedCount()))
 Print(“Particles drawn(points)count: “
 +Str(GetParticleDrawnPointCount()))
 Print(“Particles drawn(quad)count : “
 +Str(GetParticleDrawnQuadCount()))
 Print(“Pixels drawn count : “+Str(GetPixelsDrawn()))
endfunction

Hands On AGK BASIC: Bits and Pieces 765

Summary
± Use GetDrawingSetupTime() to discover the time required to set up the

required visual elements of a screen.

± Use GetDrawingTime() to discover the time taken to swap screen buffers.

± Use GetPhysicsTime() to find out the time spent calculating the physics for
each frame.

± Use GetUpdateTime() to find the time taken to do everything other than
physics in the last frame build-up.

± Use GetManagedSpriteCount() to discover the number of sprites being
handled by the sprite manager during each frame.

± Use GetManagedSpriteDrawnCount() to discover the number of sprites being
drawn during each frame.

± Use GetManagedSpriteDrawCalls() to find the number of calls to OpenGL
routines during each frame.

± Use GetManagedSpriteSortedCount() to find the number of changes to sprite
textures or layers during each frame.

± Use GetParticleDrawnPointCount() to find the number of particles drawn
using the point method during each frame.

± Use GetParticleDrawnQuadCount() to find the number of particles drawn
using the quad method during each frame.

± Use GetPixelsDrawn() to find the number of pixels drawn during each frame.

Activity 22.9

Update your PhysicsGroup project (which you created in Activity 20.27) to
include the Benchmark functions given in FIG-22.40.

Add calls to the functions within the program’s do..loop and observe the
values displayed.

Save your project.

766 Hands On AGK BASIC: Bits and Pieces

Paused Apps
If your app is being run on a smartphone, it will be halted by any incoming phone
call. Your app will then be passed to the background while you deal with the call.
When the call is over, the app will be restarted. Even when using a tablet with only a
Wi-Fi connection, the user may jump to another app in the middle of running your
game. On a PC, your app will continue to run even if another window gains focus.

When your app regains control of the device, it is best to display a pause screen to
allow the user to decide exactly when the game is to restart.

GetResumed()

To detect that your app has just regained control after being held in the background,
use GetResumed() (see FIG-22.41).

The function returns 1 if the app has just been reactivated, otherwise zero is returned.

The program in FIG-22.42 is a modification of the bat and ball game you last used in
Activity 17.33. In this version, a paused screen will appear if the app restarts after
being halted.

FIG-22.41

GetResumed()

GetResumed ()integer

FIG-22.42

Resuming an App

rem *** Bat and Ball with Pause ***

rem *** Load images ***
LoadImage(1,”Ball.png”)
LoadImage(2,”Bat.png”)

rem *** Create ball Sprite ***
CreateSprite(1,1)
SetSpriteSize(1,4,-1)
SetSpritePosition(1,48,5)

rem ** Create bat sprite ***
CreateSprite(2,2)
SetSpriteSize(2,15,-1)
SetSpritePosition(2,47.5,95)

rem *** Record bat’s x-coordinate ***
batx = 47.5

rem *** Create virtual buttons ***
AddVirtualButton(1,5,94,10)
AddVirtualButton(2,95,94,10)
SetVirtualButtonVisible(1,0)
SetVirtualButtonVisible(2,0)
Sync()

rem *** Wait 2 seconds before starting ***
Sleep(2000)

rem *** Set ball’s velocity***
yoffset# = Random(3,8)/10.0
xoffset# = (Random(0,40)-20)/10.0

Hands On AGK BASIC: Bits and Pieces 767

FIG-22.42
(continued)

Resuming an App

rem *** Set game state to playing (1) ***
gamestate = 1

rem *** Play until ball leaves bottom of screen ***
repeat
 rem *** If resumed, show pause message ***
 if GetResumed() = 1
 ShowPausedScreen()
 endif
 rem *** Redraw ball’s position ***
 SetSpritePosition(1,GetSpriteX(1)+xoffset#,GetSpriteY(1)
 +yoffset#)
 rem *** If the sprite hits the left or right sides change
 xoffset ***
 if GetSpriteX(1)<=0 or GetSpriteX(1)>= 100- GetSpriteWidth(1)
 xoffset# = -xoffset#
 rem *** If ball hits top or bat, change yoffset ***
 elseif GetSpriteY(1)<=0 or GetSpriteCollision(1,2) = 1
 yoffset# = -yoffset#
 rem *** If sprite passes bottom edge, end game ***
 elseif GetSpriteY(1) > 100
 DeleteSprite(1)
 gamestate = 0
 endif
 rem *** Move bat ***
 if GetVirtualButtonState(1) = 1
 dec batx
 elseif GetVirtualButtonState(2) = 1
 inc batx
 endif
 SetSpritePosition(2,batx,GetSpriteY(2))
 Sync()
until gamestate = 0
end

function ShowPausedScreen()
 rem *** Show paused message ***
 LoadImage(99,”PressToContinue.png”)
 CreateSprite(99,99)
 SetSpriteSize(99,60,-1)
 SetSpritePositionByOffset(99,50,50)
 rem *** Not ready to restart app ***
 restart = 0
 rem *** Wait until message pressed ***
 repeat
 if GetPointerPressed() = 1
 if GetSpriteHit(GetPointerx(),GetPointerY())=99
 DeleteSprite(99)
 DeleteImage(99)
 restart = 1
 endif
 endif
 Sync()
 until restart = 1
endfunction

768 Hands On AGK BASIC: Bits and Pieces

Activity 22.10

Reload your BatandBall project and modify it by adding the pause option.

Copy the file PressToContinue.png to the project’s media folder.

Run the program on your smart device and select a different app when the
game starts.

Return to the game and check that the pause message has appeared.

Select the message to resume the game.

Save your project.

Hands On AGK BASIC: Bits and Pieces 769

Solutions
Activity 22.1

No solution required.

Activity 22.2
No solution required.

Activity 22.3
No solution required.

Activity 22.4
Code for Time01:

rem *** Current Time to Seconds ***

do
 rem ** get time as a string ***
 time$ = GetCurrentTime()
 rem *** How many tokens in string(should be 3)

 tokens = CountStringTokens(time$,”:”)
 rem *** Multiply number by seconds in time unit

 rem *** Start with seconds in an hour ***
 multiplier = 60*60
 rem *** Start total at zero ***
 totalsecs = 0
 rem *** For each token ***
 for c = 1 to tokens
 rem *** Convert it to a number and multiply

 rem *** by seconds in that time unit

 t = Val(GetStringToken(time$,”:”,c))*
 multiplier
 rem *** Add to total seconds ***
 totalsecs = totalsecs + t
 rem *** Next time unit has 60 times less
 seconds ***
 multiplier = multiplier/60
 next c
 rem *** Display result ***
 Print(time$+” is “ + Str(totalsecs)+” seconds”)
 Sync()
loop

Activity 22.5
Code for Time02:

rem *** Unix Time ***

hours = GetHoursFromUnix(1335893487)
mins = GetMinutesFromUnix(1335893487)
secs = GetSecondsFromUnix(1335893487)
do
 Print(Str(hours)+”:”+Str(mins)+”:”+Str(secs))
 Sync()
loop

Activity 22.6
No solution required.

Activity 22.7
No solution required.

Activity 22.8
No solution required.

Activity 22.9
No solution required.

Activity 22.10
No solution required.

770 Hands On AGK BASIC: Bits and Pieces

Hands On AGK BASIC: 3D Graphics 771

3D Graphics

In this Chapter:

T Defining 3D Space

T Elements of a 3D Model

T Model Resolution

T 3D Primitives

T Texturing Models

T Local Axes

T Lighting

T Camera Control

T Shaders

772 Hands On AGK BASIC: 3D Graphics

Concepts and Terminology

Introduction
What is 3D?

With the increased popularity of so-called 3D movies, some people may be confused
by the term 3D when used in the context of computer models. A 3D movie should
more correctly be called a stereoscopic movie. Although it gives some impression of
the 3D world we live in with objects appearing to come out of the screen or recede
into it, the illusion is limited. For example, you can’t change your viewing position
in such a way as to see behind objects. On the other hand, 3D computer models,
although they lack the stereoscopic effect of the movies (unless you have a 3D screen
and the appropriate software), permit you to change your viewpoint thereby allowing
you to see behind, above, or below objects on the screen.

3D Space Axes

So far, all our games have been strictly two-dimensional to reflect the two-dimensional
nature of a screen but AGK also allows us to simulate the third dimension - depth.

In 2D space we have the x and y axes which allow us to specify the position of any
point on a surface. For three-dimensional space we need to add a third axis: the
z-axis. When looking directly at a screen, the x-axis spans the width of the screen,
the y-axis the height of the screen, and the z-axis can be imagined as a line coming
straight out of the screen towards the viewer adding depth (see FIG-23.1).

Notice that it is the negative end of the z-axis that protrudes from the screen. This
setup is known as a left-handed coordinate system because, using your thumb and
first two fingers of your left-hand, you can point in the positive direction of all three
axes (see FIG-23.2).

FIG-23.1

3D Axes Orientation

+y

-y

+x

+z

The computer
screen

-x

-z

The viewer

Hands On AGK BASIC: 3D Graphics 773

This arrangement of the axes used by AGK is by no means universally agreed upon,
so you may find some modelling packages use different arrangements. However, if
you are using Milkshape to create your models, it makes use of the same axes layout
as AGK.

Another important point to note is that, when working in 3D space, the origin is
assumed to be at the centre of the screen and not in the top-left corner as in 2D apps.

Defining a Point in 3D Space

A point in 3D space is defined by its distance along each of the three axes. For
example, the point (1,3,-5) is at position 1 on the x-axis, position 3 on the y-axis and
position -5 on the z-axis (see FIG-23.3).

FIG-23.2

The Left-Handed
Coordinate System

+x

+y

+z

FIG-23.3

Defining a Point in 3D
Space

To obtain the coordinates of a point
in 3D space...

...then along the y-axis... ...and finally along the z-axis.

...we measure its distance along the
x-axis...

-x -x

-x -x

+y +y

+y +y

-y -y

-y -y

+x +x

+x +x

+z +z

+z +z

-z -z

-z -z

x

y
z

point point

point point

1

3

-5

A point
in 3D space

774 Hands On AGK BASIC: 3D Graphics

Lines

A line in 3D space, like one in 2D space, is defined by its start and end points. Of
course, this time, those points are themselves defined using three coordinates, rather
than two. For example, the line defined by the points (1,3,-5), (5,6,2) is shown in
FIG-23.4.

The displacement of a line along a given axis is the value of the difference between
the end and start points for that particular axis. In the line shown above, the
displacements are:

 x displacement = xend - xstart

 = 5 - 1

 = 4

 y displacement = yend - ystart

 = 6 - 3

 = 3

 z displacement = zend - zstart

 = 2 - (-5)

 = 7

In 2D space, the length of a line is calculated as the square root of the xdisp
2 + ydisp

2. In
3D, the length of the line is calculated as

AGK uses a line when defining ray traces.

FIG-23.4

Defining a Line in 3D
Space

-x

+y

-y

+x

+z

-z

(1,3,-5)

(5,6,2)

length = xdisp
2 + ydisp

2 + zdisp
2

Activity 23.1

Calculate the length of the line defined in FIG-23.4.

Hands On AGK BASIC: 3D Graphics 775

Vectors

At first glance, it is easy to confuse a vector with a line, but they are quite different
creatures. In computer graphics, a vector is used to give information about direction
and magnitude - this last characteristic is typically used to define speed or force.

Graphically a vector is shown as an arrowed line with the arrow giving the direction
of travel (see FIG.23.5).

Another difference between lines and vectors is that a vector has no defined position
in space - it defines only direction and magnitude.

Typically, details of a 3D vector are given as three numbers representing its
displacements in the three dimensions.

The magnitude is calculated using the same formula as we used earlier for the length
of a line.

Some mathematical calculations require a vector whose magnitude is exactly 1. A
vector with a magnitude of 1 is known as a unit vector. Of course, changing a vector
to have a magnitude of exactly 1, although it will effect the values of the offsets, has
no effect on the direction of the vector.

When a vector is used to indicate the velocity (speed and direction) of a moving
object, the magnitude also represents a given unit of time such as one second or the
time taken to produce a single screen frame. For example, if we wanted to use a
vector to represent the velocity of a rocket taking off vertically at a speed of 10 units
per frame, then the vector’s offsets would be [0,10,0]. Notice that in mathematics, the
values in a vector are written enclosed in square brackets

In other cases, such as when a vector is used to indicate the direction of the light
falling on a 3D model, the magnitude of the vector is unimportant.

Planes

A plane is a flat two-dimensional surface within 3D space. You can think of it as
something a bit like a sheet of paper.

A plane can lie at any angle to the axes. The two shaded areas in FIG-23.6 represent
two planes.

FIG-23.5

A Vector in 3D Space

-x

+y

-y

+x

+z

-z

Vector

776 Hands On AGK BASIC: 3D Graphics

Three special planes exist. These planes are infinite in size and pass through all the
points on two of the axes with the third axes value always zero. The planes are known
by the axes they pass through; they are the XY plane, the XZ plane and the YZ plane
(see FIG-23.7).

When measuring the angle of an item such as a line in 3D space we would measure
it relative to one or more of these planes.

Modelling Ideas and Terminology
Now that we’ve had a look at the basic geometry of 3D space, we are going to move
on to explain some of the jargon you are likely to come across when dealing with 3D
models.

Elements of a Model

At the most fundamental level, 3D models are constructed by defining points in space
(known as vertices). Joining two vertices creates an edge and joining three or four
edges produces a polygon. The simplest polygon is the triangle formed by three

FIG-23.6

Planes in 3D Space

-x

+y

-y

+x

+z

-z

FIG-23.7

The XY, XZ and YZ
Planes

XY Plane

YZ Plane

XZ Plane

Hands On AGK BASIC: 3D Graphics 777

edges. A collection of polygons is known as a polygonal mesh and it is this mesh that
defines the complete 3D model. The basic idea behind this construction is shown in
FIG-23.8.

Front and Back Faces

Like a coin, every polygon has two sides or faces: one face is designed to be seen by
the viewer (known as the front face) and one which is normally hidden (the back
face). In the pyramid above, the back face of each polygon that makes up the shape
is on the inside of the pyramid and hence can never be seen.

The default drawing mode for most game engines is to cull (not draw) back faces.
This isn’t usually a problem since, like the pyramid, back faces occur where they can
never be viewed. However, some models leave back faces exposed. For example, if
we were to display half a sphere, then the back faces of its polygons would be exposed
(see FIG-23.9).

FIG-23.8

Elements of a 3D Shape

If we take two vertices and join them
together, we create an edge.

If we create a third vetex and two more
edges, then we have created a
polygon.

By creating several more linked
polygons, we produce a polygonal
mesh.

In reality, neither the vertices nor edges
are actually visible in the final model.
Notice that the faces of the model are
shaded to create a 3D effect.

Vertices

Edge
Polygon

Hemisphere
(back and front faces displayed)

Hemisphere
(front faces only displayed)

Frontfaces

Backfaces

FIG-23.9

Culling Backfaces

778 Hands On AGK BASIC: 3D Graphics

As you can see from FIG-23.9 some models require the back faces to be displayed if
the object is to be displayed accurately.

Model Resolution

In general, the more polygons a shape contains the more realistic the model will
appear. The number of polygons in a model is usually referred to as the polycount.

The downside to an increased polygon count is the increase in processing required
by the Graphics Processing Unit (GPU). Increase the polycount too much and the
frame rate of your game will fall. FIG-23.10 shows three versions of a sphere, each
with an increased polycount.

3D Primitives

When you use a 3D modelling package such as Milkshape to create a model, you
normally start with a basic shape such as a box, sphere, or cylinder. These are known
as 3D primitives. Each modelling package offers a slightly different set of primitives.
A set of typical primitives is shown in FIG-23.11.

To create other shapes, primitives may be added together or the vertices of a primitive
can be moved, merged, increased, or deleted.

AGK has commands to create box, sphere, cylinder, cone and plane primitives as
well as a command to load existing models stored in the .OBJ format. Many 3D
design packages (including Milkshape) can output models in this format.

When creating 3D primitives in AGK, they are automatically centred at the origin,
while loaded models are positioned corresponding to their original position in the
modelling package.

FIG-23.10

The Effect of Increasing
Polycounts

FIG-23.11

3D Primitives

Box

Cone Plane

CylinderSphere

Hands On AGK BASIC: 3D Graphics 779

Local Axes

When an object is added to 3D space, it is automatically assigned a set of local axes
that have their origin at the centre of that object (see FIG-23.12).

When an object is rotated, that rotation is normally relative to the object’s own local
axes, but the axes rotate along with the object itself (see FIG-23.13).

Notice that once an object has been rotated, the local axes are no longer aligned with
the world axes.

-x

+y

-y

+x

+z

-z

Each 3D object
has its own local

axes parallel to the
world axes

FIG-23.12

Local Axes

FIG-23.13

Local Axes Rotate with
their Object

-x

+y

-y

+x

+z

-z

When an object
rotates, its axes rotate

with it

780 Hands On AGK BASIC: 3D Graphics

Lighting

One of the secrets of a realistic 3D model is good lighting. With the correct lighting
effects, not only can you add to the realism of your model, but you can also create
various atmospheric tones such as a creepy, dark, ill-light corridor, a bright sun on a
desert landscape, flashing lights at an accident, the flickering light of a fire, or any
other effect you wish.

AGK 3D scenes default to ambient light. Ambient light is a light in which the rays
of light are coming equally from all directions. Ambient light on its own produces a
rather unsatisfying flattening effect. For example, the sphere shown in FIG-23.14 has
no shadowed area when viewed under only ambient light and hence the whole 3D
effect is lost.

To produce other lighting effects in your 3D scene, you must create and position the
additional lights you require. AGK offers two additional basic types of additional
lighting: point light and directional light. We might compare these two lighting
types to a real world naked bulb (point lighting) and sunlight (directional light) (see
FIG-23.15).

Normals

Calculating the shadows and highlights on a model created by the lighting is a
complex task, but the GPU is aided in this task by a set of vectors know as normals.
We can think of a normal as an invisible line radiating from points on each of the
polygons that go to make up a model. There are two types of normals: surface
normals and vertex normals. Every polygon within a model has a single surface
normal which is perpendicular to the polygon’s surface. Each vertex of a polygon has
a vertex normal (so there are three vertex normals on a triangular polygon). Each
vertex normal is perpendicular to the two edges that meet at that point (see FIG-
23.16).

FIG-23.14

A Sphere Under
Ambient Light

FIG-23.15

Point and Directional
Lights

light comes from a single point; light comes from a distant point;
 rays are parallel; brightness constant
Directional: light comes from a distant point;
 rays are parallel; brightness constant

Point: light comes from a single point;
 brightness reduces over distance.

Lighting

Hands On AGK BASIC: 3D Graphics 781

Texturing

When you first create a 3D object, its surfaces will be displayed in boring shades of
grey. To add realism, making the basic shape take on the look of the object it is meant
to represent, we can wrap an image around those surfaces. This is known as texturing.
FIG-23.17 gives an overview of the process.

You may recall that when an image was added to a sprite, the image was assumed to
have a width and height of 1 no matter what the actual dimensions of the image. The
coordinates of the image are referred to as UV coordinates rather than XY coordinates.

FIG-23.16

Surface and Vertex
Normals

Every vertex within a polygon has a
.vertex normal

Every polygon has a single
 perpendicular to that polygon.

surface
normal

A normal for
each polygon

Vertex normal

Vertex normal

Vertex normal

When a vertex is common to two or more polygons, that vertex has a separate
vertex normal for each of those polygons.

Vertex normal

Vertex normal

Vertex normal

Vertex normal

Vertex normal

Vertex normal

FIG-23.17

Texturing an Object

By assigning an image to a 3D object... ...we can create a textured shape....we can create a textured shape.
Notice that the texture is copied onto
each side.

The image is
assigned to the

object

782 Hands On AGK BASIC: 3D Graphics

A record of the UV coordinates of the image that are to be mapped to each of the
vertices in the model is used when creating the textured model. Although AGK
allows you to add an image texture to a model, you have no control over how that
image is mapped onto the surface of the model. This is fine if you want to create
something like a wooden box where you are happy to have the same image on each
side of the box. However, if you want greater control over the placement of the
image, you must create and texture the model within a 3D modelling package and
import the resulting model and image used into your AGK program. For example, the
cube in FIG-23.18 could easily be created from within AGK, but because each side
of the box has a different texture, the model needs to be set up using a modelling
package such as Milkshape.

In AGK you must assign an image to a 3D model to create a textured effect. Even
when the texture has been set up within a modelling package, you still need to include
AGK statements within your app to load and assign the image being used by the
model.

Animation

Although simple animation can be achieved by moving, rotating or resizing an
object, true animation - where parts of a single object move in relation to each other
- has to be created with the 3D modelling package being used.

This is normally achieved by first creating the basic object and then adding a skeleton
to that model. A skeleton consists of bones and joints. The joints are then linked to
specific groups of vertices. When the joints of a skeleton are moved, the associated
vertices also move; stretching and compressing the associated polygons.

The animation is created as a sequence of frames. The modeller sets up specific
frames within the animation (known as key frames) by moving the joints of the
skeleton and the modelling package automatically calculates the skeleton and
polygon positions for intermediate frames (see FIG-23.19).

FIG-23.18

Mapping a Texture

Each side of
the cube shows a

different part of the
texture image

FIG-23.19

Creating a 3D
Animation

Animation requires the construction of a skeleton containing joints and
bones.

Joint

Bone

Joint

Joint

Bone

Hands On AGK BASIC: 3D Graphics 783

Currently, AGK does not offer commands to play 3D animation files.

Shaders

A shader is a piece of software executed by a device’s Graphics Processing Unit
(GPU) hardware to calculate the shading to be displayed on the 3D objects that are
displayed on the screen. But shaders can also create special effects such as distorting
an object’s shape, colour, transparency or surface smoothness.

In AGK you can load up your own shader software (which you have to create
separately) to change the look of the images produced on the screen.

AGK also allows you to add up to 7 additional images to a 3D object (other than the
one used for basic texturing) which can be used by the shader to affect the appearance
of that object.

Cameras

What you see on the screen is only a part of the 3D world you create. It’s a bit like
watching a news item on TV; what you see is the part of the surroundings captured
by the TV camera. Move the camera to a different position and you get a different
perspective of the same world.

In AGK a camera is created automatically. It is initially placed in a position roughly
equivalent to the eyes of the viewer, slightly raised on the y-axis and moved along
the negative part of the z-axis. AGK commands allow you to reposition and rotate
the camera as well as select the position at which the camera is pointing and to zoom
in and out.

Summary
± 3D space is measured using x, y and z axes.

± These main axes are known as the world axes.

± The z-axis in AGK space has its positive end facing into the screen. This is

FIG-23.19
(continued)

Creating a 3D
Animation

Joints within the skeleton are linked to
vertices within the model.

Rotating a joint causes the appropriate
parts of the skeleton and the associated
vertices to move also.

Joint linked
to vertices

Frame 1

Frame 10

The position of
the lamp in frames

2 to 9 are calculated
automatically

784 Hands On AGK BASIC: 3D Graphics

known as the left-handed coordinate system.

± A point in 3D space is defined using three values (x, y, z) representing its
displacement along each axes.

± A line is defined by the coordinates of its two end points.

± The offset values of a line are calculated by subtracting the start point from the
end point for all three values (x, y and z).

± A 3D vector is defined by its offset values in all three directions (x, y and z).

± The length of a line, or the magnitude of a vector is calculated as the square
root of the sum of the squares of the three offsets.

± A plane is a flat 2D surface within 3D space.

± The main planes are the XY plane, the XZ plane and the YZ plane.

± 3D objects are constructed from polygons.

± The corner points on a polygon are known as vertices.

± The line between two vertices is known as an edge.

± Polygons have a front face and a back face.

± Normally, back faces are not displayed on the screen.

± Generally, the more polygons used in the construction of an object, the more
accurate the representation.

± The greater the number of polygons used in a scene, the more work the
graphics processing unit (GPU) has to perform.

± Using a high number of polygons can lead to a reduced frame rate.

± 3D models are constructed by joining or manipulating primitive shapes.

± Typical primitive shapes are: the box, sphere, cylinder, cone and plane.

± Object transformation involves moving, resizing or rotating.

± Each object has its own local set of axes.

± Local axes move and rotate with the object to which they belong.

± Lighting is used to create highlights and shadows.

± AGK uses three types of lighting: ambient, directional and point.

± Ambient light is light which comes equally from all directions. Ambient light
causes neither highlights or shadows and gives an object a flat appearance.

± Directional light represents light arriving from an infinite distance with all rays
parallel and their brightness remaining constant over distance. Typically, this is
used to represent sunlight.

± Point light. A point light originates from a specific point and radiates equally
in all directions. The light diminishes over distance. Typically, this is used to
represent a light bulb.

± A polygon uses vertex and surface normals to help in the calculation of
shading.

± A image can be mapped onto a 3D object to create a surface texture for that

Hands On AGK BASIC: 3D Graphics 785

object.

± Simple texturing is carried out automatically by AGK; more complex texturing
must be applied within a 3D modelling package.

± A shader is a piece of software executed by the GPU to modify the appearance
of the final image appearing on the screen.

± What appears on the screen when using 3D models is the view created by a
virtual camera.

± The virtual camera can be moved, rotated, made to point at a specific location
and used to zoom in and out.

786 Hands On AGK BASIC: 3D Graphics

Creating a First 3D App

Introduction
There are many new commands in AGK for handling 3D. And although these can be
logically grouped into sections on primitives, texturing, lighting and cameras, etc., to
get a good overview of the process we need to start by looking at one or two commands
from these groups to create our first app.

Statements
LoadObject()

If you have created a 3D object using a modelling package, you can use the
LoadObject() statement to load that model into your app. The LoadObject()
statement has the format shown in FIG-23.20.

where

 id is an integer value giving the ID to be assigned to the new
 object.

 file is a string giving the name of the file containing the 3D
 model. The file must be in OBJ format and held in the
 project’s media folder.

 scale is a real value giving the height of the object. Other
 dimensions are scaled appropriately.

The model will be positioned at a spot corresponding to its original position in the
modelling package when it was saved to a file. Most models are created with their
centre at the origin.

The program in FIG-23.21 loads and displays a model which contains a labelled
representation of the three axes.

The program in FIG-23.12 loads an existing model containing labelled axes.

FIG-23.20

LoadObject() ()LoadObject id file scale

()LoadObject file scale

Format 2

Format 1

integer

FIG-23.21

Loading and Displaying
a Model

rem *** Loading a displaying an existing model ***

rem *** Load model ***
LoadObject(1,”Axes.obj”,15)

rem *** Display model ***
do
 Sync()
loop

Hands On AGK BASIC: 3D Graphics 787

The model displayed by First3D doesn’t look all that clear. This is a combination of
the camera’s position and the default lighting used.

SetCameraPosition()

By default, the virtual camera, which creates the image you see on the screen when
in 3D mode, is placed at position (0,10,-20). You can reposition it using
SetCameraPosition() (see FIG-23.22).

 where

 id is an integer value giving the ID of the camera. Currently,
 AGK contains no commands which allow you to create
 additional cameras so this value is always 1 (the ID of the
 default camera).

 x, y, z are real values giving the coordinates at which the camera
 is to be placed.

SetCameraLookAt()

The result from Activity 23.3 highlights that, not only do we need to be able to
reposition a camera, but we also need to make the camera point in a specific direction
so that the part of the world we want to see appears on the screen. We can point the
“lens” of the camera at a particular position using the SetCameraLookAt() statement
(see FIG-23.23).

Activity 23.2

Start a new project called First3D. Enter the code given in FIG-23.21 then
compile the program.

Copy the file AGKDownloads/Chapter23/Axes.obj into the project’s media
folder. In the project’s setup.agc file, change the dimensions of the app window
to 900 x 900.

Run the program and observe the results then save your project.

FIG-23.22

SetCameraPosition()

()SetCameraPosition id x y z

Activity 23.3

Modify First3D, moving the camera to position (20,10,-20). Run the program
and observe the results. What part of the axes model is visible?

Modify your program so that the camera moves from its starting position (0,10,-
20) at a speed of 0.1 units along the x-axis every 50 milliseconds until it arrives
at the required position of (20,10,-20).

Run and save your program.

FIG-23.23

SetCameraLookAt()

()SetCameraLookAt id x y z roll

788 Hands On AGK BASIC: 3D Graphics

 where

 id is an integer value giving the ID of the camera. Currently,
 AGK contains no commands which allow you to create
 additional cameras so this value is always 1 (the ID of the
 default camera).

 x, y, z are real values giving the coordinates at which the camera
 lens is to be pointed. This point will be at the centre of the
 screen.

 roll is a real number giving the angle of the camera roll. Using
 a value other than zero gives the effect of a camera tilted
 to the side. That is, the camera is rotated about its own
 z-axis.

This command should be called each time the camera is moved if you want it to
remain pointing at a particular spot.

The effect of using the roll parameter is demonstrated in FIG-23.24.

FIG-23.24

Using the Camera Roll
Option

Camera
Roll = 0

Camera
Roll = 30

Image from CameraImage from Camera

Activity 23.4

Modify First3D so that the camera is always pointing at the origin as it moves
to position (20,10,-20).

Run and save your program.

Hands On AGK BASIC: 3D Graphics 789

CreateLightDirectional()

The default ambient light is harsh and provides little or no shading to give the models
a more realistic look. One way to enhance the shading is to add your own directional
light. This will give the effect of sunlight on the model.

To create a directional light, use CreateLightDirectional() (see FIG-23.25).

where

 id is an integer value giving the ID to be assigned to the
 point light.

 x, y, z are real values giving the vector of the light rays.

 ir, ig, ib are integer values (0 to 255) giving the intensities of the
 red, green and blue components of the colour of the light
 emitted. Set all three to 255 for white light.

To help calculate the displacement values for x, y, and z , imagine a line drawn from
the origin which is parallel to the rays of light you want to create; x, y and z are the
coordinates of the end point of that line (see FIG-23.26).

For example, to create a red-tinted light in the direction indicated in the diagram, we
would use the line

 CreateLightDirectional(1,0,-15,20,200,150,150)

CreateLightDirectional (id)x y z igir ib

FIG-23.25

CreateLightDirectional()

FIG-23.26

Calculating the Light’s
Vector

-x

+y

-y

+x

+z

-z

Direction
of light End point

(0, -15, 20)

Activity 23.5

Modify First3D so that a directional light is added immediately after the axes
model is loaded.

Run and save your program.

790 Hands On AGK BASIC: 3D Graphics

User Control of the Camera
Although the camera changes position in project First3D, the user has no control
over that movement. It would be more useful if we could control camera movement
from the mouse, touch screen or keyboard.

The next program allows the user to control camera movement. The camera starts at
position (0,10,-25) but the left and right cursor keys of the keyboard can be used to
rotate the camera about the y-axis while the up and down arrow keys move the
camera up and down in the y direction. The camera is always pointed towards the
origin. The movement options for the camera are shown in FIG-23.27.

This time all the camera information is stored in a global record structure and the
camera’s movement is control by a separate function, HandleCamera(). The program
code is given in FIG-23.28.

FIG-23.27

Camera Movement
Options

-x

+y

-y

+x

+z

-z

Cursor up
to move up the

y-axis

Cursor left
to rotate clockwise

about y-axis
Cursor right

to rotate anticlockwise
about y-axis

Cursor down
to move up the

y-axis

Camera

rem ***User Controlled Camera Movement ***

rem *** Structure for camera details ***
type CameraDataType
	 x	as	float
	 y	as	float
	 z	as	float	 	 //	Camera’s	coords
	 dist	as	float	 //	Camera’s	distance	from	y-axis
	 angle	as	float	 //	Camera’s	rotation	about	y-axis
endtype

rem *** Global Variable ***
rem *** Camera info ***
global camera as CameraDataType
camera.x = 0
camera.y = 10
camera.z = -25
camera.dist = 25
camera.angle = -90

FIG-23.28

User-Controlled Camera
Movement

Hands On AGK BASIC: 3D Graphics 791

FIG-23.28
(continued)

User-Controlled Camera
Movement

rem *** Load model ***
LoadObject(1,”Axes.obj”,20)

rem *** Add directional light ***
CreateLightDirectional(1,0,-15,20,200,150,150)
rem	***	Add	text	to	show	camera’s	coords	***
CreateText(1,””)
CreateText(2,””)
SetTextPosition(2,0,6)
CreateText(3,””)
SetTextPosition(3,0,12)

rem *** Give user camera control ***
do
 HandleCamera()
 rem *** Show camera position ***
 SetTextString(1,”X: “+Str(camera.x,1))
 SetTextString(2,”Y: “+Str(camera.y,1))
 SetTextString(3,”Z: “+Str(camera.z,1))
 rem *** Update screen ***
 Sync()
loop

function HandleCamera()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***
 if GetRawKeyState(key)=1
 select key
	 	 	 case	37:	//left	cursor,	decrease	angle
 dec camera.angle
 endcase
	 	 	 case	38:	//up	cursor,	increase	y
 camera.y=camera.y+0.25
 endcase
	 	 	 case	39:	//right	cursor,	increase	angle
 inc camera.angle
 endcase
	 	 	 case	40:	//down	cursor,	decrease	y
 camera.y=camera.y-0.25
 endcase
 endselect
 endif
 rem *** Calculate new x and z coordinates ***
 camera.x = camera.dist*cos(camera.angle)
 camera.z = camera.dist*sin(camera.angle)
 rem *** Reposition camera to match ***
 SetCameraPosition(1,camera.x,camera.y,camera.z)
 rem *** Make camera point at origin ***
 SetCameraLookAt(1,0,0,0,0)
endfunction

Activity 23.6

Start a new project called Second3D, which implements the code given in FIG-
23.28. Copy Axes.obj to the project’s media folder. Set screen size to 900 x 900.

Run the program and use the cursor keys to move the camera about the 3D
space. Save your program.

792 Hands On AGK BASIC: 3D Graphics

Summary
± Use LoadObject() to load an existing 3D model.

± Only .OBJ models may be loaded.

± Use SetCameraPosition() to position the virtual camera.

± Use SetCameraLookAt() to make the camera lens point at a particular point in
3D space.

± SetCameraLookAt() can also be used to roll the camera about its z-axis.

± By default, AGK uses ambient light which creates a flat appearance with no
shadows.

± Use CreateDirectionalLight() to create a directional light.

± A directional light will create shadows within the model.

Activity 23.7

Modify Second3D so that the camera’s roll increments by 1o when the + key is
pressed (code 187) and decrements by 1o when the - key is pressed (189).

The roll details should be added as a new field within the CameraDataType
structure.

Test the new feature then save your project.

Hands On AGK BASIC: 3D Graphics 793

Object Creation and Modification

Creating Primitives
For simple games you may not need to create complex 3D shapes using a modelling
package. Instead, you may be able to make do with the basic primitive shapes that
can be created directly using AGK commands.

CreateObjectBox()

To create a box, use the CreateObjectBox() statement (see FIG-23.29).

where

 id is an integer value giving the ID to be assigned to the new
 object.

 w is a real value giving the width of the object.

 h is a real value giving the height of the object.

 d is a real value giving the depth of the object.

Format 1 of the statement allows you to specify the ID to be assigned to the object;
format 2 will assign an ID automatically and return that ID.

Primitives created using AGK statements are always centred on the origin.

CreateObjectSphere()

A polygon-based curve is always an approximation of a true curve. The more
polygons assigned to the model, the nearer it will come to looking like a true curve,
but the price you pay for this is larger storage and greater processing requirements
which can reduce the frame rate of a game. Of course, the most demanding of

FIG-23.29

CreateObjectBox()

(

Format 2

CreateObjectBox (

)

id
Format 1

integer w h d

)w h d

CreateObjectBox

Activity 23.8

Modify Second3D so that a box is added to the project. The box should have
an ID of 2 and be 3 units wide, 2 high and 1 deep. Place the appropriate AGK
statement immediately before the do..loop section.

Run the program and use the cursor keys to move the camera about the 3D
space. Where is the centre of the box positioned?

Save your program.

794 Hands On AGK BASIC: 3D Graphics

primitive shapes is the sphere, since all parts of its surface are curved.

To create a sphere in AGK, use CreateObjectSphere() (see FIG-23.30).

where

 id is an integer value giving the ID to be assigned to the new
 object.

 d is a real value giving the diameter of the sphere.

 r is an integer value giving the number of rows used when
 constructing the sphere.

 c is an integer value giving the number of columns used
 when constructing the sphere.

Increasing the number of rows and columns will improve the realism of the sphere.

Format 1 of the CreateObjectSphere() statement allows you to specify the ID to be
assigned to the object; format 2 will assign an ID automatically and return that ID.

CreateObjectCone()

To create a cone, use the CreateObjectCone() statement (see FIG-23.31).

where

 id is an integer value giving the ID to be assigned to the new
 object.

FIG-23.30

CreateObjectSphere()

(

Format 2

CreateObjectSphere (

)

id
Format 1

integer d r c

)d r c

CreateObjectSphere

Activity 23.9

Modify Second3D replacing the box with a sphere. Set the diameter of the
sphere to 5 with 4 rows and 4 columns and observe the accuracy of the actual
shape created.

Modify the code so that 20 rows and 20 columns are used. How does this affect
the accuracy of the sphere? Save your program.

FIG-23.31

CreateObjectCone()

(

Format 2

CreateObjectCone (

)

id
Format 1

integer h d s

)h d s

CreateObjectCone

Hands On AGK BASIC: 3D Graphics 795

 h is a real value giving the height of the cone.

 d is a real value giving the diameter of the cone’s base.

 s is an integer value giving the number of segments used
 when constructing the cone.

Increasing the number of segments will increase the realism of the cone.

Format 1 of the statement allows you to specify the ID to be assigned to the object;
format 2 will assign an ID automatically and return that ID.

CreateObjectCylinder()

To create a cylinder use CreateObjectCylinder() (see FIG-23.32).

where

 id is an integer value giving the ID to be assigned to the new
 object.

 h is a real value giving the height of the cylinder.

 d is a real value giving the diameter of the cylinder’s base.

 s is an integer value giving the number of segments used
 when constructing the cylinder.

Format 1 of the statement allows you to specify the ID to be assigned to the object;
format 2 will assign an ID automatically and return that ID.

Activity 23.10

Modify Second3D replacing the sphere with a cone. Set the height to 6 and the
diameter of the base to 2.5.

On the first run, use a 5 segment cone; on the second run, use a 15 segment
cone and observe the difference between the two models.

Save your program.

FIG-23.32

CreateObjectCylinder()

(

Format 2

CreateObjectCylinder (

)

id
Format 1

integer h d s

)h d s

CreateObjectCylinder

Activity 23.11

Modify Second3D replacing the cone with a cylinder. Set the height to 4 and the
diameter of the base to 3. Use 12 segments in the construction.

Run and save your program.

796 Hands On AGK BASIC: 3D Graphics

CreateObjectPlane()

Use CreateObjectPlane() to create a 2D plane. The statement has the format shown
in FIG-23.33.

where

 id is an integer value giving the ID to be assigned to the new
 object.

 w is a real value giving the width of the plane.

 h is a real value giving the height of the plane.

The plane created will be part of the XY plane.

Format 1 of the statement allows you to specify the ID to be assigned to the object;
format 2 will assign an ID automatically and return that ID.

CloneObject()

You can make a copy of an existing 3D object using the CloneObject() statement
(see FIG-23.34).

where

 id is an integer value giving the ID to be assigned to the new
 object.

 objid is an integer value giving the ID of the existing object
 being copied.

Cloning an object makes a separate copy of an existing object. The copy can then be
manipulated independently of the original.

FIG-23.33

CreateObjectPlane()

(

Format 2

CreateObjectPlane (

)

id
Format 1

integer w h

h)w

CreateObjectPlane

Activity 23.12

Modify Second3D adding a plane 8 units wide and 7 units high.

Run your program. How do the plane and cylinder interact?

Can the plane be viewed from both sides?

Save your program.

FIG-23.34

CloneObject() ()CloneObject id objid

Hands On AGK BASIC: 3D Graphics 797

InstanceObject()

You can also duplicate an existing object using the InstanceObject() statement.
However, using this command, the original object and the copy continue to share
vertex data. This does not stop you performing independent changes to the copy or
even changing the texture used, but the copy remains linked to the original object via
the shared data so deleting the original would cause the copy to be deleted or your
program to crash. The InstanceObject() statement’s format is given in FIG-23.35.

where

 id is an integer value giving the ID to be assigned to the new
 object.

 objid is an integer value giving the ID of the existing object
 being copied.

The program in FIG-23.36 highlights the similarities of cloned and instanced objects
but also demonstrates that instanced objects rely on the existence of the original.

FIG-23.35

InstanceObject() ()InstanceObject id objid

FIG-23.36

Duplicating Objects

rem *** Duplicating Objects ***

rem *** Create cube ***
CreateObjectBox(1,5,5,5)

rem *** Clone object ***
CloneObject(2,1)
SetObjectPosition(2,-6,0,0)

rem *** Instance Object ***
InstanceObject(3,1)
SetObjectPosition(3,6,0,0)

rem *** Create Directional light ***
CreateLightDirectional(1,10,10,10,255,255,255)

rem *** Position and point camera ***
SetCameraPosition(1,0,10,-30)
SetCameraLookAt(1,0,5,0,0)

ResetTimer()
state = 0
do
 rem *** Delete original object after 3 secs ***
 if Timer() > 3 and state = 0
 DeleteObject(1)
 state = 1
 endif
 Sync()
loop

Activity 23.13

Create a new program called Copy3D and implement the code in FIG-23.36.

Test and save your program.

798 Hands On AGK BASIC: 3D Graphics

GetObjectExists()

To check if a 3D object of a given ID currently exists, use GetObjectExists() (see
FIG-23.37).

where

 id is an integer value giving the ID to be checked.

The function returns 1 if the object exists, otherwise zero is returned.

DeleteObject()

An existing 3D object can be deleted using DeleteObject() (see FIG-23.38).

where

 id is an integer value giving the ID of the object to be
 deleted.

Object Appearance
We can change the appearance of a 3D object in various ways. Perhaps the simplest
is to change the surface colour. Another option is to texture the object’s surface using
an image.

SetObjectColor()

To set the surface colour of an object, use SetObjectColor() (see FIG-23.39).

where

 id is an integer value giving the ID of the object.

 ir is an integer value (0 to 255) giving the intensity of the
 red component within the colour.

 ig is an integer value (0 to 255) giving the intensity of the
 green component within the colour.

FIG-23.37

GetObjectExists() ()GetObjectExistsinteger id

FIG-23.38

DeleteObject() ()DeleteObject id

Activity 23.14

Modify Second3D so that the cylinder is deleted if the delete key (code
46) is pressed. This should be done using a second function named
HandleCylinderDelete() which has a similar structure to HandleCamera().

Run and save your program.

FIG-23.39

SetObjectColor() SetObjectColor (id)ir ig ib it

Hands On AGK BASIC: 3D Graphics 799

 ib is an integer value (0 to 255) giving the intensity of the
 blue component within the colour.

 it is an integer value (0 to 255) giving the opacity of the
 colour (0: fully transparent; 255: fully opaque).

SetObjectImage()

To texture an object with an image file, use SetObjectImage() (see FIG-23.40).

where

 id is an integer value giving the ID of the object.

 imgid is an integer value giving the ID of a previously loaded
 image which is to be used when texturing the object.

 istg is an integer value (0 to 7) giving the stage at which the
 image is to be applied. Use stage 0 for a standard texture.

More than one image can be applied to the object, but images applied to stages 1 to
7 are used by the shader to create other effects and are not normally visible.

SetObjectTransparency()

When you make an object translucent using SetColorObject() or when you use a
texture image which contains transparent elements, you need to call
SetObjectTransparency() in order to activate the transparency.

To set an object’s transparency mode, use SetObjectTransparency() (see FIG-
23.41).

where

 id is an integer value giving the ID of the object.

 it is an integer value (0, 1 or 2) giving the transparency

Activity 23.15

Reload Second3D. Modify the directional light so that its colour components
are 250, 250, 250.

Set the colour of the plane to 90, 150, 200 with transparency set to 255. Run
and save your program.

FIG-23.40

SetObjectImage() SetObjectImage (id)imgid istg

The
HandleCylinderDelete()
function and the call to it
can also be deleted from
the program.

Activity 23.16

Modify Second3D, deleting the cylinder and plane objects and replacing them
with a box measuring 6 x 6 x 6. Load the image Wood.png into the project’s
media folder. Load the image and apply it to the surface of the box. Run and
save your program.

FIG-23.41

SetObjectTransparency() SetObjectTransparency (id)it

800 Hands On AGK BASIC: 3D Graphics

 setting. (0: opaque, 1: transparency activated, 2: additive
 blending).

To show how this command affects the appearance of objects on screen, the program
in FIG-23.42 uses a plane positioned on the axes. The plane is first textured with an
image consisting of an opaque yellow square with a hole near its centre. Initially, the
image has transparency switched off. Pressing the return key toggles the transparency
setting. Pressing 2 changes the image used to one in which the yellow of the square
is translucent; pressing 1 returns to the original image.

FIG-23.42

The Effect of
Transparency

rem *** Transparency ***

rem *** Object Attributes Type ***
type ObjectAttributesType
 image as integer
 transparency as integer
endtype

rem *** Global Variable ***
global ObjAttr as ObjectAttributesType
objAttr.image = 1
objAttr.transparency = 0

rem *** Load axes ***
LoadObject(1,”Axes.obj”,20)
rem *** Create plane ***
CreateObjectPlane(2,12,12)
rem *** Add Images used ***
LoadImage(1,”SquareWithHole.png”)
LoadImage(2,”TransparentSquare.png”)

rem *** Set up light ***
CreateLightDirectional(1,10,-10,20,200,200,200)
rem *** Position camera ***
SetCameraPosition(1,10,10,-20)
SetCameraLookAt(1,0,0,0,0)

rem *** Allow user to switch transparency mode and image ***
do
 HandlePlaneAttributes()
 Sync()
loop

function HandlePlaneAttributes()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key just pressed, process it***
 if GetRawKeyPressed(key)=1
 select key
	 	 	 case	13:	//Enter	key,	toggle	transparency
 objAttr.transparency = 1 - objAttr.transparency
 endcase
	 	 	 case	49:	//1	key,	toggle	image
 objAttr.image = 3 - objAttr.image
 endcase
 endselect
 SetObjectImage(2,objAttr.image,0)
 SetObjectTransparency(2,objAttr.transparency)
 endif
endfunction

Hands On AGK BASIC: 3D Graphics 801

By using an appropriate image, you can create shapes that would normally require a
lot more effort at the modelling stage (see FIG-23.43).

GetObjectTransparency()

To discover the transparency setting of a specific object, use the
GetObjectTransparency() statement (see FIG-23.44).

where

 id is an integer value giving the ID of the 3D object whose
 transparency setting is to be found.

The value returned (0, 1, or 2) gives the transparency setting assigned by any previous
SetObjectTransparency() statement for that object. The default setting is zero.

Activity 23.17

Start a new project called Transparency3D and implement the code
given in FIG-23.42. Copy the files Axes.obj, SquareWithHole.png and
TransparentSquare.png into the project’s media folder.

Run your program and observe the results as you vary the image and
transparency setting used.

Save your program.

FIG-23.43

Modifying a Shape using
an Image

If we texture a 3D box with the image
showing the border of a square...

...the result is a wireframe-style box.

3D Box Image

Activity 23.18

Modify Second3D to display a cube (6 units in each direction) which has been
textured using the image Perimeter.png. Remember to copy the image to the
media folder.

Observe the result produced then save your program.

FIG-23.44

GetObjectTransparency() GetObjectTransparency (id)integer

802 Hands On AGK BASIC: 3D Graphics

SetObjectVisible()

Irrespective of the transparency setting, an object can be made invisible (or returned
to normal) using the SetObjectVisible() statement (see FIG-23.45).

where

 id is an integer value giving the ID of the object.

 iv is an integer value (0 or 1) which makes an object invisible
 (0) or visible (1). 1 is the default value for all objects.

GetObjectVisible()

To determine if an object is currently invisible, use GetObjectVisible() (see FIG-
23.46).

where

 id is an integer value giving the ID of the object.

The function returns the visibility setting of the specified object. If the object is
visible, 1 is returned; if invisible, zero is returned.

SetObjectCullMode()

By default, AGK does not attempt to draw the back faces of the polygons that make
up a 3D object. Although it is faster to draw only the front of a face, certain models
expose the backfaces of some polygons to the camera’s view and, in these situations,
we need to have the back faces drawn as well.

To set which faces of a polygon are to be drawn, use the SetObjectCullMode()
statement (see FIG-23.47).

where

 id is an integer value giving the ID of the object.

 imode is an integer value (0, 1 or 2) giving the drawing mode to
 be used (0: draw both front and back faces, 1: draw front
 faces only, 2: draw back faces only). The default setting
 is 1.

The program in FIG-23.48 displays a hemisphere open at its top. This opening
exposes the back faces of part of the sphere to the camera’s view. In order to “see”
the inside of the sphere we need to have both the front and back faces of the sphere
displayed.

FIG-23.45

SetObjectVisible() SetObjectVisible (id)iv

FIG-23.46

GetObjectVisible() GetObjectVisible (id)integer

FIG-23.47

SetObjectCullMode()

SetObjectCullMode (id)imode

Hands On AGK BASIC: 3D Graphics 803

GetObjectCullMode()

To discover the current face-drawing option being applied to a specific object, use
GetObjectCullMode() (see FIG-23.49).

where

 id is an integer value giving the ID of the object whose
 culling mode is to be determined.

The value returned will be 0, 1 or 2.

Transforming Objects
The general term transform is used to describe the action performed when an object
is moved, rotated or resized. AGK contains several transform statements; these are
given below.

SetObjectPosition()

When a 3D object is first created (or loaded) it is centred about the position (0, 0, 0).
To centre the object about a new position, use SetObjectPosition() (see FIG-
23.50).

FIG-23.48

Displaying Back Faces

rem *** Faces Display Options ***

rem *** Load hemisphere ***
LoadObject(1,”HemiSphere.obj”,6)

rem *** Set up light ***
CreateLightDirectional(1,10,-10,20,200,200,200)

rem *** Position camera ***
SetCameraPosition(1,10,10,-20)
SetCameraLookAt(1,0,0,0,0)

rem *** Display front and back faces ***
SetObjectCullMode(1,0)
do
 Sync()
loop

Activity 23.19

Start a new project called Faces3D and implement the code given above
loading Hemisphere.obj into the media folder.

Test your program observing the appearance of the hemisphere.

Modify the program so that only the front faces are displayed. How does this
affect the displayed object?

Finally, change the code so that only back faces are displayed and observe the
effect created.

FIG-23.49

GetObjectCullMode()

GetObjectCullMode (id)integer

804 Hands On AGK BASIC: 3D Graphics

where

 id is an integer value giving the ID of the object.

 x, y, z are real values giving the new position for the object.

MoveObjectLocalX()

While SetObjectPosition() places an object at an exact point in 3D space, it is also
possible to move an object relative to its current position - in other words, movement
is measured from the object’s local axes.

Relative movement in the x direction is achieved using MoveObjectLocalX() (see
FIG-23.51).

where

 id is an integer value giving the ID of the object.

 dist is a real value giving the distance the object is to be
 moved in the x direction. Use a negative value to move in
 the opposite direction.

MoveObjectLocalY()

To move an object a specified distance in the y direction use MoveObjectLocalY()
(see FIG-23.52).

where

 id is an integer value giving the ID of the object.

 dist is a real value giving the distance the object is to be
 moved in the y direction. Use a negative value to move in
 the opposite direction.

MoveObjectLocalZ()

To move an object a specified distance in the z direction use MoveObjectLocalZ()
(see FIG-23.53).

FIG-23.50

SetObjectPosition()

SetObjectPosition (id)x y z

Activity 23.20

Modify Second3D so that the box appears to be sitting on top of the x-axis
(remember the box is 6 units high).

Run and save your program.

FIG-23.51

MoveObjectLocalX()

MoveObjectLocalX (id)dist

FIG-23.52

MoveObjectLocalY()

MoveObjectLocalY (id)dist

Hands On AGK BASIC: 3D Graphics 805

where

 id is an integer value giving the ID of the object.

 dist is a real value giving the distance the object is to be
 moved in the z direction. Use a negative value to move in
 the opposite direction.

Moving an object will always cause that object’s local axes to move along with the
object itself.

SetObjectRotation()

To rotate an object about its own axes, use SetObjectRotation() (see FIG-23.54).

where

 id is an integer value giving the ID of the object.

 ax is a real value giving the object’s angle of rotation about
 the x-axis (in degrees).

 ay is a real value giving the object’s angle of rotation about
 the y-axis.

 az is a real value giving the object’s angle of rotation about
 the z-axis.

FIG-23.53

MoveObjectLocalZ()

MoveObjectLocalZ (id)dist

+ve = positive
-ve = negative

Activity 23.21

Modify Second3D creating a function called HandleBox() which moves the box
0.1 units by pressing the following keys:

 R (code 82) : 0.1 units to the right along its x-axis (+ve direction)
 L (76) : 0.1 units to the left along its x-axis (-ve direction)
 U (85) : 0.1 units up its y-axis (+ve direction)
 D (68) : 0.1 units down its y-axis (-ve direction)
 I (73) : 0.1 units into the screen along its z-axis (+ve direction)
 O (79) : 0.1 units out of the screen along its z-axis (-ve direction)

Test and save your program.

FIG-23.54

SetObjectRotation()

SetObjectRotation (id)ax ay az

Activity 23.22

Modify Second3D so that the box is initially set to an angle of 20o about its own
z-axis. How does this affect the movement of the box when using the control
keys set up by Activity 23.21?

Do NOT save this version of your program.

806 Hands On AGK BASIC: 3D Graphics

As you can see from the result of Activity 23.22, rotating an object also rotates its
local axes. After the 20o rotation, the box’s x and y axes are no longer parallel to the
world x and y axes (see FIG-23.55).

With the box in this position, pressing the U key moves the box up its own local
y-axis, but since this is no longer parallel to the world axes, we see the box move
towards the top and left of the screen. A similar effect is created when we move the
box left and right, with it following the new orientation of its local x-axis. Only
movement along the z-axis is unchanged since it was about this axis the original
rotation was defined.

When the SetObjectRotation() statement is used on an object, the object’s axes
are always assumed to start parallel to the world axes when calculating the new
position of the object; any previous rotations created using this command have no
effect on the result.

When implementing the rotation, the object is first rotated about its y-axis, then its
x-axis and finally its z-axis. We can see the stages involved in executing the statement

SetObjectRotation(2,60,20,45)

in FIG-23.56.

-x

+y

-y

+x

+z

-z

World Axes

+z

-z
-x

+y

-y

+x

Box’s
Local Axes

FIG-23.55

Local Axes Rotate with
their Object

FIG-23.56

How an Object
is Rotated Using
SetObjectRotation()

Initially, the model’s local axes are
parallel to the world axes.

In executing the SetObjectRotation()
statement, the model (and its local
axes) is rotated 20o about its y-axis.

Hands On AGK BASIC: 3D Graphics 807

RotateObjectLocalX()

As well as rotating an object to a specific orientation, you can also rotate it relative
to its current position. To rotate an object further about its local x-axis, use
RotateObjectLocalX() (see FIG-23.57).

where

 id is an integer value giving the ID of the object.

 ang is a real value giving the angle through which the object
 is to be rotated about its x-axis. Use a negative value to
 rotate in the opposite direction.

RotateObjectLocalY()

To rotate an object further about its y-axis, use RotateObjectLocalY() (see FIG-
23.58).

where

 id is an integer value giving the ID of the object.

 ang is a real value giving the angle through which the object
 is to be rotated about its y-axis. Use a negative value to
 rotate in the opposite direction.

RotateObjectLocalZ()

To rotate an object further about the z-axis, use RotateObjectLocalZ() (see FIG-
23.59).

FIG-23.56
(continued)

How an Object
is Rotated Using
SetObjectRotation()

Next it is rotated 60o about its x-axis... ...and finally, 45o about its z-axis.

FIG-23.57

RotateObjectLocalX()

RotateObjectLocalX (id)ang

FIG-23.58

RotateObjectLocalY()

RotateObjectLocalY (id)ang

FIG-23.59

RotateObjectLocalZ() RotateObjectLocalZ (id)ang

808 Hands On AGK BASIC: 3D Graphics

where

 id is an integer value giving the ID of the object.

 ang is a real value giving the angle through which the object
 is to be rotated about its z-axis. Use a negative value to
 rotate in the opposite direction.

RotateObjectGlobalX()

All the rotation statements covered so far rotate an object about its own local axes.
Now imagine every object has its own second set of axes which are not affected by
that object’s rotation. These axes are sometimes known as inertial axes (see FIG-
23.60).

The next three statements allow you to rotate an object about its inertial axes.

To rotate an object by a specified angle about its inertial x-axis, use
RotateObjectGlobalX(). The statement’s format is given in FIG-23.61.

where

 id is an integer value giving the ID of the object.

 ang is a real value giving the angle (in degrees) through which
 the object is to be rotated about its inertial x-axis. Use a
 negative value to rotate in the opposite direction.

Activity 23.23

Modify Second3D so that the box can be rotated 1o about its y-axis using the Q
(code 81)(+1o) and W (87)(-1o) keys; 1o about its x-axis using E (69)(+1o) and C
(67)(-1o); and 1o about its z-axis using K (75)(+1o) and M (77)(-1o).

Test and save your program.

FIG-23.60

Inertial Axes

... but its inertial axes remain in their
original position, parallel to the world
axes.

local
x-axis

local
y-axis local

y-axis

inertial
y-axis

inertial
x-axis

If an object has been rotated, its own
local axes shift along with the object...

Object rotated
about its z-axis world

y-axis

world
x-axis

RotateObjectGlobalX (id)angFIG-23.61

RotateObjectGlobalX()

Hands On AGK BASIC: 3D Graphics 809

RotateObjectGlobalY()

To rotate an object about its inertial y-axis, use RotateObjectGlobalY() (see FIG-
23.62).

where

 id is an integer value giving the ID of the object.

 ang is a real value giving the angle through which the object
 is to be rotated about its inertial y-axis. Use a negative
 value to rotate in the opposite direction.

RotateObjectGlobalZ()

To rotate an object about its inertial z-axis, use RotateObjectGlobalZ() (see FIG-
23.63).

where

 id is an integer value giving the ID of the object.

 ang is a real value giving the angle through which the object
 is to be rotated about its inertial z-axis. Use a negative
 value to rotate in the opposite direction.

SetObjectLookAt()

There are occasions when we want an object to face in a particular direction. For
example, imagine that we want an enemy robot always to face towards your character
when playing a shooting game. Obviously moving the model robot would involve
rotating it appropriately but it would be difficult to calculate exactly what angles of
rotation were required.

To overcome this problem, the SetObjectLookAt() allows us to have an object face
a specific point in space. Using this command causes an object to turn in such a way
as to ensure that the positive end of its local z-axis is aimed at a specific point in
space. In effect, this means that the side of the object that is initially facing away from
the camera turns to face a specific location (see FIG-23.64).

FIG-23.62

RotateObjectGlobalY()

RotateObjectGlobalY (id)ang

FIG-23.63

RotateObjectGlobalZ()

RotateObjectGlobalZ (id)ang

Activity 23.24

Modify Second3D so that the box can be:

 ● rotated 1o about its inertial x-axis using Z (90)(+1o) and X (88)(-1o) keys;
 ● 1o about its inertial y-axis using F (70)(+1o) and V (86)(-1o);
 ● 1o about its inertial z-axis using B (66)(+1o) and N (78)(-1o).

Test and save your program.

810 Hands On AGK BASIC: 3D Graphics

In addition, SetObjectLookAt() allows the model to be rotated to a specific angle
about its own z-axis. The statement has the format shown in FIG-23.65.

where

 id is an integer value giving the ID of the object.

 x, y, z are real values giving the coordinates of the point to
 which the object is to face.

 roll is a real value giving the angle of roll for the object.

We’ll look at a program example using this statement shortly.

GetObjectX(), GetObjectY() and GetObjectZ()

To find the location of a 3D object use the three statements GetObjectX(),
GetObjectY() and GetObjectZ().

The format for these three statements are given in FIG-23.66.

where

 id is an integer value giving the ID of the 3D object whose
 position is to be found.

FIG-23.64

Making an Object “Look
At” a Point in Space

When we make an object “look at” a
specific location, the object turns so
that the positive end of its z-axis points
to the spot given.

When an object is first loaded, and with
the camera in its default position, the
positive end of the object’s z-axis faces
away from the viewer.

+z
+z

-z-z

The z-axis
points to a speci�ed

location in space
Points into

the screen, away from
the viewer

FIG-23.65

SetObjectLookAt() SetObjectLookAt (id)x y z roll

FIG-23.66

GetObjectX()
GetObjectY()
GetObjectZ()

()GetObjectXfloat id

()GetObjectYfloat id

()GetObjectZfloat id

Hands On AGK BASIC: 3D Graphics 811

Each statement returns one of the coordinates of the specified 3D object.

The program in FIG-23.67 has a model in the shape of a box with a projecting cone
“looking at” a moving sphere.

GetObjectAngleX(), GetObjectAngleY() and GetObjectAngleZ()

If you want to discover the angles that an object has been rotated around each of its
own local axes, use the GetObjectAngleX(), GetObjectAngleY() and
GetObjectAngleZ() statements (see FIG-23.68).

FIG-23.67

Using the “Look At”
Option

rem *** Object Look At ***

rem *** Create object that looks ***
LoadObject(1,”SpikedBox.obj”,6)
SetObjectPosition(1,0,0,20)

rem *** Create object looked at ***
CreateObjectSphere(2,1,10,10)
SetObjectPosition(2,-10,3,-15)

rem *** Position camera ***
SetCameraPosition(1,0,10,-40)
SetCameraLookAt(1,0,0,0,0)

rem *** Set up light ***
CreateLightDirectional(1,10,-10,20,200,200,200)

rem *** x coord for sphere ***
x# = -10

rem *** Move sphere and have spiked box look at it ***
do
 rem *** Move sphere ***
 SetObjectPosition(2,x#,3,-15)
 rem *** Make spiked box look at sphere ***
 SetObjectLookAt(1,GetObjectX(2), GetObjectY(2),-15,0)
 rem *** Update screen ***
 Sync()
 rem *** wait 50 msecs ***
 sleep(50)
 rem *** Increment x coord ***
 x#=x#+0.125
loop

Activity 23.25

Start a new project, Follow3D, and implement the code given in FIG-23.67
(copy SpikedBox.obj into the project’s media folder).

Test and save your program.

FIG-23.68

GetObjectAngleX()
GetObjectAngleY()
GetObjectAngleZ()

()GetObjectAngleXfloat id

()GetObjectAngleYfloat id

()GetObjectAngleZfloat id

812 Hands On AGK BASIC: 3D Graphics

where

 id is an integer value giving the ID of the 3D object whose
 rotations are to be found.

The values retrieved by these commands are visualised in FIG-23.69.

SetObjectScale()

To resize an object after it has been created, use SetObjectScale() (see FIG-23.70).

where

 id is an integer value giving the ID of the 3D object to be
 scaled.

 sx is a real number giving the scaling to be performed in the
 x direction (object width).

 sy is a real number giving the scaling to be performed in the
 y direction (object height).

 sz is a real number giving the scaling to be performed in the
 z direction (object depth).

Scaling factors are based on the original size of the 3D object when it was first loaded
or created. A scaling value of 1 sets an object to its original size in the specified
direction; a value of 2 would double the object’s size in that direction; a value of 0.5
would halve it.

FIG-23.71 shows the effect on a sphere of doubling each dimension in turn.

FIG-23.69

The Values Returned
by the GetObjectAngle
statements.

GetObjectAngleY()

GetObjectAngleX()

GetObjectAngleZ()

FIG-23.70

SetObjectScale()

SetObjectScale (id)sx sy sz

Hands On AGK BASIC: 3D Graphics 813

The program in FIG-23.72 reshapes a sphere over time, first stretching and then
shrinking it in the x direction.

FIG-23.71 Effects of Scaling

SetObjectScale(1,1,2,1) SetObjectScale(1,1,1,2)SetObjectScale(1,2,1,1)

FIG-23.72

Using Object Scaling

rem *** Object Scaling ***

rem *** Load axes ***
LoadObject(2,”Axes.obj”,15)

rem *** Create a sphere ***
CreateObjectSphere(1,4,20,20)

rem *** Set up light ***
CreateLightDirectional(1,10,-10,20,200,200,200)
SetObjectScale(1,1,1,2)

rem *** Position camera ***
SetCameraPosition(1,10,10,-20)
SetCameraLookAt(1,0,0,0,0)

rem *** Set object scaling factors ***
scale# = 0.1
change# = 0.01

rem *** Scale object over time ***
do
 SetObjectScale(1,scale#,1,1)
 Sync()
 Sleep(10)
 scale# = scale# + change#
 if scale# > 2
 change# = -0.01
 elseif scale# < 0.1
 change# = 0.01
 endif
loop

Activity 23.26

Start a new project, Scale3D, and implement the code given in FIG-23.72.

Modify the code so that expansion happens in the z direction instead of the x
direction. Test and save your program.

814 Hands On AGK BASIC: 3D Graphics

Summary
± Use CreateObjectBox() to create a box object.

± Use CreateObjectSphere() to create a sphere.

± The number of rows and columns specified when creating a sphere will affect
the accuracy of the sphere’s shape.

± Use CreateObjectCone() to create a cone object.

± The number of segments specified when creating a cone will affect the
accuracy of the cone’s shape.

± Use CreateObjectCylinder() to create a cylinder object.

± The number of segments specified when creating a cylinder will affect the
accuracy of the cylinder’s shape.

± Use CreateObjectPlane() to create a plane object.

± Planes are created in a vertical position (in the XY plane).

± Use CloneObject() to create an independent copy of an existing object.

± Use InstanceObject() to create a copy of an existing object which retains
links to the original object.

± Deleting an object from which an instanced object has been created will cause
the instanced object also to be deleted.

± Use GetObjectExists() to check if an object of a specified ID currently
exists.

± Use DeleteObject() to delete an existing object.

± Use SetObjectColor() to specify a colour for the surface of an object.

± Use SetObjectImage() to texture an object with an existing image.

± When using an image to texture an object, set the stage parameter to 0.

± Other images can be assigned to stages 1 to 7 of an object. These can then be
used by a shader to affect the appearance of the object.

± Use SetObjectTransparency() to activate the transparency assigned to an
object from the SetObjectColor() or SetObjectImage() statements.

± Use GetObjectTransparency() to determine the current transparency setting
of an object.

± Use SetObjectVisible() to make an object visible/invisible.

± Use GetObjectVisible() to determine if an object is currently visible.

± Use SetObjectCullMode() to determine which faces of an object are to be
displayed.

± Normally, objects only need their front faces to be displayed, but some may
need back faces to be displayed as well.

± Use GetObjectCullMode() to determine which faces of an object are currently
being drawn.

± Use SetObjectPosition() to reposition an existing object.

Hands On AGK BASIC: 3D Graphics 815

± Objects default to being positioned with their centres at the origin.

± Use MoveObjectLocalX(), MoveObjectLocalY() and MoveObjectLocalZ() to
move an object relative to its own local axes.

± Use SetObjectRotation() to specify the angle an object is to be rotated about
its local axes with angles being measured from the axes’ original orientation
parallel to the world axes.

± When an object is rotated using SetObjectRotation(), it is first rotated about
its y-axis, then its x-axis and finally, its z-axis.

± To rotate an object relative to its current rotation, use RotateObjectLocalX(),
RotateObjectLocalY() and RotateObjectLocalZ().

± An object’s inertial axes are similar to its local axes in that they have their
origin at the centre of the object, but inertial axes are unaffected by the object’s
rotation and remain parallel to the world axes.

± To rotate an object relative to its inertial axes, Use RotateObjectGlobalX(),
RotateObjectGlobalY() and RotateObjectGlobalZ().

± Use SetObjectLookAt() to make the positive end of an object’s z-axis aim at a
specific point in space.

± To find the location of an object in space, use GetObjectX(), GetObjectY()
and GetObjectZ().

± To find out the angle to which an object has been rotated about each of its own
axes, use GetObjectAngleX(), GetObjectAngleY() and GetObjectAngleZ().

816 Hands On AGK BASIC: 3D Graphics

Cameras

Introduction
We already know that it is the virtual camera that creates the image we see on the
screen and that it can be moved and made to point at a specific position in space.
However, several more camera-related commands exist and these are detailed below.

Camera-Related Statements
SetCameraFOV()

In the real world, most cameras come equipped with a zoom lens which allows the
user to zoom in on distant objects or zoom out to take in all the features within a
restricted area such as a room. Exactly what is captured by the camera is determined
by the camera’s field of view (FOV) and this is measured as the angle between the
left and right edges of the image (see FIG-23.73).

You can make a camera zoom in or out by changing its field of view. This is done
using the SetCameraFOV() statement (see FIG-23.74).

where

 id is an integer value giving the ID of the camera.

FIG-23.73

Using Zoom

Zoom out to
gain a large
field of view

Zoom in to
reduce the
field of view

When the camera is set to a wide field of
view...

When the camera is set to a narrow field
of view...

... we see more of the surroundings but
things looks smaller than normal.

... we see less of the surroundings but
things look larger than normal.

FIG-23.74

SetCameraFOV()

SetCameraFOV (id)fov

Hands On AGK BASIC: 3D Graphics 817

 fov is a real number giving the viewing angle of the camera.
 The default value is 45o; a smaller number will make the
 camera zoom in.

The program in FIG-23.75 demonstrates the effect of changing the field of view.
Initially it starts with a setting of 90o and gradually reduces to 10o.

SetCameraRange()

You can make the camera ignore items which are very close or very far away. In
effect, anything that lies outside the specified range is invisible to the camera and will
not appear on the screen. The space between the closest and furthest points is known
as the range of the camera. To change the range of a camera use SetCameraRange()
(see FIG-23.76).

FIG-23.75

Zooming

rem *** FOV Demo ***

rem *** Load Model ***
LoadObject(1,”Robot.obj”,15)
rem *** Apply texture ***
LoadImage(1,”Robotskin.png”)
SetObjectImage(1,1,0)
rem *** Create textured background plane ***
CreateObjectPlane (2,100,100)
SetObjectPosition(2,0,0,10)
LoadImage(2,”Background.jpg”)
SetObjectImage(2,2,0)

rem *** Create Directional light ***
CreateLightDirectional(1,10,10,10,255,255,255)

rem *** Position and point camera ***
SetCameraPosition(1,0,10,-30)
SetCameraLookAt(1,0,5,0,0)

rem	***	Set	field	of	view	***
fov = 90
rem *** Zoom in ***
do
 SetCameraFOV(1,fov)
 Sync()
 Sleep(50)
 if fov > 10
 dec fov
 endif
loop

Activity 23.27

Start a new project, Zoom3D, and implement the code given in FIG-23.75
copying the required files to the media folder..

Modify Zoom3D so a function called HandleZoom() allows the zoom factor to
be controlled from the keyboard. Zoom in (decreasing angle) using the PageUp
key (code 33) and zoom out using the Page Down key (34). The zoom should
be incremented in 1o steps and constrained to be in the range 5 to 100.

Test and save your program.

818 Hands On AGK BASIC: 3D Graphics

where

 id is an integer value giving the ID of the camera.

 near is a real number giving the nearest point to the camera
 that is to be visible.

 far is a real number giving the farthest point that is to be
 visible.

For example, the statement

 SetCameraRange(1,5,200)

would create the effect shown in FIG-23.77.

If only part of an object falls within the specified range, then only that part of the
object will be displayed.

The program in FIG-23.79 creates a cone, box and sphere at varying distances along
the z-axis. The user can then toggle between changing the camera’s near or far range
by pressing the Enter key. The range setting for the selected limit can then be
incremented or decremented by pressing the + or - keys respectively.

The results produced by various settings are shown in FIG-23.78.

FIG-23.76

SetCameraRange()

SetCameraRange (id)near far

FIG-23.77

The Effects of Using
SetCameraRange()

Camera

200

Only objects in this area
are visible to the camera

5

FIG-23.78 Effect of Range Changes

Sphere

Box

Cone

All three objects in camera range Part of the cone is not displayed as the near
value is increased

The sphere is not displayed as the far value is
decreased

Part of the
cone is no longer

shown

Sphere
no longer visible

Hands On AGK BASIC: 3D Graphics 819

FIG-23.79

Adjusting the Camera’s
Range

rem *** Demonstrating Camera Range ***

rem *** Camera Range Data Structure ***
type CameraRangeType
	 near	as	float
	 far	as	float
endtype

rem *** Global variables ***
rem *** Camera Range Info ***
global range as CameraRangeType
range.near = 1
range.far = 70
rem *** Range being changed ***
global	limittochange	=	1	//	1:near;	2:far

rem *** Range Text used in display ***
dim changetext[3] as string = [“”, “near”, “far”]
changetext[1]= “near”
changetext[2] = “far”

rem *** Create box at origin ***
CreateObjectBox(1,5,5,5)

rem *** Create Cone at -10 on z-axis ***
CreateObjectCone(2,5,5,15)
SetObjectPosition(2,0,0,-10)

rem *** Create sphere at +10 on z-axis ***
CreateObjectSphere(3,5,12,12)
SetObjectPosition(3,0,0,10)

rem *** Create Directional light ***
CreateLightDirectional(1,10,10,10,255,255,255)

rem *** Position and point camera ***
SetCameraPosition(1,0,10,-40)
SetCameraLookAt(1,0,5,0,0)

rem *** Create text objects to display range ***
CreateText(1,”Camera Range Settings”)
CreateText(2,”Change: near”)
SetTextPosition(2,0,5)
CreateText(3,”near:”)
SetTextPosition(3,0,10)
CreateText(4,”far:”)
SetTextPosition(4,0,15)

rem *** Set initial camera range ***
SetCameraRange(1,range.near,range.far)

do
 HandleCameraRange()
 rem *** Update range strings ***
 SetTextString(2,”Change: “+changetext[limittochange])
 SetTextString(3,”near: “+str(range.near))
 SetTextString(4,”far : “+str(range.far))
 rem *** Update screen ***
 Sync()
loop

820 Hands On AGK BASIC: 3D Graphics

SetCameraRotation()

To rotate a camera to a specific angle about its local axes, use SetCameraRotation()
(see FIG-23.80).

where

 id is an integer value giving the ID of the camera (the default
 camera has an ID of 1).

FIG-23.79
(continued)

Adjusting the Camera’s
Range

function HandleCameraRange()
 rem *** Get key pressed ***
 key = GetRawLastKey()
 select key
	 	 case	13:	//return	key,	change	selected
 rem *** If key just been pressed ***
 if GetRawKeyPressed(key) = 1
 rem *** Change limit selected ***
 limittochange = 3 - limittochange
 endif
 endcase
	 	 case	187:	//	+	Key,	increment
 rem *** If key pressed ***
 if GetRawKeyState(key) = 1
 rem *** increment selected limit ***
 if limittochange = 1
 inc range.near
 else
 inc range.far
 endif
 Sleep(50)
 endif
 endcase
	 	 case	189:	//	-	key,	decrement
 rem *** If key pressed ***
 if GetRawKeyState(key) = 1
 rem *** decrement selected limit ***
 if limittochange = 1
 dec range.near
 else
 dec range.far
 endif
 endif
 sleep(50)
 endcase
 endselect
 rem *** Adjust camera range to match change ***
 SetCameraRange(1,range.near,range.far)
endfunction

Activity 23.28

Start a new project, Range3D, and implement the code given in FIG-23.79. Run
the program and observe the results of changing the range values.

Modify the program so that both front and back faces are displayed. Test and
save your program.

FIG-23.80

SetCameraRotation()

SetCameraRotation (id)ax ay az

Hands On AGK BASIC: 3D Graphics 821

 ax is a real value giving the camera’s angle of rotation about
 its x-axis (in degrees).

 ay is a real value giving the camera’s angle of rotation about
 its y-axis.

 az is a real value giving the camera’s angle of rotation about
 its z-axis.

RotateCameraLocalX(), RotateCameraLocalY()
and RotateCameraLocalZ()

If you want to rotate a camera about its local axes relative to its current angle of
rotation, then you can use RotateCameraLocalX(), RotateCameraLocalY(), or
RotateCameraLocalZ() as appropriate (see FIG-23.81).

where

 id is an integer value giving the ID of the camera (the default
 camera has an ID of 1).

 ang is a real value giving the degrees by which the camera is
 to be rotated. The angle is measured from the current
 angle of rotation. The axis about which rotation takes
 places depends on the statement selected.

For example, the statement

 RotateCameraLocalY(1,10)

would rotate the camera a further 10o about its own y-axis.

RotateCameraGlobalX(), RotateCameraGlobalY()
and RotateCameraGlobalZ()

If you need the camera to rotate about its inertial axes (which always remain parallel
to the world axes), then use RotateCameraGlobalX(), RotateCameraGlobalY() or
RotateCameraGlobalZ(). The format for each of these statements is given in FIG-
23.82.

FIG-23.81

RotateCameraLocalX()
RotateCameraLocalY()
RotateCameraLocalZ()

()RotateCameraLocalX id ang

()RotateCameraLocalY id ang

()RotateCameraLocalZ id ang

FIG-23.82

RotateCameraGlobalX()
RotateCameraGlobalY()
RotateCameraGlobalZ()

RotateCameraGlobalX (id)ang

RotateCameraGlobalY (id)ang

RotateCameraGlobalZ (id)ang

822 Hands On AGK BASIC: 3D Graphics

where

 id is an integer value giving the ID of the camera.

 ang is a real value giving the angle through which the camera
 is to be rotated. The axis about which rotation takes
 places depends on the statement selected.

MoveCameraLocalX(), MoveCameraLocalY()
and MoveCameraLocalZ()

While SetCameraPosition() moves a camera to a specified point in space, if you
want to move a camera relative to its current position, use the statements
MoveCameraLocalX(), MoveCameraLocalY() or MoveCameraLocalZ() as appropriate.

The format of each of these statements is shown in FIG-23.83).

where

 id is an integer value giving the ID of the camera.

 dist is a real value giving the distance which the camera is to
 be moved. The direction of the movement is determined
 by which of the three statements is selected.

GetCameraX(), GetCameraY() and GetCameraZ()

To retrieve the camera’s position in space, use the statements GetCameraX(),
GetCameraY() and GetCameraZ() (see FIG-23.84).

where

 id is an integer value giving the ID of the camera.

GetCameraAngleX(), GetCameraAngleY(), and
GetCameraAngleZ()

To discover the angle that a camera has been rotated around each of its own local
axes, use the GetCameraAngleX(), GetCameraAngleY() and GetCameraAngleZ()
statements (see FIG-23.85).

FIG-23.83

MoveCameraLocalX()
MoveCameraLocalY()
MoveCameraLocalZ()

MoveCameraLocalX (id)dist

MoveCameraLocalY (id)dist

MoveCameraLocalZ (id)dist

FIG-23.84

GetCameraX()
GetCameraY()
GetCameraZ()

()GetCameraXfloat id

()GetCameraYfloat id

()GetCameraZfloat id

Hands On AGK BASIC: 3D Graphics 823

where

 id is an integer value giving the ID of the camera whose
 rotations are to be found.

GetObjectInScreen()

You can check if an object is within the camera’s view (and hence, appears on the
screen), using the GetObjectInScreen() statement (see FIG-23.86).

where

 id is an integer value giving the ID of the object to be
 checked.

The statement returns 1 if the object is on screen, 0 if it is not.

Using Camera Commands to Create First Person Perspective
Initial Set Up

The camera commands can be used to allow us to create a first-person perspective
game. In the next few pages we will develop the basic movement strategies for such
a game, allowing the user to manoeuvre the camera within the environment shown
in FIG-23.87.

FIG-23.85

GetCameraAngleX()
GetCameraAngleY()
GetCameraAngleZ()

()GetCameraAngleXfloat id

()GetCameraAngleYfloat id

()GetCameraAngleZfloat id

FIG-23.86

GetObjectInScreen()

GetObjectInScreen (id)integer

FIG-23.87

Maze Layout

824 Hands On AGK BASIC: 3D Graphics

Instead of simply presenting the final code, we will, instead, build incrementally
towards the final result. The code in FIG-23.88 creates the layout and positions the
camera within the model.

The starting view when the code is run is shown in FIG-23.89.

FIG-23.88

Setting Up the Maze

rem *** First Person Perspective ***

rem *** Load textured walls ***
LoadObject(1,”Maze.obj”,20)
LoadImage(1,”BricksLarge.jpg”)
SetObjectImage(1,1,0)
rem	***	Load	floor	***
CreateObjectPlane(2,180,180)
RotateObjectLocalX(2,90)
SetObjectPosition(2,0,1,0)
SetObjectColor(2,220,180,180,0)

rem *** Add directional light ***
CreateLightDirectional(1,0,-15,20,250,250,250)

rem *** Position camera ***
SetCameraPosition(1,5,5,-10)
SetCameraLookAt(1,5,5,-10,0)

rem *** View scene ***
do
 Sync()
loop

Activity 23.29

Start a new project, FP3D, and implement the code given in FIG-23.88.

Compile the code then copy the files Maze.obj and BricksLarge.jpg into the
project’s media folder.

Run and save your code.

FIG-23.89

Player’s View

Hands On AGK BASIC: 3D Graphics 825

Setting the Field of View

A human being has a field of view of about 180o but the left and right edges of this
area can be seen by one eye only. If we consider the area which can be seen by both
eyes simultaneously, then our field of view is about 120o.

With the virtual camera defaulting to a much narrower field of view, we need to begin
by increasing this figure, although you may feel setting it to 120o is too much for a
game environment since everything seems much further away. Also, in a shooting
game, a wide field of view can make aiming more difficult. A good compromise
would be between 70o and 90o, so we will settle for the half way value and set the
field of view to 80o using the statements:

rem	***	Set	camera’s	field	of	view	to	80	***
SetCameraFOV(1,80)

Turning the Camera

To allow the player to look around his environment, we need to be able to rotate the
camera about its y-axis.

We have a choice of rotating the camera using either the RotateCameraLocalY() to
rotate the camera about its local y-axis or RotateCameraGlobalY() to rotate it about
its inertial y-axis. At this point, both options will create the same effect, since both
the local and inertial axes are parallel to the world axes. However, as we shall see
later, the local y-axis may shift orientation making RotateCameraGlobalY()the best
option when turning the camera.

The rotation can be initiated by using the left and right arrow keys and as in previous
programs, we will make use of a separate function:

 function HandleCamera()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***
 if GetRawKeyState(key)=1
 select key
 rem *** Turn camera ***
		 	 	 case	37:	//left	cursor,	turn	camera	left
 RotateCameraGlobalY(1,-1)
 endcase
		 	 	 case	39:	//right	cursor,	turn	camera	right
 RotateCameraGlobalY(1,1)
 endcase
 endselect
 endif
endfunction

which will be called from within the main section’s do..loop structure.

Activity 23.30

Modify FP3D so that the camera’s field of view is set to 80o.

Test your program, checking how this changes what is visible to the player.

Save your project.

826 Hands On AGK BASIC: 3D Graphics

Moving

Next, the user needs to be able to move about within his environment. To do this we
need to allow the camera to be moved forward or backward along the direction in
which it is looking - in other words, along its local z-axis. This requires the following
case options to be added to the select statement:

 rem *** Move camera options ***
	case	87:	//W	key,	Camera	forward	***
 MoveCameraLocalZ(1,0.2)
 endcase
	case	83:	//S	key,	Camera	back	***
 MoveCameraLocalZ(1,-0.2)
 endcase

Note that the camera is moved 0.2 units per frame.

We will return to the problem of being able to pass ghost-like through the walls later.

Looking Up and Down

Another common option is to allow the player to look up or down. Since this simulates
the tilting of a human head by rotating the camera about its own x-axis, we need to
limit the degree of rotation allowed to no more than 45o up or down. In a game
environment even less of a rotation is required.

We’ll use the up and down cursor keys for this operation, limiting the angle to ±30o.
The operation causes the camera to rotate about its own x-axis and uses the following
code:

	case	38:	//up	cursor,tilt	camera	up
 if GetCameraAngleX(1) > -30
 RotateCameraLocalX(1,-1)
 endif
 endcase
	case	40:	//down	cursor,tilt	camera	down
 if GetCameraAngleX(1) < 30
 RotateCameraLocalX(1,1)
 endif
endcase

Activity 23.31

Modify FP3D using the code given above to allow the player to look around the
playing area.

Test and save your program.

Activity 23.32

Modify FP3D so that the camera can be moved forward and backward.

Can the camera pass through the walls?

Test and save your program.

Hands On AGK BASIC: 3D Graphics 827

Note that a negative value is required to tilt the camera upward.

As you can see from the results of Activity 23.33, moving forward (or backward)
when the camera is not pointing straight forward (0o rotation about its x-axis) the
height of the camera changes as it is moved. The reason for this is shown in FIG-
23.90.

We avoided the same type of problem when turning the camera by rotating the camera
about its inertial y-axis rather than its local y-axis. However, we cannot use the
inertial z-axis for the camera movement, since it will not be pointing in the appropriate
direction once the player uses the left and right cursor keys to turn the camera.

To stop a tilted camera changing height as it is moved, we must first make sure it is
pointing straight ahead. In other words, we must undo any up or down tilt operation.
This will ensure that the local z-axis is parallel to the floor of the maze and that the
height of the camera will not change as it moves. We can then move the camera
before finally restoring the original tilt to the camera.

These new requirements require the W (forward) and S (backward) keys to be handled
by the following modified code:

 case	87:	//W	key,	Camera	forward	***
		 rem	***	Make	camera	parallel	to	floor	***
 angle = GetCameraAngleX(1)
 RotateCameraLocalX(1,-angle)
 rem *** Move camera ***
 MoveCameraLocalZ(1,0.2)
 rem *** Camera to original tilt ***
 RotateCameraLocalX(1,angle)
 endcase
	case	83:	//S	key,	Camera	back	***
		 rem	***	Make	camera	parallel	to	floor	***

Activity 23.33

Modify FP3D so that the camera can look up and down.

What happens when the camera is pointed downward and then made to travel
forward?

Test and save your program.

FIG-23.90

How the Camera Moves
when Tilted

When the camera is tilted to look up,
its axes also rotate.

This means that when we move the
camera forward (or backward) which
causes it to move along its z-axis, its
height changes.

z-axis z-axis

XZ plane XZ plane

828 Hands On AGK BASIC: 3D Graphics

 angle = GetCameraAngleX(1)
 RotateCameraLocalX(1,-angle)

 rem *** Move camera ***
 MoveCameraLocalZ(1,-0.2)
 rem *** Camera to original tilt ***
 RotateCameraLocalX(1,angle)
 endcase

Billboarding
Sometimes objects in a 3D game are not all they appear to be. Elements that look 3D
are in fact 2D images textured onto a plane. For example, the screen shot in FIG-
23.91 shows an image of a tree textured onto a plane.

Activity 23.34

Modify FP3D’s HandleCamera() function so that the camera moves correctly
when tilted up or down.

Test and save your program.

FIG-23.91

A Tree Billboard

Activity 23.35

Modify FP3D by creating a 10 x 20 plane (id = 3), positioning it at (10,11,0).

Texture the plane using the image Tree.png (copying the file to the media
folder). Run the program and move around the tree. Why is the tree not a
realistic model?

Save your program.

Hands On AGK BASIC: 3D Graphics 829

Of course, we can see that the illusion of a tree doesn’t work because as we move
about we become aware of the two-dimensional properties of the plane.

However, we might be able to overcome this problem by ensuring that the plane
remains looking at the camera. We can do this by adding the lines:

 rem *** Turn tree to look at camera ***
 SetObjectLookAt(3,GetCameraX(1),5,GetCameraZ(1),0)

This time our problem is that the tree will tilt about its x and y axes to ensure the plane
is perpendicular to the specified point it is looking at. To solve this problem we need
to ensure that it only revolves about its y-axis and remains perpendicular to the
ground.

To do this we only need to add the lines

 rem *** Undo any rotation about the x-axis ***
 SetObjectRotation(3,0,GetObjectAngleY(3),0)

after making the tree look at the camera.

This technique of using a 2D object to represent a 3D shape is known as billboarding
and works best when the player cannot get too close to the billboard object.

Summary
± The view displayed on the screen represents the part of the 3D world captured

by the virtual camera.

± The current version of AGK (v108) uses a single virtual camera but later
versions will offer more.

± Use SetCameraFOV() to set the camera’s field of view (this allows you to zoom
in or out).

± Use SetCameraRange() to set the near and far distances between which objects
are visible to the camera.

Activity 23.36

Modify FP3D by adding a new function called HandleTree() which contains
the two statements given above. Call the function at the end of the if
GetRawKeyState(key)=1 structure within HandleCamera().

Does this solve the problem?

Save your program.

Activity 23.37

Modify FP3D’s HandleTree() by adding the two statements given above at the
end of the function.

Does this solve the problem?

Save your program.

830 Hands On AGK BASIC: 3D Graphics

± Use SetCameraRotation() to set the camera’s rotation to a absolute angle
(given in degrees) about each of its local axes.

± Use RotateCameraLocalX(), RotateCameraLocalY(), and
RotateCameraLocalZ() to change the camera’s rotation about a specific local
axis by a specified amount (given in degrees).

± Use RotateCameraGlobalX(), RotateCameraGlobalY(), and
RotateCameraGlobalZ() to change the camera’s rotation about a specific
inertial axis by a specified amount (given in degrees).

± Use MoveCameraLocalX(), MoveCameraLocalY(), and MoveCameraLocalZ() to
move the camera a specified number of units along a given local axis.

± Use GetCameraX(), GetCameraY(), and GetCameraZ() to obtain the position of
the camera.

± Use GetCameraAngleX(), GetCameraAngleY(), and GetCameraAngleZ() to
discover the angle by which the camera is currently rotated about a given local
axis.

± Use GetObjectInScreen() to discover if a specified object is currently visible
on the screen.

± Using camera rotation and positioning, a first-person perspective can be
achieved.

± 2D objects can appear to be 3D using billboarding where a plane is kept at
right angles to the camera.

Hands On AGK BASIC: 3D Graphics 831

Lights

Introduction
So far we have only looked at the AGK statement for creating a directional light.
However, other commands exist to create point lights and manipulate the
characteristics of both directional and point lights.

Directional Lights
SetLightDirectionalDirection()

To change the angle of the light produced by a directional light, use the
SetLightDirectionalDirection() statement (see FIG-23.92).

where

 id is an integer value giving the ID of an existing directional
 light.

 x, y, z are real values defining the vector of the light rays.

SetLightDirectionalColor()

To change the colour of the light produced by a directional light, use the
SetLightDirectionalColor() statement (see FIG-23.93).

where

 id is an integer value giving the ID of the directional light.

 ir, ig, ib are integer values (0 to 255) giving the intensity of the
 red, green and blue components of the light.

The program in FIG-23.94 demonstrates the use of both a change of direction and a
change of colour as a directional light illuminates the surface of a sphere.

FIG-23.92

SetLightDirectional
Direction()

SetLightDirectionalDirection (id)x y z

FIG-23.93

SetLightDirectionalColor() SetLightDirectionalColor (id)ir ig ib

FIG-23.94

Using a Directional Light

rem *** Using Directional Light ***

rem *** Create sphere ***
CreateObjectSphere(1,5,20,20)

rem *** Add directional light ***
CreateLightDirectional(1,50,-15,10,150,150,150)

rem *** Position camera ***
SetCameraPosition(1,0,5,-20)
SetCameraLookAt(1,0,0,0,0)

832 Hands On AGK BASIC: 3D Graphics

GetLightDirectionalExists()

To check if a specified ID has been assigned to an existing directional light, use the
GetLightDirectionalExists() statement (see FIG-23.95).

where

 id is an integer value giving the ID to be checked.

If a directional light of that ID exists, the function returns 1, otherwise zero is
returned.

DeleteLightDirectional()

To delete a specific directional light use DeleteLightDirectional() (see FIG-
23.96).

where

 id is an integer value giving the ID of the light to be deleted.

ClearLightDirectionals()

If you have several directional lights, you can delete them all with a single statement
- ClearLightDirectionals() (see FIG-23.97).

FIG-23.94
(continued)

Using a Directional Light

rem	***	Light’s	y	offset	***
yoff# = -15
rem	***	Light’s	red	component	***
red# = 150
do
 rem *** Change y offset ***
 yoff# = yoff#+0.1
 rem *** Change red intensity ***
 red# = red#+0.1
 rem *** Update direction and colour ***
 SetLightDirectionalDirection(1,50,yoff#,10)
 SetLightDirectionalColor(1,red#,150,150)
 Sync()
 rem *** Wait 10 msecs ***
 Sleep(10)
loop

Activity 23.38

Start a new project called DLights3D and implement the code given in FIG-
23.94. Test and save your program.

FIG-23.95

GetLightDirectionalExists() ()GetLightDirectionalExistsinteger id

FIG-23.96

DeleteLightDirectional() ()DeleteLightDirectional id

FIG-23.97

ClearLightDirectionals()

()ClearLightDirectionals

Hands On AGK BASIC: 3D Graphics 833

Point Lights
CreateLightPoint()

The second type of light available in AGK is the point light. When you create a light
of this type, you need to specify the position from which the light originates, its
radius, and its colour. The further an object is from the light source, the weaker the
effect of the light; if the object is beyond the specified radius, then the light will have
no effect on it.

To create a point light, use CreateLightPoint() (see FIG-23.98).

where

 id is an integer value giving the ID to be assigned to the
 point light.

 x, y, z are real values giving the coordinates at which the light is
 to be positioned.

 rad is a real value giving the square of the distance over
 which the light is at its full intensity. Hence, if you require
 the light to still be at full intensity 10 units from its source,
 rad would have a value of 100 (102). Outside this range,
 the light intensity drops as the distance increases.

 ir, ig, ib are integer values (0 to 255) giving the intensities of the
 red, green and blue components of the colour of the light
 emitted. Set all three to 255 for white light.

SetLightPointPosition()

To reposition an existing point light, use SetLightPointPosition() (see FIG-
23.99).

where

 id is an integer value giving the ID of the point light.

 x, y, z are real values giving the coordinates at which the light is
 to be repositioned.

FIG-23.98

CreateLightPoint()

CreateLightPoint (id)x y z rad igir ib

Activity 23.39

Reload FP3D. Change the brightness of the directional light to 10,10,10.

Add a point light at position (35,10,30) with a radius of 10 and a colour of 250,
250, 0. Run the program and observe the effect of the new light.

Save your program.

FIG-23.99

SetLightPointPosition()

SetLightPointPosition (id)x y z

834 Hands On AGK BASIC: 3D Graphics

SetLightPointColor()

To change the colour of the light emitted by a point light, use SetLightPointColor()
(see FIG-23.100).

where

 id is an integer value giving the ID of the point light.

 ir, ig, ib are integer values (0 to 255) giving the intensities of the
 red, green and blue components of the colour of the light
 emitted. Set all three to 255 for white light.

SetLightPointRadius()

To change the sphere of the light’s influence, use SetLightPointRadius() (see FIG-
23.101).

where

Activity 23.40

Modify FP3D’s HandleCamera() function so that the point light is positioned
on the camera at all times.

Run the program and observe the effect of the change. Save your program.

FIG-23.100

SetLightPointColor() SetLightPointColor (id)ir ig ib

Activity 23.41

Load FP3D. Create a record structure giving details of the point light and a
corresponding global variable using the following code:

 rem *** Structure for point light data ***
 type PointLightType
	 	 colour	 	 	 //250:	yellow;	0:	red
 endtype
 rem *** Global variables ***
 rem *** Point light info ***
 global light as PointLightType
 light.colour = 1

Add a new function called HandleLight() which switches the value in light.
colour between 250 and 0 and the colour of the point light between yellow
(250,250,0) and red (250,0,0) when the Enter key is pressed.

The new function should be called from within the do..loop structure in the
main section of the program.

Test and save your program.

FIG-23.101

SetLightPointRadius() SetLightPointRadius (id)rad

Hands On AGK BASIC: 3D Graphics 835

 id is an integer value giving the ID of the point light.

 rad is a real value giving the new radius of the light.

GetLightPointExists()

To check if a specified ID has been assigned to an existing point light, use the
GetLightPointExists() statement (see FIG-23.102).

where

 id is an integer value giving the ID to be checked.

If a directional light of that ID exists, the function returns 1, otherwise zero is
returned.

DeleteLightPoint()

To delete a specific point light use DeleteLightPoint() (see FIG-23.103).

where

 id is an integer value giving the ID of the light to be deleted.

ClearLightPoints()

If you have several point lights, you can delete them all with a single statement -
ClearLightPoints() (see FIG-23.104).

Object Reflectivity
SetObjectLightMode()

You have the option to make a specific object unreflective to any new lights you have
created by using the SetObjectLightMode() statement (see FIG-23.105).

Activity 23.42

In FP3D, modify the definition of PointLightType and HandleLight() so that
the radius of the point light increases by 1 unit during each frame the + key is
held down. Similarly, decrease the radius by 1 unit while the - key is held down.
The radius should be restrained to lie within the limits 5 to 50.

Test and save your program.

FIG-23.102

GetLightPointExists() ()GetLightPointExistsinteger id

FIG-23.103

DeleteLightPoint() ()DeleteLightPoint id

FIG-23.104

ClearLightPoints() ()ClearLightPoints

FIG-23.105

SetObjectLightMode() SetObjectLightMode (id)imode

836 Hands On AGK BASIC: 3D Graphics

where

 id is an integer value giving the ID of the object whose light
 reflecting properties are to be changed.

 imode is an integer value (0 or 1) giving the reflection mode (0:
 no reflection other than the default ambient light,
 1: normal reflection of all lights).

When you set an object’s light mode to zero, it will still reflect the original ambient
light

Summary
± AGK 3D scenes default to using ambient light which creates light coming

equally from all directions.

± Ambient lit objects show no form of shading.

± A directional light creates a light in which all rays are parallel and whose
brightness does not diminish over distance.

± Use SetLightDirectionalDirection() to change the direction of an existing
directional light.

± Use SetLigtDirectionalColor() to change the colour of an existing
directional light.

± Use GetDirectionalLightExists() to check if a directional light of a
specified ID currently exists.

± Use DeleteLightDirectional() to delete a specific directional light.

± Use ClearLightDirectionals() to delete all existing directional lights.

± A point light creates light which originates from a specific point in space.

± The rays of a point light radiate equally in all directions from the source point.

± The intensity of the light from a point light decreases over distance.

± Use CreateLightPoint() to create a new point light.

± Use SetPointLightPosition() to reposition an existing point light.

± Use SetLightPointColor() to modify the colour of the light produced by an
existing point light.

± Use SetLightPointRadius() to change the radius of the sphere within which
the point light’s rays can be detected.

± Use GetPointLightExists() to check if a point light of a specified ID
currently exists.

± Use DeleteLightPoint() to delete a specific point light.

± Use ClearLightPoints() to delete all existing point lights.

Activity 23.43

In FP3D modify the floor (object 2) so that it is lit only by the default ambient
light. Test and save your program.

Hands On AGK BASIC: 3D Graphics 837

Collisions

Introduction
Just as we needed to detect collisions between sprites, so we also need to detect
collisions between 3D objects.

3D collision detection does not make use of bounding shapes as employed in 2D
collision detection. To detect a collision between two 3D objects you must start by
producing a ray cast from one object towards another. The ray cast can detect if
another 3D object lies along its path. By making the length of the ray cast match the
size and direction of the moving object, then it is possible to detect a collision between
objects. FIG-23.106 shows the concepts involved.

Ray Cast Statements
ObjectRayCast()

To cast a ray in 3D space, use the ObjectRayCast() statement. This will cast a ray
between two points. You can either check for a specific object being hit or just check
for any object being hit. You must also specify the start and end points of the ray.

FIG-23.106

Using a Ray Cast to
Detect a Collision

In this setup we have a plane and a
sphere with the sphere travelling from
left to right towards the plane.

If we cast a long ray from the centre of
the sphere in the direction of travel, we
can detect that eventually the sphere
will hit the plane.

However, if we cast a short ray (only
slightly larger than the diameter of the
sphere)...

...then the ray will only detect a collision
just before the sphere makes contact
with the plane.

838 Hands On AGK BASIC: 3D Graphics

The ObjectRayCast() statement’s format is shown in FIG-23.107).

where

 id is an integer value giving the ID of the object to be
 checked or zero if all objects are to be checked.

 x1, y1, z1 are real numbers giving the coordinates of the starting
 point of the ray.

 x2, y2, z2 are real numbers giving the coordinates of the end point
 of the ray.

If you have specified the ID to be checked, the function will return 1 for a hit and zero
for a miss. If you have not specified a specific object to be checked (by setting id to
zero), the function will return the ID of the first object encountered by the ray or zero
if none are encountered.

The function only detects collisions with the front face of a polygon; back face
collisions are not detected (see FIG-23.108).

The program in FIG-23.109 creates two objects: a plane and a sphere. The sphere is
moving on a trajectory which will intersect the plane. A ray cast is performed starting
at the centre of the sphere and ending 15 units further along its trajectory. The result
of that cast is then displayed on the screen.

The program in FIG-23.108 uses a ray cast 15 units in length originating from the
centre of a moving sphere and displays the value returned by a call to ObjectRayCast().

FIG-23.107 ObjectRayCast()

ObjectRayCast (id)y1x1 z1 y2x2 z2

FIG-23.108

Ray Casts Detect only
Front Face Collisions

Ray cast 1

Ray cast 2

Front face Back face

Hit Detected

No
Hit Detected

Polygon

FIG-23.109

Using Ray Casting

rem *** 3D ray casting ***

rem *** Create plane ***
CreateObjectPlane(1,15,15)
rem *** Colour plane ***
SetObjectColor(1,200,100,100,255)
rem *** Move plane back ***
SetObjectPosition(1,0,0,15)

rem *** Create sphere ***
CreateObjectSphere(2,3,15,15)
rem *** Position sphere ***
SetObjectPosition(2,-2,5,-10)

Hands On AGK BASIC: 3D Graphics 839

Because the sphere in the program above is moving parallel to the z-axis, it is quite
simple to calculate the end point of the ray cast. However, when an object moves in
a direction not parallel to an axis, then we need to do a bit more in the way of
calculation to determine that end point.

If the trajectory of the sphere moves it 0.025 units in the x-direction, -0.05 units in
the y direction and 0.2 units in the z direction on each frame, then we could move the
sphere using the following code:

rem	***	Sphere’s	initial	position	***
x# = -2
y# = 5
z# = -10
do
 rem *** Move sphere along trajectory ***
 x# = x# + 0.025
 y# = y# - 0.05
 z# = z# + 0.2
 SetObjectPosition(2,x#,y#,z#)
 rem *** Update display ***
 Sync()
loop

FIG-23.109
(continued)

Using Ray Casting

rem *** Set up light ***
CreateLightDirectional(1,10,-10,20,200,200,200)

rem *** Position camera ***
SetCameraPosition(1,20,5,-10)
SetCameraLookAt(1,0,0,5,0)

rem *** Create text to display result ***
CreateText(1,””)

rem	***	Sphere’s	initial	position	on	the	z-axis	***
z# = -10

do
 rem *** Ray from centre of sphere 15 ***
 rem *** units along the z-axis ***
 hit = ObjectRayCast(1,-2,5,z#,-2,5,z#+15)
 rem *** Display result ***
 SetTextString(1,Str(hit))
 rem *** Move sphere 0.1 units along z-axis ***
 z# = z# + 0.1
 SetObjectPosition(2,-2,5,z#)
 rem *** Update display ***
 Sync()
loop

Activity 23.44

Start a new project, RayCast3D, (size 900 x 900) and implement the code given
in FIG-23.109.

Note how far the sphere is from the plane when a hit is detected. Modify the
code so that the ray is only 1.5 units long (the radius of the sphere).

Test and save your program.

840 Hands On AGK BASIC: 3D Graphics

We know the starting point of the ray cast is at the centre of the sphere (x#, y#, z#)
and that the end point should be a distance of 1.5 units from the start point. All we
need now is to calculate the coordinates of that end point. The steps involved in
arriving at the end coordinates are shown in FIG-23.110.

With the distances travelled in each direction along a line which is 1.5 units in length,
we can calculate the endpoint coordinates as:

 endx# = x# + distx#
 endy# = y# + disty#
 endz# = z# + distz#

An updated version of the previous program is given in FIG-23.111. This calculates
the end point of the ray using the direction of movement.

FIG-23.110

Calculating the Offsets
for a Ray Cast

The ray being cast follows the same
direction as the sphere.

In a single frame the sphere travels
0.025 in the x direction, -0.05 in the y
direction and 0.2 in the z direction
giving a distance of...

So the distance travelled in a single
frame is 0.207666. If the distance
travelled were 1.5 units then we would
need to multiply the first figure by...

When the distance travelled in one
frame is multiplied by 7.223137 to give
a total distance travelled of 1.5, the
distance travelled along each axis can
be found by multiplying the original
distances by the same figure.

Direction
of travel

Ray
to be cast distance travelled =

multiplier = 1.5 / 0.207666 distance along x = 0.025 * 7.223137
= 0.180578

distance along y = -0.05 * 7.223137
= -0.361157

distance along z = 0.2 * 7.223137
= 1.444627

= 7.223137

0.0252 + (-0.05)2 + 0.22

0.000625 + 0.0025 + 0.04

0.043125

0.207666

=

=

=

FIG-23.111

Using Ray Casting -
Update

rem *** 3D Ray casting ***

rem	***	Create	first	plane	***
CreateObjectPlane(1,15,15)
rem *** Colour plane ***
SetObjectColor(1,200,100,100,255)

rem *** Move plane back ***
SetObjectPosition(1,0,0,15)

Hands On AGK BASIC: 3D Graphics 841

As a general rule, we want objects to appear solid and not to pass through each other.
One way to do this is to allow movement only when the ray cast from the object does
not detect another object in its path. For example, we could move our sphere
conditionally with the following code:

 rem *** If no collision, move sphere ***
 if hit = 0

FIG-23.111
(continued)

Using Ray Casting -
Update

rem *** Create sphere ***
CreateObjectSphere(2,3,15,15)
rem *** Position sphere ***
SetObjectPosition(2,-2,5,-10)

rem *** Set up light ***
CreateLightDirectional(1,10,-10,20,200,200,200)
rem *** Position camera ***
SetCameraPosition(1,20,5,-10)
SetCameraLookAt(1,0,0,5,0)
rem *** Create text to display result ***
CreateText(1,””)

rem	***	Sphere’s	initial	position	on	all	axes	***
x# = -2
y# = 5
z# = -10

rem *** Movement along each axis per frame ***
xstep# = 0.025
ystep# = -0.05
zstep# = 0.2

rem *** Calculate movement along each axis over a distance of 1.5
units ***
multiplier#	=	1.5	/	(Sqrt(xstep#^2	+	ystep#^2	+	zstep#^2))
xdist# = xstep# * multiplier#
ydist# = ystep# * multiplier#
zdist# = zstep# * multiplier#

do
 rem *** Ray from centre of sphere 1.5 units ***
 hit = ObjectRayCast(1,x#,y#,z#, x#+xdist#, y#+ydist#,
 z#+zdist#)
 rem *** Display result ***
 SetTextString(1,Str(hit))
 rem *** Move sphere along trajectory ***
 x# = x# + xstep#
 y# = y# + ystep#
 z# = z# + zstep#
 SetObjectPosition(2,x#,y#,z#)
 rem *** Update display ***
 Sync()
loop

Activity 23.45

Modify RayCast3D to match the code given in FIG-23.111. Test and save your
program.

842 Hands On AGK BASIC: 3D Graphics

 rem *** Move sphere along trajectory ***
 x# = x# + xstep#
 y# = y# + ystep#
 z# = z# + zstep#
 SetObjectPosition(2,x#,y#,z#)
 endif

SetObjectCollisionMode()

If you don’t want a specific 3D object to be detectable during a ray cast operation,
use SetObjectCollisionMode() (see FIG-23.112).

where

 id is an integer value giving the ID of the object whose
 collision mode is to be set.

 imode is an integer value (0 or 1) which is used to set the object’s
 collision mode (0: object not detectable by a cast; 1:
 object detectable).

GetObjectRayCastX(), GetObjectRayCastY()
and GetObjectRayCastZ()

To discover the exact point at which a cast collides with an object, use
GetObjectRayCastX(), GetObjectRayCastY(), and GetObjectRayCastZ() (see
FIG-23.113).

where

Activity 23.46

Modify RayCast3D so that the sphere stops moving when it reaches the plane.

Test and save your program.

SetObjectCollisionMode (id)imode
FIG-23.112

SetObjectCollisionMode()

Activity 23.47

Modify RayCast3D so that the plane is not detectable.

Run the program and observe the result of this change.

Do NOT save this version of the program.

FIG-23.113

GetObjectRayCastX()
GetObjectRayCastY()
GetObjectRayCastZ()

GetObjectRayCastX ()float

float

float

idx

GetObjectRayCastY ()idx

GetObjectRayCastZ ()idx

Hands On AGK BASIC: 3D Graphics 843

 idx is an integer value (0 to 3) giving the index of the hit
 being interrogated.

For the moment we will use an idx value of zero. The purpose of the other options
for this parameter will be explained shortly.

ObjectSphereCast()

Casting a ray to detect a collision will not always give an accurate result. For example,
looking at the setup shown in FIG-23.114 we can see that the sphere is too large to
fit through the hole in the plane.

However, since the trajectory of the sphere passes through the middle of the hole, the
ray cast will not detect the plane and allow the sphere to continue on its way.

Activity 23.48

Modify RayCast3D so that the text displays the coordinates of the collision
when the ray cast detects a hit.

Test and save your program.

FIG-23.114

Ray Casting Problems

Activity 23.49

Modify RayCast3D so that the model HoledPlane.obj is used in place of the
program-created plane. Remember to copy the file into the project’s media
folder.

Change the diameter of the sphere from 3 to 6 in the CreateObjectSphere()
statement. This will require a change to the length of the ray cast from 1.5 to 3.0
units. Change the appropriate line within the code.

Test and save your program. Does the sphere pass through the plane?

844 Hands On AGK BASIC: 3D Graphics

Because the ray cast has no width, it does not detect the fact that the sphere is too
wide to go through the hole. To overcome this problem, we can replace the ray cast
with a sphere cast. A sphere cast gives a volume to a cast, creating a cylinder-shaped
cast (see FIG-23.115).

To create a sphere cast, use the ObjectSphereCast() statement (see FIG-23.116).

where

 id is an integer value giving the ID of the object to be
 checked or zero if all objects are to be checked.

 x1, y1, z1 are real numbers giving the coordinates of the starting
 point of the sphere cast.

 x2, y2, z2 are real numbers giving the coordinates of the end point
 of the sphere cast.

 rad is a real number giving the radius of the sphere cast.

If you have specified the ID to be checked, the function will return 1 for a hit and zero
for a miss. If you have not specified a specific object to be checked (by setting id to
zero), the function will return the ID of the first object encountered by the ray or zero
if no object is encountered.

The path being produced by this command can be thought of as enclosing a cylinder-
like shape (but with curved top and bottom ends). This shape is created by the
movement of a sphere of a given radius from (x1, y1, z1) to (x2, y2, z2) (see FIG-
23.117).

FIG-23.115

The Advantage of
Sphere Casting

Ray Cast Sphere Cast

The ray has no volume The ray has volume

ObjectSphereCast (id)y1x1 z1 y2x2 z2 radinteger

FIG-23.116

ObjectSphereCast()

FIG-23.117

Visualisation of a Sphere
Cast

End point
(x2,y2,z2)

Start point
(x1,y1,z1)

Sphere cast

Path encloses
a cylinder-like

volume

Hands On AGK BASIC: 3D Graphics 845

To check if the sphere can pass through the hole in the plane shown in FIG-23.114,
we would make the radius of the sphere cast match that of the moving sphere object.
However, because the sphere used in the cast has volume, we must think carefully
about the end point of the sphere cast. When we created a ray cast, we wanted the ray
to reach from the centre of the moving sphere to its surface. But when using a sphere
cast with a radius matching that of the moving sphere, it might seem that the start and
end points of the cast should be equal (see FIG-23.118).

However, no cast can have its start and end points equal to each other. If we were to
do this, then no information is given about the direction in which the cast is travelling.
This direction information is required by AGK in order to handle certain collision
situations. To overcome this, we need to use the previous and current positions of the
moving object as the start and end points for the sphere cast (see FIG-23.119).

FIG-23.118

Overlapping An Object
and a Sphere Cast

Sphere being
moved

Sphere
being cast

When positioned at the
centre of the moving sphere,
the sphere cast overlays the
moving sphere exactly

FIG-23.119

Calculating a Sphere
Cast’s Start and End
Points

If we take the position of our moving
object as it appears on the first frame...

...and its position on the second frame...

...then we can use these two sets of
coordinates as the start and end points
for the sphere cast.

If a collision is detected, we can adjust
the moving object’s position to match
the coordinates of the hit.

(x1,y1,z1)

Moving
object

(x1,y1,z1)

(x2,y2,z2)

(x2,y2,z2)
Sphere

cast

GetObjectRayCastX(0)
GetObjectRayCastY(0)
GetObjectRayCastZ(0)

846 Hands On AGK BASIC: 3D Graphics

Another problem to watch out for is that a sphere cast can, on occasion, return a hit
on the object that is being moved and for this reason, it is best to turn off collision
detection for that object.

The program in FIG-23.120 is a variation on the earlier ray cast program but makes
use of a sphere cast to stop a moving sphere object passing through a holed plane.

FIG-23.120

Using a Sphere Cast

rem *** 3D Sphere Casting ***

rem *** Load holed plane ***
LoadObject(1,”HoledPlane.obj”,15)
rem *** Colour plane ***
SetObjectColor(1,200,100,100,255)
rem *** Move plane back ***
SetObjectPosition(1,0,0,15)

rem *** Create sphere ***
CreateObjectSphere(2,6,15,15)
rem *** Position sphere ***
x# = -2
y# = 5
z# = -10
SetObjectPosition(2,x#,y#,z#)

rem *** Set up light ***
CreateLightDirectional(1,10,-10,20,200,200,200)

rem *** Position camera ***
SetCameraPosition(1,20,5,-10)
SetCameraLookAt(1,0,0,5,0)

rem *** Create text to display result ***
CreateText(1,””)
SetTextSize(1,2.5)

rem	***	Set	sphere’s	movement	along	each	axis	per	frame	***
xstep# = 0.025
ystep# = -0.05
zstep# = 0.2

rem *** The cast cannot hit the moving sphere ***
SetObjectCollisionMode(2,0)

rem *** No collision yet ***
hit = 0

do
 rem *** if no collision yet ***
 if hit = 0
 rem *** Get current position of sphere object ***
 oldx# = GetObjectX(2)
 oldy# = GetObjectY(2)
 oldz# = GetObjectZ(2)

 rem *** Move the sphere object ***
 MoveObjectLocalX(2,xstep#)
 MoveObjectLocalY(2,ystep#)
 MoveObjectLocalZ(2,zstep#)

	 	 rem	***	Get	sphere’s	new	position	***
 x# = GetObjectX(2)

Hands On AGK BASIC: 3D Graphics 847

Notice that the GetObjectRayCast() functions also operate correctly when retrieving
the collision point of a sphere cast.

Of course, a sphere cast works best when the object it is linked to is itself a sphere,
since the cast and object can occupy exactly the same volume. However, you can still
use a sphere cast to detect when moving objects of other shapes collide; you just have
to accept a compromise in the accuracy of the collision detection (see FIG-23.121).

FIG-23.120
(continued)

Using a Sphere Cast

 y# = GetObjectY(2)
 z# = GetObjectZ(2)
 rem *** Perform sphere cast between old and new positions

 hit = ObjectSphereCast(0,oldx#,oldy#,oldz#,x#,y#,z#,1.5)
 rem *** If hit...
 if hit > 0
 rem *** Reposition the sphere at the point of collision

 SetObjectPosition(2, GetObjectRayCastX(0),
 GetObjectRayCastY(0),GetObjectRayCastZ(0))
 rem *** Give details of object hit ***
 SetTextString(1,”Hit object “ +
 Str(GetObjectRayCastHitID(0))
 +” at (“(Str(GetObjectRayCastx(0)”,” +
 Str(GetObjectRayCastY(0)) + ”,” +
 Str(GetObjectRayCastZ(0))+ ”)”)
 endif
 endif
 Sync()
loop

Activity 23.50

Start a new project called SphereCast3D and implement the code given in FIG-
23.120. Copy the file HoledPlane.obj to the project’s media folder.

Test and save your program.

Activity 23.51

Reload FP3D and position a sphere cast around the camera. Make the diameter
of the sphere being cast 1.5 units.

Modify the camera’s movement so it cannot pass through the walls of the maze.

Test and save your program.

FIG-23.121

Sphere Casts for Other
Primitives

Sphere
being cast

Sphere
being cast

Box
object

Cone
object

848 Hands On AGK BASIC: 3D Graphics

ObjectSphereSlide()

In the real world, when a moving object strikes some other immovable object it will
be deflected from its course and may strike yet more objects. If the situation you are
trying to achieve in your program is of this nature, then you can make use of the
ObjectSphereSlide() statement which will generate details of up to three collisions
as the moving object deflects off other elements in the scene. The statement has the
same format as the earlier ObjectSphereCast(), but generates more information
which can then be accessed by other collision-related statements.

The format for ObjectSphereSlide() is given in FIG-23.122.

 where

 id is an integer value giving the ID of the object to be
 checked or zero if all objects are to be checked.

 x1, y1, z1 are real numbers giving the coordinates of the starting
 point of the sphere slide.

 x2, y2, z2 are real numbers giving the coordinates of the end point
 of the sphere slide.

 rad is a real number giving the radius of the sphere used.

GetObjectRayCastNumHits()

To discover the number of objects hit by a cast or slide, use the statement
GetObjectRayCastNumHits() (see FIG-23.123).

If you have used a ray or sphere cast, then the value returned will be either 0 (no hit)
or 1 (hit), but when a sphere slide has been used, the value returned can lie between
0 and 3.

GetObjectRayCastHitID()

If you need to discover the ID of the 3D object hit by a cast or slide, use
GetObjectRayCastHitID() (see FIG-23.124).

where

 idx is an integer value (0 to 2) giving the index of the hit item.
 This index derives from the number of hits reported. In
 the case of a cast, a maximum of one object can be hit, so
 the idx value should be zero; when a slide has been used,
 the maximum of three hits means idx can be as high as 2
 (assuming three items have been hit).

ObjectSphereSlide (id)y1x1 z1 y2x2 z2 radinteger

FIG-23.122

ObjectSphereSlide()

FIG-23.123

GetObjectRayCastNumHits() GetObjectRayCastNumHits ()integer

FIG-23.124

GetObjectRayCastHitID()

GetObjectRayCastHitID ()integer idx

Hands On AGK BASIC: 3D Graphics 849

GetObjectRayCastSlideX(), GetObjectRayCastSlideY()
and GetObjectRayCastSlideZ()

When a collision is detected using a sliding sphere cast, you should reposition the
moving object using the statements GetObjectRayCastSlideX() ,
GetObjectRayCastSlideY(), and GetObjectRayCastSlideZ() (see FIG-23.125).

where

 idx is an integer value (0 only).

By placing the ObjectSphereSlide() and GetObjectRayCastSlide() statements
within a loop, you can create a realistic movement of a moving object as it is deflected
off one object to another. The effect will halt if three objects are hit.

The program in FIG-23.126 demonstrates the sliding effect with a moving sphere
being deflected off three planes.

FIG-23.125

GetObjectRayCastSlideX()
GetObjectRayCastSlideY()
GetObjectRayCastSlideZ()

GetObjectRayCastSlideX ()float

float

float

idx

GetObjectRayCastSlideY ()idx

GetObjectRayCastSlideZ ()idx

FIG-23.126

Using Sphere Slide

rem *** Demonstrating a Sphere Slide ***

rem	***	Create	first	wall	***
CreateObjectPlane(1,20,10)
rem	***	Create	second	wall	at	right	angles	to	first	***
CreateObjectPlane(2,20,10)
RotateObjectLocalY(2,90)
SetObjectPosition(2,10,0,-10)
rem	***	Create	floor	***
CreateObjectPlane(3,20,20)
RotateObjectLocalX(3,90)
SetObjectPosition(3,0,-5,-10)

rem *** Create directional light ***
CreateLightDirectional(1,5,-10,0,255,255,255)

rem *** Position Camera ***
SetCameraPosition(1,-10,5,-50)
SetCameraLookAt(1,10,0,0,0)

rem *** Create sphere ***
CreateObjectSphere(4,3,15,15)

rem	***	Sphere’s	position	***
x# = 0
y# = 4
z# = -10
SetObjectPosition(4,x#,y#,z#)

rem	***	Sphere’s	movement	vector	offsets	***
xoff# = 0.15
yoff# = -0.1
zoff# = 0.025

850 Hands On AGK BASIC: 3D Graphics

GetObjectRayCastBounceX(),GetObjectRayCastBounceY()
and GetObjectRayCastBounceZ()

To find the new trajectory of a moving object when it collides with another object,
use the statements GetObjectRayCastBounceX(),GetObjectRayCastBounceY()
and GetObjectRayCastBounceZ() (see FIG-23.127).

FIG-23.126
(continued)

Using Sphere Slide

rem	***	Switch	off	the	sphere’s	collision	detection	***
SetObjectCollisionMode(4,0)

rem *** Create text to display details of collision ***
CreateText(1,””)
SetTextSize(1,3)

do
 rem *** Get current position of sphere object ***
 oldx# = GetObjectX(4)
 oldy# = GetObjectY(4)
 oldz# = GetObjectZ(4)

 rem *** Move the sphere object ***
 MoveObjectLocalX(4,xoff#)
 MoveObjectLocalY(4,yoff#)
 MoveObjectLocalZ(4,zoff#)

	 rem	***	Get	sphere’s	new	position	***
 x# = GetObjectX(4)
 y# = GetObjectY(4)
 z# = GetObjectZ(4)

 rem *** Perform sphere slide between old and new position ***
 hit = ObjectSphereSlide(0,oldx#,oldy#,oldz#,x#,y#,z#,1.5)
 rem *** If hit...
 if hit > 0
 rem *** Reposition the sphere at the point of collision ***
 SetObjectPosition(4, GetObjectRayCastSlideX(0),
 GetObjectRayCastSlideY(0), GetObjectRayCastSlideZ(0))
 rem *** Display collision details ***
 SetTextString(1,”Hits: “+Str(GetObjectRayCastNumHits())+
 ” Object: “+Str(GetObjectRayCastHitID(0))+
 ” (“+Str(GetObjectRayCastSlideX(0))+”,”+
 Str(GetObjectRayCastSlideY(0))+”,”+
 Str(GetObjectRayCastSlideZ(0))+”)”)
 endif
 Sync()
loop

Activity 23.52

Start a new project called SphereSlide3D and implement the code given in FIG-
23.126.

Run the program. How many hits occur before the sphere stops moving?

Save your program.

Hands On AGK BASIC: 3D Graphics 851

where

 idx is an integer value (0 to 2) giving the index of the hit
 being interrogated (0 only for ray and sphere casts; 0 to 2
 for sliding sphere casts).

These functions return the offsets of the moving object’s new trajectory.

The program in FIG-23.128 is a modification of the previous program (SphereSlide3D)
which makes use of the bounce data to adjust the trajectory of the moving sphere as
it hits each of the three walls.

FIG-23.127

GetObjectRayCastBounceX()
GetObjectRayCastBounceY()
GetObjectRayCastBounceZ()

GetObjectRayCastBounceX ()float

float

float

idx

GetObjectRayCastBounceY ()idx

GetObjectRayCastBounceZ ()idx

FIG-23.128

Using Ray Cast Bounce

rem *** Demonstrating Bounce ***

rem	***	Create	first	wall	***
CreateObjectPlane(1,20,10)
rem	***	Create	second	wall	at	right	angles	to	first	***
CreateObjectPlane(2,20,10)
RotateObjectLocalY(2,90)
SetObjectPosition(2,10,0,-10)
rem	***	Create	floor	***
CreateObjectPlane(3,20,20)
RotateObjectLocalX(3,90)
SetObjectPosition(3,0,-5,-10)

rem *** Create directional light ***
CreateLightDirectional(1,5,-10,0,255,255,255)

rem *** Position Camera ***
SetCameraPosition(1,-10,5,-50)
SetCameraLookAt(1,10,0,0,0)

rem *** Create sphere ***
CreateObjectSphere(4,3,15,15)

rem	***	sphere’s	position	***
x# = -5
y# = 4
z# = -15
SetObjectPosition(4,x#,y#,z#)

rem	***	Sphere’s	movement	vector	offsets	***
xoff# = 0.075
yoff# = -0.05
zoff# = 0.15

rem	***	Switch	off	the	sphere’s	collision	detection	***
SetObjectCollisionMode(4,0)

do
 rem *** Get current position of sphere object ***

852 Hands On AGK BASIC: 3D Graphics

GetObjectRayCastNormalX(), GetObjectRayCastNormalY()
and GetObjectRayCastNormalZ()

A collision normal is a vector which is at right-angles to the surface being hit by a
cast or slide operation. (see FIG-23.129).

FIG-23.128
(continued)

Using Ray Cast Bounce

 oldx# = GetObjectX(4)
 oldy# = GetObjectY(4)
 oldz# = GetObjectZ(4)

 rem *** Move the sphere object ***
 MoveObjectLocalX(4,xoff#)
 MoveObjectLocalY(4,yoff#)
 MoveObjectLocalZ(4,zoff#)

	 rem	***	Get	sphere’s	new	position	***
 x# = GetObjectX(4)
 y# = GetObjectY(4)
 z# = GetObjectZ(4)

 rem *** Perform sphere cast between old and new position ***
 hit = ObjectSphereCast(0,oldx#,oldy#,oldz#,x#,y#,z#,1.5)
 rem *** If hit...
 if hit > 0
 rem *** Reposition the sphere at the point of collision ***
 SetObjectPosition(4, GetObjectRayCastX(0),
 GetObjectRayCastY(0), GetObjectRayCastZ(0))
						rem	***	Change	sphere’s	trajectory	***
 xoff# = GetObjectRayCastBounceX(0)
 yoff# = GetObjectRayCastBounceY(0)
 zoff# = GetObjectRayCastBounceZ(0)
 endif
 Sync()
loop

Activity 23.53

Modify SphereSlide3D to match the code given in FIG-23.128.

Run the program and observe the change in the sphere’s trajectory as it hits
each of the three surfaces. Save your program.

FIG-23.129

A Collision Normal

The elements below represent two
walls and a floor.

When a moving object collides with
one of these elements...

Collision
point

Hands On AGK BASIC: 3D Graphics 853

The format for the statements GetObjectRayCastNormalX() ,
GetObjectRayCastNormalY() and GetObjectRayCastNormalZ() are shown in FIG-
23.130).

where

 idx is an integer value (0 to 2) giving the index of the hit
 being interrogated (0 only for ray and sphere casts; 0 to 2
 for sliding sphere casts).

The collision normal information becomes useful when we want to place another
object at the point of collision. For example, if we wanted the sphere in the last
program to leave a mark at the point on each surface where a hit occurs, we would
start by placing the required image on a plane. This plane could then be positioned at
the point of collision. But the most important part is to orientate that plane so that it
lies flat to the surface being hit. This can be done with the help of the normal data
(see FIG-23.131).

FIG-23.129
(continued)

A Collision Normal

...we can discover the offsets of the
collision normal...

...using GetObjectRayCastNormalX(),
GetObjectRayCastNormalY() and
GetObjectRayCastNormalZ().

Collision
normal

xoffset

yoffset

zoffset

FIG-23.130

GetObjectRayCastNormalX()
GetObjectRayCastNormalY()
GetObjectRayCastNormalZ()

GetObjectRayCastNormalX ()float

float

float

idx

GetObjectRayCastNormalY ()idx

GetObjectRayCastNormalZ ()idx

FIG-23.131

Using a Collision Normal

We start by placing the image on a
plane.

When the sphere collides with a wall,
we can copy the plane at that spot...

Plane

Plane
copied at point

of collision

Image

854 Hands On AGK BASIC: 3D Graphics

In order to modify SphereSlide3D to leave a “mark” at each collision point, we need
the following elements of code.

First we need to create a plane textured with the required image:

rem *** Create Bounce Mark plane ***
LoadImage(1,”RedCircle.png”)
CreateObjectPlane(5,1.5,1.5)
SetObjectImage(5,1,0)
SetObjectTransparency(5,1)
SetObjectCollisionMode(5,0)
SetObjectPosition(5,0,1200,0)

Notice that the plane’s collision detection has been switched off and that it has been
positioned far outside the scene captured by the camera. We will clone this plane at
the appropriate position each time the sphere collides with a wall or the floor.

We need a variable to record the object ID being assigned to the cloned object:

 rem *** Object ID ***
 objno = 5

The variable starts at 5 - the ID of the new plane - and will be incremented when a
new copy is created.

When a hit is detected we need to position and orientate a clone of the plane containing
the bounce mark. To do this, the code is rewritten as:

if hit > 0
 rem *** Create a bounce mark plane ***
 inc objno
 InstanceObject(objno,5)
 rem *** Get the collision point ***
 hitx# = GetObjectRayCastX(0)
 hity# = GetObjectRayCastY(0)
 hitz# = GetObjectRayCastZ(0)
 rem *** Position bounce mark at collision point ***
 SetObjectPosition(objno,hitx#,hity#,hitz#)
 rem *** Orientate bounce mark along the normal ***
 ox# = hitx# + GetObjectRayCastNormalX(0)
 oy# = hity# + GetObjectRayCastNormalY(0)
 oz# = hitz# + GetObjectRayCastNormalZ(0)

FIG-23.131
(continued)

Using a Collision Normal

However, we need to orientate the
plane so that it is parallel to the surface
being hit.

To achieve this, we need to make the
plane look at a spot which lies along a
line starting at the collision point which
is drawn in the direction of the normal.

Plane

Image
Line from
collision point in
the direction of
the normal

The plane
must face
a point on
this line

Hands On AGK BASIC: 3D Graphics 855

 SetObjectLookat(objno,ox#,oy#,oz#,0)
 rem *** Reposition sphere at the point of collision ***
 SetObjectPosition(4,hitx#,hity#,hitz#)
				rem	***	Change	sphere’s	trajectory	***
 xoff# = GetObjectRayCastBounceX(0)
 yoff# = GetObjectRayCastBounceY(0)
 zoff# = GetObjectRayCastBounceZ(0)
 endif

GetObjectRayCastDistance()

To discover the distance between the start point of a cast and the point at which a
collision is detected, use GetObjectRayCastDistance() (see FIG-23.132).

where

 idx is an integer value (0 to 2) giving the index of the hit
 being interrogated (0 only for ray and sphere casts; 0 to 2
 for sliding sphere casts).

Summary
± Ray casting involves creating an imaginary line between two points in 3D

space.

± Use ObjectRayCast() to create a ray cast between two points. The function
can be used to detect if a specific object has been encountered along the path
of the ray cast or return the ID of the first object encountered.

± A ray cast will only detect collisions with the front faces of an object, not the
back faces.

± Use SetObjectCollisionMode() to stop an object being detected by a ray cast.

± Use GetObjectRayCastX(), GetObjectRayCastY(), and
GetObjectRayCastZ() to determine the point at which the ray cast hits the
reported object.

± Use ObjectSphereCast() to cast a sphere along a specified line.

± The path of a sphere cast has a cylinder-shaped volume; a ray cast has no
volume.

± Sphere casts can be used as a bounding volume for a 3D shape though for any
shape other than a sphere, that bounding volume is only a rough approximation
of the true shape.

Activity 23.54

Using the code given above, modify SphereSlide3D so that a bounce mark is
created at each position where a collision occurs. (Copy RedCircle.png to the
media folder.)

Run the program and observe the results. Save your program.

FIG-23.132

GetObjectRayCastDistance() GetObjectRayCastDistance (float)idx

856 Hands On AGK BASIC: 3D Graphics

± Use ObjectSphereSlide() to create a sliding effect, moving an object along
the surface of up to three objects.

± Use GetObjectRayCastNumHit() to discover the number of objects hit by a
cast. Ray and sphere casts will hit a maximum of 1 object, a sphere slide can
hit up to 3 objects.

± Use GetObjectRayCastHitID() to discover the ID of the object hit by a ray
or sphere cast. In the case of a sphere slide, up to three IDs can be accessed by
setting the parameter to a value from 0 to 2.

± Use GetObjectRayCastSlideX(), GetObjectRayCastSlideY(), and
GetObjectRayCastSlideZ() to determine the slide point to which
a moving object should be placed after a hit occurs when using the
ObjectSphereSlide() statement.

± Use GetObjectRayCastBounceX(), GetObjectRayCastBounceY(), and
GetObjectRayCastBounceZ()to find the offsets required to create a bounce
effect after using a ray or sphere cast.

± Use GetObjectRayCastNormalX(), GetObjectRayCastNormalY(), and
GetObjectRayCastBounceZ()to find the offsets of the normal vector to the
surface hit by a ray or sphere cast. For a sphere slide, set the parameter to a
value between 0 and 2 for the required object involved.

± Use GetObjectRayCastDistance() to discover the distance along a ray
or sphere cast that a hit was detected. For a sphere slide, set the parameter
between 0 and 2 for the object required.

Hands On AGK BASIC: 3D Graphics 857

Other 3D Related Statements

Converting Between Screen and 3D Coordinates
It is an everyday thing in our lives to see a three-dimensional world pictured on a
two-dimensional screen. The optics of the lens used in the camera to capture this
scene do all the required work, focusing the incoming light onto a flat sensor. But
when it comes to displaying a virtual 3D world onto a screen, then all the hard work
of reducing 3D to 2D is done by mathematics. Any point along a given line will map
to a specific point on the screen (see FIG-23.133).

A change in either the camera’s position, where it is pointing, or the zoom factor, all
require a recalculation of how the scene appears on the screen.

GetScreenXFrom3D() and GetScreenYFrom3D()

There are times when it is useful to discover where a specified point in 3D space
maps to on the screen. To do this, use GetScreenXFrom3D() and GetScreenXFrom3D()
(see FIG-23.134).

where

 x, y, z are real values giving the point in 3D space whose screen
 coordinates are to be determined.

The values returned by these functions will be in the measurement system being used
by your app (virtual pixels or percentage).

The program in FIG-23.135 creates a small sphere centred on the origin. The camera
can be moved using a version of the HandleCamera() function we created for FP3D
and the screen coordinates of the centre of the sphere are displayed. This value
changes as the camera is moved and hence the screen position of the sphere alters.

FIG-23.133

How 3D Coordinates Map
to the Screen

Screen

Object in 3D Space

Any point
on this line...

...maps to
this point on the

screen

FIG-23.134

GetScreenXFrom3D()
GetScreenYFrom3D()

GetScreenXFrom3D ()float x y z

GetScreenYFrom3D ()float x y z

858 Hands On AGK BASIC: 3D Graphics

FIG-23.135

Displaying 3D Object’s
Screen Coordinates

rem *** 3D Coords to Screen Coords ***

rem *** Create sphere ***
CreateObjectSphere(1,0.5,15,15)

rem *** Create directional light ***
CreateLightDirectional(1,5,-10,0,255,255,255)

rem *** Position Camera ***
SetCameraPosition(1,0,0,-50)
SetCameraLookAt(1,0,0,-50,0)

rem *** Create text to display results ***
CreateText(1,””)
SetTextSize(1,2)

rem *** Allow camera movement ***
do
 HandleCamera()
 SetTextString(1,”The centre of the sphere maps to screen
 coords (“ + Str(GetScreenXFrom3D(0,0,0),2)+”,”+
 Str(GetScreenYFrom3D(0,0,0),2)+”)”)
 Sync()
loop

function HandleCamera()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***
 if GetRawKeyState(key)=1
 select key
 rem *** Turn camera ***
	 	 	 case	37:	//left	cursor,	turn	camera	left
 RotateCameraGlobalY(1,-1)
 endcase
	 	 	 case	39:	//right	cursor,	turn	camera	right
 RotateCameraGlobalY(1,1)
 endcase
 rem *** Move camera options ***
	 	 	 case	87:	//W	key,	Camera	forward	***
	 	 	 	 rem	***	Make	camera	parallel	to	floor	***
 angle = GetCameraAngleX(1)
 RotateCameraLocalX(1,-angle)
 rem *** Move camera ***
 MoveCameraLocalZ(1,0.2)
 rem *** Rem return camera to original rotation ***
 RotateCameraLocalX(1,angle)
 endcase
	 	 	 case	83:	//S	key,	Camera	back	***
	 	 	 	 rem	***	Make	camera	parallel	to	floor	***
 angle = GetCameraAngleX(1)
 RotateCameraLocalX(1,-angle)
 rem *** Move camera ***
 MoveCameraLocalZ(1,-0.2)
 rem *** Rem return camera to original rotation ***
 RotateCameraLocalX(1,angle)
 endcase
	 	 	 case	38:	//up	cursor,tilt	camera	up
 if GetCameraAngleX(1) > -30
 RotateCameraLocalX(1,-1)
 endif

Hands On AGK BASIC: 3D Graphics 859

We can make use of this information to perform tasks such as ensuring that a
descriptive sprite is always positioned over a specific 3D position or object. FIG-
23.136 shows the use of a sprite to label the sphere in the previous program.

FIG-23.135
(continued)

Displaying 3D Object’s
Screen Coordinates

 endcase
	 	 	 case	40:	//down	cursor,tilt	camera	down
 if GetCameraAngleX(1) < 30
 RotateCameraLocalX(1,1)
 endif
 endcase
 endselect
 endif
endfunction

Activity 23.55

Start a new project called 3DToScreen and implement the code given in FIG-
23.135.

Observe the readings produced as you turn and move the camera.

Save your program.

FIG-23.136

Positioning a Sprite
Beside a 3D Object

Activity 23.56

Adding a sprite label to 3DToScreen requires the following lines of code to be
added at appropriate points in the program:

 rem *** Load label image ***
 LoadImage(1,”BubbleSphere.png”)
 rem *** Create sprite ***
 CreateSprite(1,1)
 SetSpriteSize(1,10,-1)
 rem *** Sprite offset required so pointer part ***
 rem *** of the image is over sphere ***
 yoffset = -9
 rem *** Position sprite ***
 SetSpritePosition(1,GetScreenXFrom3D(0,0,0),
 GetScreenYFrom3D(0,0,0)+yoffset)

Modify 3DToScreen inserting the lines above at the appropriate points in the
code. Test and save your program.

Remember to copy
BubbleSphere.png to the
project’s media folder.

860 Hands On AGK BASIC: 3D Graphics

Get3DVectorXFromScreen(), Get3DVectorYFromScreen()
and Get3DVectorZFromScreen()

Since we know that all points on a specific line in the 3D world will map to a specific
point on the screen, then, of course, the opposite follows: any point on the screen
represents a line of points passing through the 3D world.

We can find the offsets of that line for a given point on the screen using the statements
Get3DVectorXFromScreen() , Get3DVectorYFromScreen() and
Get3DVectorZFromScreen() (see FIG-23.137).

where

 x, y are real numbers giving the screen coordinates to which the line
 maps.

Since everything we see on the screen must pass through the lens of our virtual
camera, we know that one end of the line has the same coordinates as that camera.

 x1 = GetCameraX(1)
 y1 = GetCameraY(1)
 z1 = GetCameraZ(1)

The line’s offsets along each axis are given as:

 xoff# = Get3DVectorXFromScreen(GetPointerX(), GetPointerY())
 yoff# = Get3DVectorYFromScreen(GetPointerX(), GetPointerY())
 zoff# = Get3DVectorZFromScreen(GetPointerX(), GetPointerY())

All we need to do now is multiply the offsets by an appropriate amount so that we
create a line of suitable length. For example, if no 3D object on the screen is further
than 100 units from the camera, then a multiplier of 100 would be suitable. This
value, plus the starting point of the line, will give us its end point.

 x2 = x1 + xoff# * 100
 y2 = y1 + yoff# * 100
 z2 = z1 + zoff# * 100

And now we come to the point of the exercise: if we cast a ray from the start point of
the line to the end point, we can detect a hit on any 3D object caused by touching a
point on the screen. This allows the user to easily select items within a 3D environment
(see FIG-23.138).

In the next program we will use a routine called HandleTouch() which will cast a ray
from a touched point on the screen into the 3D world. If the ray hits an object, that
object will change colour to show that it has been selected. Any previously selected
object returns to its original colour when a new one is chosen.

FIG-23.137

Get3DVectorXFromScreen()
Get3DVectorYFromScreen()
Get3DVectorZFromScreen()

Get3D VectorXFromScreen ()float x y

Get3D VectorYFromScreen ()float x y

Get3D VectorZFromScreen ()float x y

Hands On AGK BASIC: 3D Graphics 861

The program is shown in FIG23-139.

FIG-23.138

Selecting a 3D Object from
the Screen

When the user touches a spot on the
screen...

...this can be used to cast a ray into
the 3D environment and select an
object.

Screen 3D World Screen 3D World

Touch Ray
hits sphere

FIG-23.139

Implementing Screen
Object Selection

rem *** Screen Coords to 3D Coords ***

global	lastobject	=	0	 //	ID	of	previous	selected	object

rem *** Create sphere ***
CreateObjectSphere(1,5,15,15)

rem *** Create cone ***
CreateObjectCone(2,7,3,12)
SetObjectPosition(2,-10,0,0)

rem *** Create box ***
CreateObjectBox(3,6,6,6)
SetObjectPosition(3,10,0,0)

rem *** Create directional light ***
CreateLightDirectional(1,5,-10,0,255,255,255)

rem *** Position Camera ***
SetCameraPosition(1,0,0,-50)
SetCameraLookAt(1,0,0,-50,0)

do
 HandleCamera()
 HandleObject()
 Sync()
loop

function HandleObject()
 rem *** Check for screen press ***
 if GetPointerPressed() = 1
 rem *** Get vector details for point touched ***
 xoff# = Get3DVectorXFromScreen(GetPointerX(),
 GetPointerY())
 yoff# = Get3DVectorYFromScreen(GetPointerX(),
 GetPointerY())
 zoff# = Get3DVectorZFromScreen(GetPointerX(),
 GetPointerY())
	 	 rem	***	Get	camera’s	position	***
 x# = GetCameraX(1)

862 Hands On AGK BASIC: 3D Graphics

FIG-23.139
(continued)

Implementing Screen
Object Selection

 y# = GetCameraY(1)
 z# = GetCameraZ(1)
 rem *** Cast a ray from camera with ***
 rem *** offset * 100 in all directions ***
 hit = ObjectRayCast(0,x#,y#,z#,x#+xoff#*100,y#+yoff#*100,
 z#+zoff#*100)
 rem *** If ray cast hits an object ... ***
 if hit <> 0
 rem *** Return previous object to original colour ***
 if lastobject <> 0
 SetObjectColor(lastobject,255,255,255,0)
 endif
 rem *** Set selected object to red tint ***
 SetObjectColor(hit,200,100,100,0)
 rem *** Selected object becomes previous object ***
 lastobject = hit
 endif
 endif
endfunction

function HandleCamera()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***
 if GetRawKeyState(key)=1
 select key
 rem *** Turn camera ***
	 	 	 case	37:	//left	cursor,	turn	camera	left
 RotateCameraGlobalY(1,-1)
 endcase
	 	 	 case	39:	//right	cursor,	turn	camera	right
 RotateCameraGlobalY(1,1)
 endcase
 rem *** Move camera options ***
	 	 	 case	87:	//W	key,	Camera	forward	***
	 	 	 	 rem	***	Make	camera	parallel	to	floor	***
 angle = GetCameraAngleX(1)
 RotateCameraLocalX(1,-angle)
 rem *** Move camera ***
 MoveCameraLocalZ(1,0.2)
 rem *** Rem return camera to original rotation ***
 RotateCameraLocalX(1,angle)
 endcase
	 	 	 case	83:	//S	key,	Camera	back	***
	 	 	 	 rem	***	Make	camera	parallel	to	floor	***
 angle = GetCameraAngleX(1)
 RotateCameraLocalX(1,-angle)
 rem *** Move camera ***
 MoveCameraLocalZ(1,-0.2)
 rem *** Rem return camera to original rotation ***
 RotateCameraLocalX(1,angle)
 endcase
	 	 	 case	38:	//up	cursor,tilt	camera	up
 if GetCameraAngleX(1) > -30
 RotateCameraLocalX(1,-1)
 endif
 endcase
	 	 	 case	40:	//down	cursor,tilt	camera	down
 if GetCameraAngleX(1) < 30
 RotateCameraLocalX(1,1)
 endif

Hands On AGK BASIC: 3D Graphics 863

Sprite and 3D Objects Depth Settings
SetGlobal3DDepth()

When you mix 3D objects and sprites, you can define which sprite depth all 3D
objects are to be drawn on. By default, 3D objects are placed on layer 5,000 and
sprites on layer 10, so sprites always appear in front of 3D objects. Although you
cannot position individual 3D objects on varying layers, you can specify which layer
all 3D objects should be drawn on using the statement SetGlobal3DDepth() (see
FIG-23.140).

where

 idepth is an integer value (0 to 10,000) giving the depth at which
 all 3D objects are to be drawn (default is 5,000).

FIG-23.141 shows the result of mixing sprites and 3D objects at differing depths.

When sprites and 3D objects are on the same layer, sprites always appear in front of
the 3D objects.

The Depth Buffer
In order to help with the calculations of mapping the 3D virtual world onto the
screen, AGK maintains a depth buffer. This buffer contains information on the
position of objects relative to each other from the current camera position. By
knowing which object appears behind another object for any given point on the
screen, AGK can determine which parts of an object should be drawn and which
should be ignored (see FIG-23.142).

FIG-23.139
(continued)

Implementing Screen
Object Selection

 endcase
 endselect
 endif
endfunction

Activity 23.57

Start a new project called ScreenTo3D and implement the code given in FIG-
23.139. Check that the 3D objects can be selected correctly irrespective of the
camera’s position. Save your program.

SetGlobal3DDepth (idepth)
FIG-23.140

SetGlobal3DDepth()

FIG-23.141

The Effects of Changing
3D Depth

Default:
Sphere on layer 5,000
Sprite on layer 10

Sphere on layer 5
Sprite on layer 10

864 Hands On AGK BASIC: 3D Graphics

However, it is not always the case that the front object should obscure the one behind
it. For example, if the sphere was transparent, then the surface of the box should show
through.

For each object, we can set a test condition which defines how the depth information
in the depth buffer will determine if that object should appear at any given point on
the screen.

SetObjectDepthReadMode()

To change the test performed when determining if an object’s surface should be
visible when AGK constructs the screen layout of a 3D screen, use the
SetObjectDepthReadMode() statement (see FIG-23.143).

where

 id is an integer value giving the ID of the object whose test
 condition is to be changed.

 imode is an integer value (0 to 8) which indicates the test to be
 performed. The default value is 1.

FIG-23.144 explains the meaning of each imode value.

FIG-23.142

Deciding On How an
Object is Displayed

Here we see a sphere placed in front
of a box.

When calculating how these appear on
the screen, the depth buffer will indicate
that the surface of the sphere should
be visible and the corresponding part of
the box, invisible.

In this area
the sphere is visible,

the box hidden

FIG-23.143

SetObjectDepthReadMode() SetObjectDepthReadMode (id)imode

FIG-23.144

Mode Options

imode

never

<

=

>

<=

≠

>=

always

The surface will never
show

The surface will always
show

Shows when depth less
than others

Shows when depth not
equal to others

Shows when depth
greater than others

Shows when depth equal
to others

Shows when depth less
than or equal to others

Shows when depth greater
than or equal to others

Meaning Result imode Meaning Result

0

1

2

3

5

6

7

4

Hands On AGK BASIC: 3D Graphics 865

The program in FIG-23.145 demonstrates the effect of each test on an intersecting
cube and sphere.

SetObjectDepthWrite()

It is possible to stop an object writing information to the depth buffer. In this situation,
all other objects will be assumed to appear in front of such an object.

You can turn stop an object recording its details in the depth buffer using the
SetObjectDepthWrite() statement (see FIG-23.146).

FIG-23.145

The Effects of Change
Read Mode

rem *** Depth Read Mode ***
global dmode = 1

rem *** Create sphere ***
CreateObjectSphere(1,5,15,15)

rem *** Create box ***
CreateObjectBox(3,6,6,6)
SetObjectPosition(3,0,0,2)

rem *** Create directional light ***
CreateLightDirectional(1,5,-10,0,255,255,255)

rem *** Position Camera ***
SetCameraPosition(1,-13,0,-10)
SetCameraLookAt(1,0,0,0,0)

rem *** Text to show current mode ***
CreateText(1,””)

do
 ChangeDepthTest()
 HandleCamera()
 SetTextString(1,”Depth mode: “+Str(dmode))
 Sync()
loop

function ChangeDepthTest()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***
 if GetRawKeyPressed(key)=1
 select key
 rem *** Turn camera ***
	 	 	 case	13:	//Enter	key,	inc	mode
 dmode = (dmode + 1) mod 8
 SetObjectDepthReadMode(3,dmode)
 endcase
 endselect
 endif
endfunction

Activity 23.58

Start a new project called DepthMode3D and implement the code given in FIG-
23.145. Observe the results obtained in each mode. Save your program.

866 Hands On AGK BASIC: 3D Graphics

where

 id is an integer value giving the ID of the object whose write
 mode is to be set.

 imode is an integer value (0 or 1). Using zero will mean that
 object’s details are not written to the depth buffer; 1
 writes depth information as normal.

The most likely scenario for using this option is when your program makes use of a
sky box. By drawing the box with depth-write off, no information about that object
is recorded in the depth buffer. When other 3D objects are added, they will see an
empty depth buffer and assume they are free to draw themselves to the back buffer.
Regardless of where the sky box is in world space, it will be overwritten by all other
objects in the back buffer.

GetObjectDepthReadMode()

To discover the current read depth test condition being used for a given object, use
the statement GetObjectDepthReadMode() (see FIG-23.147).

where

 id is an integer value giving the ID of the object whose
 depth read mode is to be found.

The function will return a value between 0 and 7.

GetObjectDepthWrite()

To discover if an object writes to the depth buffer, use the statement
GetObjectDepthWrite() (see FIG-23.148).

where

 id is an integer value giving the ID of the object whose
 depth read mode is to be found.

The function will return the value 0 for objects that do not write to the depth buffer;
1 for all other objects.

Shaders
A shader is a program designed to be run by a machine’s graphics processing unit
(GPU) and is used to affect the lighting of a scene or to create special effects.

It is beyond the scope of this text to discuss the creation of a new shader, but AGK
does contain commands for loading an existing shader program, setting shader

FIG-23.146

SetObjectDepthWrite()

SetObjectDepthWrite (id)imode

A sky box is a large
cube which has been
textured with an image
of the sky on its inside
surfaces. All other
objects are placed
within the box to give
the impression of being
surrounded by sky.

FIG-23.147

GetObjectDepthReadMode() GetObjectDepthReadMode (id)integer

FIG-23.148

GetObjectDepthWrite()

GetObjectDepthWrite (id)integer

Hands On AGK BASIC: 3D Graphics 867

program variables and specifying which shader is to be used on specific objects in a
scene.

LoadShader()

To load a new shader program, use the LoadShader() statement (see FIG-23.149).

where

 id is an integer value giving the ID to be assigned to the new
 shader.

 vfile is a string value giving the name of the file containing the
 vertex shader. Normally, these files have a .vs extension.

 pfile is a string value giving the name of the file containing the
 pixel shader. Normally, these files have a .ps extension.

The vertex shader transforms vertex data into screen position data. This allows the
original shape within the model to be reshaped when it appears on the screen.

The pixel shader modifies the colour of each screen pixel.

SetObjectShader()

To assign a loaded shader to a specific object, use SetObjectShader() (see FIG-
23.150).

where

 id is an integer value giving the ID of an existing object.

 idshd is an integer value giving the ID of the shader to be used.

AGK has its own default shader which has an ID value of zero.

The program in FIG-23.151 loads a simple shader and applies it to a box object.

FIG-23.149

LoadShader()

Format 2

LoadShader (id

Format 1

integer

pfile)vfile

LoadShader (id pfile)vfile

FIG-23.150

SetObjectShader()

SetObjectShader (id)idshd

FIG-23.151

Using a Shader

rem *** Using a Shader ***

rem *** Create Box ***
CreateObjectBox(1,6,6,6)
rem *** Create directional light ***
CreateLightDirectional(1,5,-10,0,255,255,255)

868 Hands On AGK BASIC: 3D Graphics

SetShaderConstantByName()

Named constants used within a shader file can be modified using the
SetShaderConstantByName() statement (see FIG-23.152).

where

 id is an integer value giving the ID of the loaded shader
 containing the constant.

 name is a string value giving the name of the constant.

 v1, v2, v3, v4 are real numbers giving the value to be assigned to the
 constant.

As you can see, there are four value parameters. How many of these are needed
depends on the type of constant whose value is being specified. For example, if the
constant is an integer or real one, then only the first value parameter (v1) will be used.
However, if the constant represents a 3D vector, then the first three value parameters
(v1, v2, and v3) will be used.

Note that you must always specify amounts for each of the four value parameters (v1
to v4) when calling the function. Only those required by the shader constant will be
used.

FIG-23.151
(continued)

Using a Shader

Thanks to Paul Johnston
for supplying the shader
files.

LoadImage(1,”Wood.png”)
SetObjectImage(1,1,0)

rem *** Position Camera ***
SetCameraPosition(1,-13,0,-10)
SetCameraLookAt(1,0,0,0,0)

rem *** Load shader ***
LoadShader(1,”vertex.vs”,”pixel.ps”)

rem *** Assign shader to box ***
SetObjectShader(1,1)

rem *** display result ***
do
 Sync()
loop

Activity 23.59

Start a new project called Shader3D and implement the code given in FIG-
23.151. Copy the files vertex.vs and pixel.ps into the project’s media folder.

Run the program twice. On the second run, comment out the
SetObjectShader() statement to see how this affects the result.

Save your program.

SetShaderConstantByName (id)name v1 v2 v3 v4

FIG-23.152

SetShaderConstantBy
Name()

Hands On AGK BASIC: 3D Graphics 869

Quaternion Rotation
Under most circumstances the easiest way of rotating an object is to define its position
in terms of angles of rotation about the object’s local x, y and z-axes. And this is
exactly how the RotateObjectLocalX(), RotateObjectLocalY(), and
RotateObjectLocalZ() statements operate. However, there are a few rare occasions
when defining an object’s orientation in this way can give rise to ambiguous or
unwanted results. To avoid these problems, the orientation of any object can be set
using a quaternion value. A quaternion value is a four element vector traditionally
written as [w,x,y,z]. FIG-23.153 helps demonstrate what a quaternion value
represents.

FIG-23.153

Defining the Orientation
of an Object

Imagine a clay model version of an
object which has a cocktail stick
embedded.

If we treat the stick in the same manner
as a game joystick, pushing it
forward or back will add pitch...

...pushing to the side will add roll. Finally, rotating the stick gives yaw.

If we convert our real-life model into a
more mathematical one, we can
represent the direction in which the
stick is pointing as a unit vector...

...and its rotation as a single angle.

Model

Pitch

Yaw

Stick

Roll

A unit vector
giving the direction

of the stick

Angle by
which stick is

rotated

[-0.57,0.8,-0.2]

870 Hands On AGK BASIC: 3D Graphics

You should have realised from the demonstration shown in FIG-23.153 that our clay
model can be placed in any orientation by a combination of pointing the cocktail stick
in a specific direction and then rotating the model about the stick by an appropriate
angle.

Looking at the operation in reverse, a model’s orientation can be specified by a vector
equivalent in direction to the positive half of the model’s local y-axis and the angle
of rotation about that vector.

The four numbers in a quaternion are directly related to the angle and vector shown
in FIG-23.153. Let’s assume that a 3D object has been positioned in such a way as to
create a unit vector [x,y,z] and that it has been rotated by θ radians about that vector,
the quaternion equivalent of this would be

	 [cos	θ/2,	xsin(θ/2),	ysin(θ/2),	zsin(θ/2)]

Both objects and cameras can be orientated using quaternion values.

SetObjectRotationQuat()

To orientate a 3D object using a quaternion value, use SetObjectRotationQuat()
(see FIG-23.154).

where

 id is an integer value giving the ID of the object.

 w, x, y, z are real values giving the quaternion.

SetCameraRotationQuat()

To orientate a camera using a quaternion value, use SetCameraRotationQuat() (see
FIG-23.155).

where

 id is an integer value giving the ID of the camera.

 w, x, y, z are real values giving the quaternion.

GetObjectQuatW(), GetObjectQuatX(), GetObjectQuatY()
and GetObjectQuatZ()

To find the quaternion representing the current orientation of a 3D object, use
GetObjectQuatW(), GetObjectQuatX(), GetObjectQuatY() and GetObjectQuatZ()
(see FIG-23.156).

FIG-23.154

SetObjectRotationQuat() SetObjectRotationQuat (id)w x y z

FIG-23.155

SetCameraRotationQuat()

SetCameraRotationQuat (id)w x y z

Hands On AGK BASIC: 3D Graphics 871

where

 id is an integer value giving the ID of the object.

GetCameraQuatW(), GetCameraQuatX(), GetCameraQuatY(),
and GetCameraQuatZ()

To find the quaternion representing the current orientation of a camera, use
GetCameraQuatW(), GetCameraQuatX(), GetCameraQuatY() and GetCameraQuatZ()
(see FIG-23.157).

where

 id is an integer value giving the ID of the camera.

Summary
± Use GetScreenXFrom3D() and GetScreenYFrom3D() to discover what position

on the screen a point in 3D space maps to.

± Use Get3DVectorXFromScreen(), Get3DVectorYFromScreen()
and Get3DVectorZFromScreen() in combination with the camera’s position to
discover the line in 3D space which maps to a given screen position.

± Use SetGlobal3DDepth() to specify which sprite layer 3D objects are to be
placed on.

± AGK’s depth buffer is used to help determine the depth of objects relative to
the current camera’s position.

± Use SetObjectDepthReadMode() to change the condition used to determine
when a surface element is written to the screen’s back buffer.

± Use SetObjectDepthWrite() to control an object’s details being written to the
depth buffer.

± Use GetObjectDepthReadMode() to determine an object’s current test

FIG-23.156

GetObjectQuatW()
GetObjectQuatX()
GetObjectQuatY()
GetObjectQuatZ()

GetObjectQuatW ()float id

GetObjectQuatX ()float

GetObjectQuatY ()float

id

id

GetObjectQuatZ ()float id

FIG-23.157

GetCameraQuatW()
GetCameraQuatX()
GetCameraQuatY()
GetCameraQuatZ()

GetCameraQuatW ()float id

GetCameraQuatX ()float

GetCameraQuatY ()float

id

id

GetCameraQuatZ ()float id

872 Hands On AGK BASIC: 3D Graphics

condition for being written to the screen.

± Use GetObjectDepthWrite() to determine if a given object writes its details to
the depth buffer.

± Use LoadShader() to create a new shader.

± An AGK shader is constructed from two separate files - a vertex shader and a
pixel shader.

± Use SetObjectShader() to apply a specific shader to an object.

± Use SetShaderConstantByName() to assign a value to a named shader
constant.

± A quaternion is a sequence of four real values usually written as [w, x, y, z].

± A quaternion value can be used to specify an axis vector and an angle of
rotation about that axis.

± Use SetObjectRoatationQuat() to specify the orientation of a 3D object
using a quaternion value.

± Use SetCameraRotationQuat() to specify the orientation of a camera using a
quaternion value.

± Use GetObjectQuatW(), GetObjectQuatX(), GetObjectQuatY() and
GetObjectQuatZ() to obtain the quaternion values of a given object.

± Use GetCameraQuatW(), GetCameraQuatX(), GetCameraQuatY() and
GetCameraQuatZ() to obtain the quaternion values of a given camera.

Hands On AGK BASIC: 3D Graphics 873

Solutions
Activity 23.1

length = Sqrt(42 + 32 + 72)
 = Sqrt(16 + 9 + 49)
 = Sqrt (74)
 = 8.6 (approx)

Activity 23.2
No solution required.

Activity 23.3
Modified code for First3D (first change):

rem *** Position Camera ***

rem *** Load model ***
LoadObject(1,”Axes.obj”,15)

rem *** Position camera ***
SetCameraPosition(1,20,10,-20)

rem *** Display model ***
do
 Sync()
loop

No part of the axes model is visible.

Modified code for First3D (second change):
rem *** Moving Camera ***

rem *** Load model ***
LoadObject(1,”Axes.obj”,15)

rem	***	Camera’s	position	on	x-axis	***
x# = 0

rem *** Move camera until 20 units along x-axis ***
repeat
 rem *** Reposition camera ***
 x# = x# + 0.1
 SetCameraPosition(1,x#,10,-20)
 Sync()
 rem *** Wait 50 msecs ***
 Sleep(50)
until x# >= 20

rem *** Do nothing ***
do
 Sync()

loop

Activity 23.4
Modified code for First3D:

rem *** Adjusting Camera Aim ***
rem *** Load model ***
LoadObject(1,”Axes.obj”,15)
rem	***	Camera’s	position	on	x-axis	***
x# = 0
rem *** Move camera until 20 units along x-axis ***
repeat
 rem *** Reposition camera ***
 x# = x# + 0.1
 SetCameraPosition(1,x#,10,-20)
 rem *** Point camera at origin ***
 SetCameraLookAt(1,0,0,0,0)
 rem *** Update screen ***
 Sync()
 rem *** Wait 50 msecs ***
 Sleep(50)
until x# >= 20
rem *** Do nothing ***
do
 Sync()
loop

Activity 23.5
Modified code for First3D (red light used):

rem *** Adjusting Camera Aim ***
rem *** Load model ***
LoadObject(1,”Axes.obj”,15)
rem *** Add directional light ***
CreateLightDirectional(1,0,-15,20,200,150,150)
rem	***	Camera’s	position	on	x-axis	***
x# = 0
rem *** Move camera until 20 units along x-axis ***
repeat
 rem *** Reposition camera ***
 x# = x# + 0.1
 SetCameraPosition(1,x#,10,-20)
 rem *** Point camera at origin ***
 SetCameraLookAt(1,0,0,0,0)
 rem *** Update screen ***
 Sync()
 rem *** Wait 50 msecs ***
 Sleep(50)
until x# >= 20
rem *** Do nothing ***
do
 Sync()

loop

Activity 23.6
No solution required.

Activity 23.7
Modified code for Second3D:

rem ***User Controlled Camera Movement with Roll ***

rem *** Structure for camera details ***
type CameraDataType
	 x	as	float
	 y	as	float
	 z	as	float		 //	Camera’s	coords
	 dist	as	float	 //	Camera’s	distance	from	y-axis
	 angle	as	float	//	Camera’s	rotation	about	y-axis
	 roll	as	float	 //	Camera’s	roll
endtype

rem *** Global Variable ***
rem *** Camera info ***
global camera as CameraDataType
camera.x = 0
camera.y = 10
camera.z = -25
camera.dist = 25
camera.angle = -90
camera.roll = 0

rem *** Load model ***
LoadObject(1,”Axes.obj”,20)

rem *** Add directional light ***
CreateLightDirectional(1,0,-15,20,200,150,150)

rem	***	Add	text	to	show	camera’s	coords	***
CreateText(1,””)
CreateText(2,””)
SetTextPosition(2,0,6)
CreateText(3,””)
SetTextPosition(3,0,12)

rem *** Give user camera control ***
do
 HandleCamera()
 rem *** Show camera position ***
 SetTextString(1,”X: “+Str(camera.x,1))
 SetTextString(2,”Y: “+Str(camera.y,1))
 SetTextString(3,”Z: “+Str(camera.z,1))
 rem *** Update screen ***
 Sync()
loop

function HandleCamera()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***

874 Hands On AGK BASIC: 3D Graphics

 if GetRawKeyState(key)=1
 select key
	 	 	 case	37:	//left	cursor,	decrease	angle
 dec camera.angle
 endcase
	 	 	 case	38:	//up	cursor,	increase	y
 camera.y=camera.y+0.25
 endcase
	 	 	 case	39:	//right	cursor,	increase	angle
 inc camera.angle
 endcase
	 	 	 case	40:	//down	cursor,	decrease	y
 camera.y=camera.y-0.25
 endcase
	 	 	 case	187:	//+	key	roll	+1
 camera.roll = camera.roll + 1
 endcase
	 	 	 case	189:	//-	key;	roll	-1
 camera.roll = camera.roll - 1
 endcase
 endselect
 endif
 rem *** Calculate new x and z coordinates ***
 camera.x = camera.dist*cos(camera.angle)
 camera.z = camera.dist*sin(camera.angle)
 rem *** Reposition camera to match ***
 SetCameraPosition(1,camera.x,camera.y,camera.z)
 rem *** Make camera point at origin ***
 SetCameraLookAt(1,0,0,0,camera.roll)
endfunction

Activity 23.8
The new statements required when creating the box are
shown below in context with existing statements:

rem	***	Add	text	to	show	camera’s	coords	***
CreateText(1,””)
CreateText(2,””)
SetTextPosition(2,0,6)
CreateText(3,””)
SetTextPosition(3,0,12)

rem *** Add box to model ***
CreateObjectBox(2,3,2,1)
rem *** Give user camera control ***
do

The box’s centre as at the origin.

Activity 23.9
To create a sphere, change the lines

rem *** Add box to model ***
CreateObjectBox(2,3,2,1)

to
rem *** Add sphere to model ***
CreateObjectSphere(2,5,4,4)

The shape created in this version of the statement is a poor
approximation of a sphere.

In the second version the sphere is created using the
statement

 CreateObjectSphere(2,5,20,20)

This produces a realistic sphere.

Activity 23.10
To create a cone, change the lines

rem *** Add sphere to model ***
CreateObjectSphere(2,5,20,20)

to
rem *** Add cone to model ***
CreateObjectCone(2,6,2.5,5)

The shape created in this version of the statement is a poor
approximation of a cone.

In the second version the cone is created using the statement
 CreateObjectCone(2,6,2.5,15)

This produces a realistic cone.

Activity 23.11
To create a cylinder, change the lines

rem *** Add cone to model ***
CreateObjectCone(2,6,2.5,15)

to
rem *** Add cylinder to model ***

CreateObjectCylinder(2,4,3,12)

Activity 23.12
To add a plane to the existing model, include the lines

rem *** Add plane ***
CreateObjectPlane(3,8,7)

Visually, the plane cuts the cylinder in two.

Unlike standard polygons, a plane can be viewed from both
sides.

Activity 23.13
No solution required.

Activity 23.14
The function required to delete the cylinder contains the
following code:

function HandleCylinderDelete()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***
 if GetRawKeyState(key)=1
 select key
	 	 	 case	46:	//delete	key,	delete	cylinder
 if GetObjectExists(3)=1
 DeleteObject(3)
 endif
 endcase
 endselect
 endif
endfunction

Although using a select structure may seem like a bit of
overkill for a single option, it will make it easier to add any
future options that might be required.

The function must be called within the do..loop structure of
the main section of the program with the line

 HandleCylinderDelete()

Although the positioning of the call is not critical, it is
perhaps best to placed it immediately after the existing
function call to HandleCamera().

Activity 23.15
The colour of the directional light is changed by updating the
statement creating that light to read:

rem *** Add directional light ***
CreateLightDirectional(1,0,-15,20,250,250,250)

The plane is created and coloured using the lines:
rem *** Add plane ***
CreateObjectPlane(3,8,7)
rem *** Set colour of plane ***
SetObjectColor(3,90,150,200,255)

Hands On AGK BASIC: 3D Graphics 875

Activity 23.16
The latest version of the main section of Second3D is coded
as:

rem *** Texturing an Object ***

rem *** Structure for camera details ***
type CameraDataType
	 x	as	float
	 y	as	float
	 z	as	float		 	 //	Camera’s	coords
	 dist	as	float	 //	Camera’s	distance	from	y-axis
	 angle	as	float	//	Camera’s	rotation	about	y-axis
	 roll	as	float	 //	Camer’s	roll
endtype

rem *** Global Variable ***
rem *** Camera info ***
global camera as CameraDataType
camera.x = 0
camera.y = 10
camera.z = -25
camera.dist = 25
camera.angle = -90
camera.roll = 0

rem *** Load model ***
LoadObject(1,”Axes.obj”,20)

rem *** Add box ***
CreateObjectBox(2,6,6,6)
rem *** Texture box ***
LoadImage(1,”Wood.png”)
SetObjectImage(2,1,0)

rem *** Add directional light ***
CreateLightDirectional(1,0,-15,20,250,250,250)

rem	***	Add	text	to	show	camera’s	coords	***
CreateText(1,””)
CreateText(2,””)
SetTextPosition(2,0,6)
CreateText(3,””)
SetTextPosition(3,0,12)

rem *** Give user camera control ***
do
 HandleCamera()
 rem *** Show camera position ***
 SetTextString(1,”X: “+Str(camera.x,1))
 SetTextString(2,”Y: “+Str(camera.y,1))
 SetTextString(3,”Z: “+Str(camera.z,1))
 rem *** Update screen ***
 Sync()
loop

The code for HandleCamera() is unchanged.

Activity 23.17
No solution required.

Activity 23.18
In Second3D, replace the lines

rem *** Load image ***
LoadImage(1,”Wood.png”)
rem *** Assign image as texture of box ***
SetObjectImage(2,1,0)

with
rem *** Load image ***
LoadImage(1,”Perimeter.png”)
rem *** Assign image as texture of box ***
SetObjectImage(2,1,0)
rem *** Activate transparency ***
SetObjectTransparency(2,1)

Activity 23.19
To display only front faces, change the SetObjectCullMode()
statement to read:

SetObjectCullMode(2,1)

Only the front section of the hemisphere is visible. That is,
the part of the model displaying front faces.

To display only back faces, change the SetObjectCullMode()
statement to read:

SetObjectCullMode(2,2)

With the front facing polygon omitted, a larger number of
back facing polygons become visible.

Activity 23.20
If the base of the box is to sit on the XZ plane, it needs to be
raised by 3 units in the y direction.

After the box is created, move it to its new position by adding
the lines

rem *** Position box ***
SetObjectPosition(2,0,3,0)

This places the centre of the box at (0,3,0) and hence the
bottom of the box will be at zero on the y-axis.

Activity 23.21
The code to the HandleBox() function in Second3D:

function HandleBox()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***
 if GetRawKeyState(key)=1
 select key
 rem *** Move object options ***
	 	 	 case	82:	//R	key,	object	right
 MoveObjectLocalX(2,0.1)
 endcase
	 	 	 case	76:	//L	key,	object	left
 MoveObjectLocalX(2,-0.1)
 endcase
	 	 	 case	85:	//U	key,	object	up
 MoveObjectLocalY(2,0.1)
 endcase
	 	 	 case	68:	//D	key,	object	down
 MoveObjectLocalY(2,-0.1)
 endcase
	 	 	 case	73:	//I	key,	object	in
 MoveObjectLocalZ(2,0.1)
 endcase
	 	 	 case	79:	//O	key,	object	out
 MoveObjectLocalZ(2,-0.1)
 endcase
 endselect
 endif
endfunction

A call to this function should be placed after the call to
HandleCamera() in the main section of the program.

Activity 23.22
After creating the box, add the statements

rem *** Rotate box 20 degrees about z-axis ***
SetObjectRotation(2,0,0,20)

Since the local x and y axes have now been rotated, the
direction of the box’s movement also changes with respect to
the viewer (except along the local z-axis, whose orientation
is unchanged).

Activity 23.23
To allow rotation about the box’s local axes, modify
HandleBox()’s code to be:

function HandleBox()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***

876 Hands On AGK BASIC: 3D Graphics

 if GetRawKeyState(key)=1
 select key
 rem *** Move object options ***
	 	 	 case	82:	//R	key,	object	right
 MoveObjectLocalX(2,0.1)
 endcase
	 	 	 case	76:	//L	key,	object	left
 MoveObjectLocalX(2,-0.1)
 endcase
	 	 	 case	85:	//U	key,	object	up
 MoveObjectLocalY(2,0.1)
 endcase
	 	 	 case	68:	//D	key,	object	down
 MoveObjectLocalY(2,-0.1)
 endcase
	 	 	 case	73:	//I	key,	object	in
 MoveObjectLocalZ(2,0.1)
 endcase
	 	 	 case	79:	//O	key,	object	out
 MoveObjectLocalZ(2,-0.1)
 endcase
 rem *** Rotate Object about local axes ***
	 	 	 case	81:	//Q	key,	x-axis	+	1
 RotateObjectLocalX(2,1)
 endcase
	 	 	 case	87:	//W	key,	x-axis	-	1
 RotateObjectLocalX(2,-1)
 endcase
	 	 	 case	69:	//E	key,	y-axis	+	1
 RotateObjectLocalY(2,1)
 endcase
	 	 	 case	67:	//C	key,	y-axis	-	1
 RotateObjectLocalY(2,-1)
 endcase
	 	 	 case	75:	//K	key,	z-axis	+	1
 RotateObjectLocalZ(2,1)
 endcase
	 	 	 case	77:	//M	key,	z-axis		1
 RotateObjectLocalZ(2,-1)
 endcase
 endselect
 endif
endfunction

Activity 23.24
The code for the final version of Second3D:

rem *** Texturing an Object ***

rem *** Structure for camera details ***
type CameraDataType
	 x	as	float
	 y	as	float
	 z	as	float		 //	Camera’s	coords
	 dist	as	float	 //	Camera’s	distance	from	y-axis
	 angle	as	float	//	Camera’s	rotation	about	y-axis
	 roll	as	float	 //	Camer’s	roll
endtype

rem *** Global Variable ***
rem *** Camera info ***
global camera as CameraDataType
camera.x = 0
camera.y = 10
camera.z = -25
camera.dist = 25
camera.angle = -90
camera.roll = 0

rem *** Load model ***
LoadObject(1,”Axes.obj”,20)

rem *** Add box ***
CreateObjectBox(2,6,6,6)
rem *** Position box ***
SetObjectPosition(2,0,3,0)
rem *** Texture box ***
LoadImage(1,”Perimeter.png”)
SetObjectImage(2,1,0)
SetObjectTransparency(2,1)

rem *** Add directional light ***
CreateLightDirectional(1,0,-15,20,250,250,250)

rem	***	Add	text	to	show	camera’s	coords	***
CreateText(1,””)
CreateText(2,””)
SetTextPosition(2,0,6)

CreateText(3,””)
SetTextPosition(3,0,12)

rem *** Give user camera control ***
do
 HandleCamera()
 HandleBox()
 rem *** Show camera position ***
 SetTextString(1,”X: “+Str(camera.x,1))
 SetTextString(2,”Y: “+Str(camera.y,1))
 SetTextString(3,”Z: “+Str(camera.z,1))
 rem *** Update screen ***
 Sync()
loop

function HandleCamera()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***
 if GetRawKeyState(key)=1
 select key
	 	 	 case	37:	//left	cursor,	decrease	angle
 dec camera.angle
 endcase
	 	 	 case	38:	//up	cursor,	increase	y
 camera.y=camera.y+0.25
 endcase
	 	 	 case	39:	//right	cursor,	increase	angle
 inc camera.angle
 endcase
	 	 	 case	40:	//down	cursor,	decrease	y
 camera.y=camera.y-0.25
 endcase
	 	 	 case	187:	//+	key	roll	+1
 camera.roll = camera.roll + 1
 endcase
	 	 	 case	189:	//-	key;	roll	-1
 camera.roll = camera.roll - 1
 endcase
 endselect
 endif
 rem *** Calculate new x and z coordinates ***
 camera.x = camera.dist*cos(camera.angle)
 camera.z = camera.dist*sin(camera.angle)
 rem *** Reposition camera to match ***
 SetCameraPosition(1,camera.x,camera.y,camera.z)
 rem *** Make camera point at origin ***
 SetCameraLookAt(1,0,0,0,camera.roll)
endfunction

function HandleBox()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***
 if GetRawKeyState(key)=1
 select key
 rem *** Move object options ***
	 	 	 case	82:	//R	key,	object	right
 MoveObjectLocalX(2,0.1)
 endcase
	 	 	 case	76:	//L	key,	object	left
 MoveObjectLocalX(2,-0.1)
 endcase
	 	 	 case	85:	//U	key,	object	up
 MoveObjectLocalY(2,0.1)
 endcase
	 	 	 case	68:	//D	key,	object	down
 MoveObjectLocalY(2,-0.1)
 endcase
	 	 	 case	73:	//I	key,	object	in
 MoveObjectLocalZ(2,0.1)
 endcase
	 	 	 case	79:	//O	key,	object	out
 MoveObjectLocalZ(2,-0.1)
 endcase
 rem *** Rotate Object about local axes ***
	 	 	 case	81:	//Q	key,	x-axis	+	1
 RotateObjectLocalX(2,1)
 endcase
	 	 	 case	87:	//W	key,	x-axis	-	1
 RotateObjectLocalX(2,-1)
 endcase
	 	 	 case	69:	//E	key,	y-axis	+	1
 RotateObjectLocalY(2,1)
 endcase
	 	 	 case	67:	//C	key,	y-axis	-	1
 RotateObjectLocalY(2,-1)
 endcase

Hands On AGK BASIC: 3D Graphics 877

 case	75:	//K	key,	z-axis	+	1
 RotateObjectLocalZ(2,1)
 endcase
	 	 	 case	77:	//M	key,	z-axis		1
 RotateObjectLocalZ(2,-1)
 endcase
 rem *** Rotate object about inertial axes ***
	 	 	 case	90:	//Z	key,	x-axis	+	1
 RotateObjectGlobalX(2,1)
 endcase
	 	 	 case	88:	//X	key,	x-axis	-	1
 RotateObjectGlobalX(2,-1)
 endcase
	 	 	 case	70:	//F	key,	y-axis	+	1
 RotateObjectGlobalY(2,1)
 endcase
	 	 	 case	86:	//V	key,	y-axis	-	1
 RotateObjectGlobalY(2,-1)
 endcase
	 	 	 case	66:	//B	key,	z-axis	+	1
 RotateObjectGlobalZ(2,1)
 endcase
	 	 	 case	78:	//N	key,	z-axis		1
 RotateObjectGlobalZ(2,-1)
 endcase
 endselect
 endif
endfunction

Activity 23.25
No solution required.

Activity 23.26
To make the shape expand in the z direction rather than the x
direction, change the SetObjectScale() statement to read

SetObjectScale(1,1,1,scale#)

Activity 23.27
Modified code for Zoom3D:

rem *** FOV Demo ***

rem *** Load Model ***
LoadObject(1,”Robot.obj”,15)

rem *** Apply texture ***
LoadImage(1,”Robotskin.png”)
SetObjectImage(1,1,0)

rem *** Create background plane ***
CreateObjectPlane (2,100,100)
SetObjectPosition(2,0,0,10)
LoadImage(2,”Background.jpg”)
SetObjectImage(2,2,0)

rem *** Create Directional light ***
CreateLightDirectional(1,10,10,10,255,255,255)

rem *** Position and point camera ***
SetCameraPosition(1,0,10,-30)
SetCameraLookAt(1,0,5,0,0)

rem	***	set	field	of	view	***
global fov = 90

do
 HandleZoom()
 Sync()
loop

function HandleZoom()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***
 if GetRawKeyState(key)=1
 select key
	 	 	 case	33:	//Page	Up,	zoom	in
 if fov > 5
 dec fov
 endif
 endcase
	 	 	 case	34:	//Page	Down,	zoom	out
 if fov < 100

 inc fov
 endif
 endcase
 endselect
 endif
 SetCameraFOV(1,fov)
endfunction

Note that the variable fov has become a global variable.
Alternatively, it could have become a IN/OUT parameter to
the function.

Activity 23.28
To display both front and back faces of the three objects, add
the lines

rem *** Show front and back faces of all objects ***
SetObjectCullMode(1,0)
SetObjectCullMode(2,0)
SetObjectCullMode(3,0)

after creating all three objects.

Activity 23.29
No solution required.

Activity 23.30
The modified version of FP3D:

rem *** First Person Perspective ***

rem *** Load textured walls ***
LoadObject(1,”Maze.obj”,20)
LoadImage(1,”BricksLarge.png”)
SetObjectImage(1,1,0)
rem	***	Load	floor	***
CreateObjectPlane(2,180,180)
RotateObjectLocalX(2,90)
SetObjectPosition(2,0,1,0)
SetObjectColor(2,220,180,180,0)

rem *** Add directional light ***
CreateLightDirectional(1,0,-15,20,250,250,250)

rem *** Position camera ***
SetCameraPosition(1,0,5,-10)
SetCameraLookAt(1,0,5,-10,0)
rem	***	Set	camera’s	field	of	view	to	80	***
SetCameraFOV(1,80)

rem *** View scene ***
do
 Sync()
loop

The visible area becomes larger when the field of view is
changed.

Activity 23.31
Modified code for FP3D:

rem *** First Person Perspective ***

rem *** Load textured walls ***
LoadObject(1,”Maze.obj”,20)
LoadImage(1,”BricksLarge.png”)
SetObjectImage(1,1,0)
rem	***	Load	floor	***
CreateObjectPlane(2,180,180)
RotateObjectLocalX(2,90)
SetObjectPosition(2,0,1,0)
SetObjectColor(2,220,180,180,0)

rem *** Add directional light ***
CreateLightDirectional(1,0,-15,20,250,250,250)

rem *** Position camera ***
SetCameraPosition(1,0,5,-10)
SetCameraLookAt(1,0,5,-10,0)
rem	***	Set	camera’s	field	of	view	to	80	***
SetCameraFOV(1,80)

878 Hands On AGK BASIC: 3D Graphics

rem *** View scene ***
do
 HandleCamera()
 Sync()
loop

function HandleCamera()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***
 if GetRawKeyState(key)=1
 select key
 rem *** Turn camera ***
	 	 	 	 case	37:	//left	cursor,	turn	camera	left
 RotateCameraGlobalY(1,-1)
 endcase
	 	 	 	 case	39:	//right	cursor,	turn	camera	right
 RotateCameraGlobalY(1,1)
 endcase
 endselect
 endif
endfunction

Activity 23.32
In FP3D, the modified code for HandleCamera() is:

function HandleCamera()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***
 if GetRawKeyState(key)=1
 select key
 rem *** Turn camera ***
	 	 	 	 case	37:	//left	cursor,	turn	camera	left
 RotateCameraGlobalY(1,-1)
 endcase
	 	 	 	 case	39:	//right	cursor,	turn	camera	right
 RotateCameraGlobalY(1,1)
 endcase
 rem *** Move camera options ***
	 	 	 	 case	87:	//W	key,	Camera	forward	***
 MoveCameraLocalZ(1,0.2)
 endcase
	 	 	 	 case	83:	//S	key,	Camera	back	***
 MoveCameraLocalZ(1,-0.2)
 endcase
 endselect
 endif
endfunction

It is possible to move the camera through the walls.

Activity 23.33
In FP3D, the modified code for HandleCamera() is:

function HandleCamera()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***
 if GetRawKeyState(key)=1
 select key
 rem *** Turn camera ***
	 	 	 	 case	37:	//left	cursor,	turn	camera	left
 RotateCameraGlobalY(1,-1)
 endcase
	 	 	 	 case	39:	//right	cursor,	turn	camera	right
 RotateCameraGlobalY(1,1)
 endcase
 rem *** Move camera options ***
	 	 	 	 case	87:	//W	key,	Camera	forward	***
 MoveCameraLocalZ(1,0.2)
 endcase
	 	 	 	 case	83:	//S	key,	Camera	back	***
 MoveCameraLocalZ(1,-0.2)
 endcase
	 	 	 	 case	38:	//up	cursor,tilt	camera	up
 if GetCameraAngleX(1) > -30
 RotateCameraLocalX(1,-1)
 endif
 endcase
	 	 	 	 case	40:	//down	cursor,tilt	camera	down
 if GetCameraAngleX(1) < 30
 RotateCameraLocalX(1,1)
 endif
 endcase

 endselect
 endif
endfunction

With the camera pointing downward, moving forward causes
the camera to move under the floor! With the camera tilted
up, the camera moves up off the ground.

Activity 23.34
In FP3D, the modified code for HandleCamera() is:

function HandleCamera()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***
 if GetRawKeyState(key)=1
 select key
 rem *** Turn camera ***
	 	 	 	 case	37:	//left	cursor,	turn	camera	left
 RotateCameraGlobalY(1,-1)
 endcase
	 	 	 	 case	39:	//right	cursor,	turn	camera	right
 RotateCameraGlobalY(1,1)
 endcase
 rem *** Move camera options ***
	 	 	 	 case	87:	//W	key,	Camera	forward	***
 rem	***	Make	camera	parallel	to	floor	***
 angle = GetCameraAngleX(1)
 RotateCameraLocalX(1,-angle)
 rem *** Move camera ***
 MoveCameraLocalZ(1,0.2)
 rem *** Camera to original tilt ***
 RotateCameraLocalX(1,angle)
 endcase
	 	 	 	 case	83:	//S	key,	Camera	back	***
 rem	***	Make	camera	parallel	to	floor	***
 angle = GetCameraAngleX(1)
 RotateCameraLocalX(1,-angle)
 rem *** Move camera ***
 MoveCameraLocalZ(1,-0.2)
 rem *** Camera to original tilt ***
 RotateCameraLocalX(1,angle)
 endcase
 case	38:	//up	cursor,tilt	camera	up
 if GetCameraAngleX(1) > -30
 RotateCameraLocalX(1,-1)
 endif
 endcase
	 	 	 	 case	40:	//down	cursor,tilt	camera	down
 if GetCameraAngleX(1) < 30
 RotateCameraLocalX(1,1)
 endif
 endcase
 endselect
 endif

endfunction

Activity 23.35
The main section of FP3D is now coded as:

rem *** First Person Perspective ***

rem *** Load textured walls ***
LoadObject(1,”Maze.obj”,20)
LoadImage(1,”BricksLarge.png”)
SetObjectImage(1,1,0)
rem	***	Load	floor	***
CreateObjectPlane(2,180,180)
RotateObjectLocalX(2,90)
SetObjectPosition(2,0,1,0)
SetObjectColor(2,220,180,180,0)

rem *** Create tree billboard ***
CreateObjectPlane(3,10,20)
LoadImage(3,”Tree.png”)
SetObjectImage(3,3,0)
SetObjectTransparency(3,1)
SetObjectPosition(3,10,11,0)

rem *** Add directional light ***
CreateLightDirectional(1,0,-15,20,250,250,250)

rem *** Position camera ***
SetCameraPosition(1,5,5,-10)
SetCameraLookAt(1,5,5,-10,0)

Hands On AGK BASIC: 3D Graphics 879

rem	***	Set	camera’s	field	of	view	to	80	***
SetCameraFOV(1,80)

rem *** View scene ***
do
 HandleCamera()
 Sync()
loop

As you move round the tree, its two-dimensional nature
becomes obvious.

Activity 23.36
In FP3D, the new function is coded as:

function HandleTree()
 rem *** Turn tree to look at camera ***
 SetObjectLookAt(3,GetCameraX(1),5,GetCameraZ(1),0)
endfunction

The final lines in function HandleCamera() become:
 endselect
 HandleTree()
 endif
endfunction

Although the tree always points towards the camera it
appears to lift from the ground and tilt over.

Activity 23.37
In FP3D, the modified code for HandleTree() is:

function HandleTree()
 rem *** Turn tree to look at camera ***
 SetObjectLookAt(3,GetCameraX(1),5,GetCameraZ(1),0)
 rem *** Undo any rotation about the x-axis ***
 SetObjectRotation(3,0,GetObjectAngleY(3),0)
endfunction

Now the effect is complete, with the tree always facing the
camera in an upright position.

Activity 23.38
No solution required.

Activity 23.39
In the main section of FP3D, the code required to create
lights is changed to:

rem *** Add directional light ***
CreateLightDirectional(1,0,-15,20,10,10,10)
rem *** Add point light ***
CreateLightPoint(1,35,10,31,10,250,250,0)

This creates much duller lighting conditions throughout the
model with a yellow light showing on the right of the maze.

Activity 23.40
In the main section of FP3D, change the line

CreateLightPoint(1,35,10,31,10,250,250,0)

to
CreateLightPoint(1,5,5,-10,10,250,250,0)

This is the initial position of the camera.

The final lines in function HandleCamera() become:
 LightPointPosition(1,GetCameraX(1),5,
 GetCameraZ(1))
 endselect
 HandleTree()
 endif
endfunction

Activity 23.41
The modified code for the main section of FP3D is:

rem *** First Person Perspective ***

rem *** Structure for point light data ***
type PointLightType
	 colour		 	 //250:	yellow;	0:	red
endtype

rem *** Global variables ***
rem *** Point light info ***
global light as PointLightType
light.colour = 250

rem *** Load textured walls ***
LoadObject(1,”Maze.obj”,20)
LoadImage(1,”BricksLarge.png”)
SetObjectImage(1,1,0)
rem	***	Load	floor	***
CreateObjectPlane(2,180,180)
RotateObjectLocalX(2,90)
SetObjectPosition(2,0,1,0)
SetObjectColor(2,220,180,180,0)

rem *** Create tree billboard ***
CreateObjectPlane(3,10,20)
LoadImage(3,”Tree.png”)
SetObjectImage(3,3,0)
SetObjectTransparency(3,1)
SetObjectPosition(3,10,11,0)

rem *** Add directional light ***
CreateLightDirectional(1,0,-15,20,10,10,10)
rem *** Add point light ***
CreateLightPoint(1,5,5,-10,10,250,250,0)

rem *** Position camera ***
SetCameraPosition(1,5,5,-10)
SetCameraLookAt(1,5,5,-10,0)
rem	***	Set	camera’s	field	of	view	to	80	***
SetCameraFOV(1,80)

rem *** View scene ***
do
 HandleCamera()
 HandleLight()
 Sync()
loop

The code for HandleLight() is:
function HandleLight()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***
 if GetRawKeyState(key)=1
 select key
 rem *** Turn camera ***
	 	 	 case	13:	//Enter	key,	change	colour
 if GetRawKeyPressed(key) = 1
 light.colour = 250 - light.colour
 SetLightPointColor(1,250,light.colour,0)
 endif
 endcase
 endselect
 endif
endfunction

Activity 23.42
The main section of FP3D now begins with the following
code:

rem *** First Person Perspective ***

rem *** Structure for point light data ***
type PointLightType
	 colour		 	 //250:	yellow;	0:	red
	 radius		 	 //Radius	of	light
endtype

rem *** Global variables ***
rem *** Point light info ***
global light as PointLightType
light.colour = 1
light.radius = 10

880 Hands On AGK BASIC: 3D Graphics

The updated version of HandleLight() is:
function HandleLight()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***
 if GetRawKeyState(key)=1
 select key
 rem *** Turn camera ***
	 	 	 case	13:	//Enter	key,	change	colour
 if GetRawKeyPressed(key) = 1
 light.colour = 250 - light.colour
 SetLightPointColor(1,250,light.colour,0)
 endif
 endcase
	 	 	 case	187:	//+	key,	increase	light	radius
 if light.radius < 50
 inc light.radius
 endif
 endcase
	 	 	 case	189:	//	-	key.	decrease	light	radius
 if light.radius > 5
 dec light.radius
 endif
 endcase
 endselect
 endif
endfunction

Activity 23.43
In the main section of FP3D, create the floor using the
following statements:

rem	***	Load	floor	***
CreateObjectPlane(2,180,180)
RotateObjectLocalX(2,90)
SetObjectPosition(2,0,1,0)
SetObjectColor(2,220,180,180,0)
rem	***	Change	floor’s	reflectivity	***
SetObjectLightMode(2,0)

Notice that the result of this is to have the floor reflect the
original but unrealistic ambient light.

Activity 23.44
Since the ray cast is 15 units in length, a hit is detected well
before the sphere reaches the plane.

To reduce the length of the cast to 1.5, change the line
 hit = ObjectRayCast(1,-2,5,z#,-2,5,z#+15)

to
 hit = ObjectRayCast(1,-2,5,z#,-2,5,z#+1.5)

Now the hit is detected just as the sphere reaches the plane.

Activity 23.45
No solution required.

Activity 23.46
The do..loop structure in RayCast3D should be changed to:

do
 rem *** Ray from centre of sphere 1.5 units ***
 hit = ObjectRayCast(1,x#,y#,z#, x#+xdist#,
 y#+ydist#, z#+zdist#)
 rem *** Display result ***
 SetTextString(1,Str(hit))
 rem *** Move sphere if no collision ***
 if hit = 0
 rem *** Move sphere along trajectory ***
 x# = x# + xstep#
 y# = y# + ystep#
 z# = z# + zstep#
 SetObjectPosition(2,x#,y#,z#)
 endif
 rem *** Update display ***
 Sync()
loop

Activity 23.47
RayCast3D should begin with the following lines:

rem *** 3D ray casting ***

rem *** Create plane ***
CreateObjectPlane(1,15,15)
rem *** Colour plane ***
SetObjectColor(1,200,100,100,255)
rem *** Move plane back ***
SetObjectPosition(1,0,0,15)

rem *** Make plane undetectable to collisions ***
SetObjectCollisionMode(1,0)

The sphere will move through the plane, since no collision is
detected.

Activity 23.48
Within RayCast3D’s do..loop structure change the line

SetTextString(1,Str(“Hit”))

to
SetTextString(1,”Hit at(“+Str(GetObjectRayCastX(0),2)
+”,”+Str(GetObjectRayCastY(0),2)+”,”
+Str(GetObjectRayCastZ(0),2)+”)”)

Activity 23.49
The modified code for RayCast3D is:

rem *** 3D ray casting ***

rem *** Load holed plane ***
LoadObject(1,”HoledPlane.obj”,15)
rem *** Colour plane ***
SetObjectColor(1,200,100,100,255)
rem *** Move plane back ***
SetObjectPosition(1,0,0,15)

rem *** Create sphere ***
CreateObjectSphere(2,6,15,15)
rem *** Position sphere ***
SetObjectPosition(2,-2,5,-10)
rem *** Set up light ***
CreateLightDirectional(1,10,-10,20,200,200,200)

rem *** Position camera ***
SetCameraPosition(1,20,5,-10)
SetCameraLookAt(1,0,0,5,0)

rem *** Create text to display result ***
CreateText(1,””)

rem	***	Sphere’s	initial	position	on	all	axes	***
x# = -2
y# = 5
z# = -10

rem *** Movement along each axis per frame ***
xstep# = 0.025
ystep# = -0.05
zstep# = 0.2

rem *** Calculate movement along each axis over a
distance of 3 units ***
multiplier#	=	3	/	(Sqrt(xstep#^2	+	ystep#^2	+	
zstep#	^2))
xdist# = xstep# * multiplier#
ydist# = ystep# * multiplier#
zdist# = zstep# * multiplier#

do
 rem *** Cast ray from centre of sphere 3 units ***
 hit = ObjectRayCast(1,x#,y#,z#, x#+xdist#,
 y#+ydist#,z#+zdist#)
 rem *** Display result ***
 SetTextString(1,”Hit at(“+
 Str(GetObjectRayCastX(0),2)+”,”+
 Str(GetObjectRayCastY(0),2)+”,”+
 Str(GetObjectRayCastZ(0),2)+”)”)
 rem *** Move sphere if no collision ***
 if hit = 0
 rem *** Move sphere along trajectory ***

Hands On AGK BASIC: 3D Graphics 881

 x# = x# + xstep#
 y# = y# + ystep#
 z# = z# + zstep#

 SetObjectPosition(2,x#,y#,z#)
 endif
 rem *** Update display ***
 Sync()
loop

Even though its diameter is too large, the sphere still passes
through the hole in the plane.

Activity 23.50
No solution required.

Activity 23.51
FP3D’s HandleCamera() function should be recoded as:

function HandleCamera()
 rem *** Get last key pressed ***
 key = GetRawLastKey()
 rem *** If key currently pressed, process it***
 if GetRawKeyState(key)=1
 select key
 rem *** Turn camera ***
	 	 	 case	37:	//left	cursor,	turn	camera	left
 RotateCameraGlobalY(1,-1)
 endcase
	 	 	 case	39:	//right	cursor,	turn	camera	right
 RotateCameraGlobalY(1,1)
 endcase
 rem *** Move camera options ***
	 	 	 case	87:	//W	key,	Camera	forward	***
	 	 	 	 rem	***	Make	camera	parallel	to	floor	***
 angle = GetCameraAngleX(1)
 RotateCameraLocalX(1,-angle)
 rem *** Move camera ***
 rem ** Get current position **
 oldx# = GetCameraX(1)
 oldy# = GetCameraY(1)
 oldz# = GetCameraZ(1)
 rem ** Move camera **
 MoveCameraLocalZ(1,0.2)
 rem ** Get new position **
 newx# = GetCameraX(1)
 newy# = GetCameraY(1)
 newz# = GetCameraZ(1)
 rem ** If collision, return camera to old
 position **
 hit = ObjectSphereCast(0,oldx#,oldy#,
 oldz#,newx#,newy#,newz#,1.5)
 if hit <> 0
 SetCameraPosition(1,oldx#,oldy#,oldz#)
 endif
 rem *** Return camera to original tilt ***
 RotateCameraLocalX(1,angle)
 endcase
	 	 	 case	83:	//S	key,	Camera	back	***
	 	 	 	 rem	***	Make	camera	parallel	to	floor	***
 angle = GetCameraAngleX(1)
 RotateCameraLocalX(1,-angle)
 rem *** Move camera ***
 rem ** Get current position **
 oldx# = GetCameraX(1)
 oldy# = GetCameraY(1)
 oldz# = GetCameraZ(1)
 rem ** Move camera **
 MoveCameraLocalZ(1,-0.2)
 rem ** Get new position **
 newx# = GetCameraX(1)
 newy# = GetCameraY(1)
 newz# = GetCameraZ(1)
 rem ** If collision, return camera to old
 position **
 hit = ObjectSphereCast(0,oldx#,oldy#,
 oldz#,newx#,newy#,newz#,1.5)
 if hit <> 0
 SetCameraPosition(1,oldx#,oldy#,oldz#)
 endif
 rem *** Return camera to original tilt ***
 RotateCameraLocalX(1,angle)
 endcase
	 	 	 case	38:	//up	cursor,tilt	camera	up
 if GetCameraAngleX(1) > -30

 RotateCameraLocalX(1,-1)
 endif
 endcase
	 	 	 case	40:	//down	cursor,tilt	camera	down
 if GetCameraAngleX(1) < 30
 RotateCameraLocalX(1,1)
 endif
 endcase
 endselect
 HandleTree()
 rem *** Reposition light ***
 SetLightPointPosition(1, GetCameraX(1),5,
 GetCameraZ(1))
 endif
endfunction

Activity 23.52
There are three hits before the sphere stops moving.

Activity 23.53
No solution required.

Activity 23.54
Modified code for SphereSlide3D :

rem *** Demonstrating Bounce Marks ***

rem	***	Create	first	wall	***
CreateObjectPlane(1,20,10)
rem	***	Create	second	wall	at	right	angles	to	first	

CreateObjectPlane(2,20,10)
RotateObjectLocalY(2,90)
SetObjectPosition(2,10,0,-10)
rem	***	Create	floor	***
CreateObjectPlane(3,20,20)
RotateObjectLocalX(3,90)
SetObjectPosition(3,0,-5,-10)

rem *** Create directional light ***
CreateLightDirectional(1,5,-10,0,255,255,255)

rem *** Position Camera ***
SetCameraPosition(1,-10,5,-50)
SetCameraLookAt(1,10,0,0,0)

rem *** Create sphere ***
CreateObjectSphere(4,3,15,15)

rem	***	sphere’s	position	***
x# = -5
y# = 4
z# = -15
SetObjectPosition(4,x#,y#,z#)

rem	***	Sphere’s	movement	vector	offsets	***
xoff# = 0.075
yoff# = -0.05
zoff# = 0.15

rem	***	Switch	off	the	sphere’s	collision	detection	

SetObjectCollisionMode(4,0)

rem *** Create Bounce Mark plane ***
LoadImage(1,”RedCircle.png”)
CreateObjectPlane(5,1.5,1.5)
SetObjectImage(5,1,0)
SetObjectTransparency(5,1)
SetObjectCollisionMode(5,0)
SetObjectPosition(5,0,1200,0)

rem *** Object number ***
objno = 5
do
 rem *** Get current position of sphere ***
 oldx# = GetObjectX(4)
 oldy# = GetObjectY(4)
 oldz# = GetObjectZ(4)

 rem *** Move the sphere object ***
 MoveObjectLocalX(4,xoff#)
 MoveObjectLocalY(4,yoff#)
 MoveObjectLocalZ(4,zoff#)

882 Hands On AGK BASIC: 3D Graphics

	 	 rem	***	Get	sphere’s	new	position	***
 x# = GetObjectX(4)
 y# = GetObjectY(4)
 z# = GetObjectZ(4)
 rem *** Perform sphere cast between old and new
 position ***
 hit = ObjectSphereCast(0,oldx#,oldy#,oldz#
 ,x#,y#,z#,1.5)
 rem *** If hit...
 if hit > 0
 rem *** Add a bounce mark ***
 inc objno
 InstanceObject(objno,5)
 rem *** Get the collision point ***
 hitx# = GetObjectRayCastX(0)
 hity# = GetObjectRayCastY(0)
 hitz# = GetObjectRayCastZ(0)
 rem *** Position bounce mark at collision
 point ***
 SetObjectPosition(objno,hitx#,hity#,hitz#)
 rem *** Orientate bounce mark along the
 normal ***
 ox# = hitx# + GetObjectRayCastNormalX(0)
 oy# = hity# + GetObjectRayCastNormalY(0)
 oz# = hitz# + GetObjectRayCastNormalZ(0)
 SetObjectLookat(objno,ox#,oy#,oz#,0)
 rem *** Reposition the sphere at the point of
 collision ***
 SetObjectPosition(4,hitx#,hity#,hitz#)
							rem	***	Change	sphere’s	trajectory	***
 xoff# = GetObjectRayCastBounceX(0)
 yoff# = GetObjectRayCastBounceY(0)
 zoff# = GetObjectRayCastBounceZ(0)
 endif
 Sync()
loop

Activity 23.55
No solution required.

Activity 23.56
The main section of 3DToScreen should be changed to:

rem *** 3D Coords to Screen Coords ***

rem *** Create sphere ***
CreateObjectSphere(1,0.5,15,15)

rem *** Create directional light ***
CreateLightDirectional(1,5,-10,0,255,255,255)

rem *** Position Camera ***
SetCameraPosition(1,0,0,-50)
SetCameraLookAt(1,0,0,-50,0)

rem *** Create text to display results ***
CreateText(1,””)
SetTextSize(1,2)

rem *** Load label image ***
LoadImage(1,”BubbleSphere.png”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpriteSize(1,10,-1)
rem *** Sprite offset required so pointer part ***
rem *** of the image is over sphere ***
yoffset = -9

rem *** Allow camera movement ***
do
 HandleCamera()
 SetTextString(1,”The centre of the sphere maps
 to screen coords (“
 +Str(GetScreenXFrom3D(0,0,0),2)+”,”
 +Str(GetScreenYFrom3D(0,0,0),2)+”)”)
 rem *** Position sprite ***
 SetSpritePosition(1,GetScreenXFrom3D(0,0,0),
 GetScreenYFrom3D(0,0,0)+yoffset)
 Sync()
loop

Activity 23.57
No solution required.

Activity 23.58
No solution required.

Activity 23.59
Using the shader gives a brighter image - similar to that
obtained from the ambient light.

Hands On AGK BASIC: Memory Blocks 883

In this Chapter:

T What is a Memory Block?

T Accessing a Memory Block

T Using Memory Blocks to Create Data Structures

T Memory Blocks and Files

T Image Memory Blocks

T Manipulating an Image in a Memory Block

T Creating a New Image within a Memory Block

T The Mandelbrot Set Project

Memory Blocks

884 Hands On AGK BASIC: Memory Blocks

Accessing Memory

Introduction
The basic storage unit in computer memory is the bit. A bit can store a single binary
digit (0 or 1). In a computer’s main memory, these bits are organised into groups of
8 known as bytes. Every byte is allocated a unique memory address. These addresses
are allocated in sequential order. Hence the first location is given the address 0, the
next address 1, etc.

When we create a variable with a statement such as

 lives = 3

the computer reserves a few bytes of memory for that variable (see FIG-24.1) and it’s
in those bytes that the variable’s contents are stored.

Most of the time, finding out which locations have been allocated to a variable is of
no interest to us since we can access its contents by using the variable’s name.

It’s not only variables that are assigned space in memory, so are images, sounds, 3D
objects and other elements within a program.

However, it is also possible to reserve memory space explicitly within your code
using the memory block (shortened to memblock) commands.

FIG-24.1

Memory Organisation
and Allocation

A bit is the smallest unit of storage and
can store either a 1 or a 0 (zero).

Bits are organised into groups of 8,
known as bytes.

Computer memory is organised into
a sequence of bytes each with its own
unique address.

Every variable in a program is allocated
one or more bytes somewhere in
memory. It is in these bytes that the
value assigned to the variable is stored.

0 1

Bit ByteBit

0 0 1 1 1 0 1 1

Memory

0000
0001
0002
0003
0004
0005

0000
0001
0002
0003
0004
0005

Address

c = 7
Variable c

is allocated four
bytes

Hands On AGK BASIC: Memory Blocks 885

Memory Block Statements
CreateMemblock()

To reserve a specified number of bytes within a device’s memory, use the
CreateMemblock() statement (see FIG-24.2).

where

 id is an integer value giving the ID to be assigned to the
 memory block being reserved.

 ibytes is an integer value (1 to 100,000,000) giving the number
 of bytes to be reserved.

Using the first format requires you to specify the ID to be assigned; using the second
format creates an ID automatically and returns that value.

If we were to execute the statement

 CreateMemblock(1,8)

then a block of 8 bytes, assigned the ID value 1, would be reserved in the device’s
memory (see FIG-24.3).

There is no need to know the exact address of this reserved memory, but we do need
some method of specifying which location within the reserved area we want to
access. This is done by specifying an offset from the start of the block. For example,
the first byte has an offset of zero, the last an offset of 7 (see FIG-24.4).

FIG-24.2

CreateMemblock()

(

Format 2

CreateMemblock (

)

id
Format 1

integer

)ibytes

ibytesCreateMemblock

FIG-24.3

Creating a Memory
Block

Memory

Reserved block
(8 bytes)

Memory block
assigned ID of

1

886 Hands On AGK BASIC: Memory Blocks

SetMemblockByte()

Once we have reserved our memory block, we can write a value to a specified byte
within that block using the SetMemblockByte() statement (see FIG-24.5).

where

 id is an integer value giving the ID previously assigned to
 a reserved memory block.

 ioff is an integer value giving the offset within the memblock
 to which the value is to be written.

 iv is an integer (0 to 255) giving the value to be stored
 in the memory block.

For example, executing the statements

 CreateMemblock(1,8)
 SetMemblockByte(1,3,15)

would have the effect shown in FIG-24.6.

FIG-24.4

Addressing within a
Memory Block

Memory

Reserved block
(8 bytes)

o�set = 0

o�set = 7

FIG-24.5

SetMemblockByte() ()SetMemblockByte id ioff iv

FIG-24.6

Writing a Byte to a
Memory Block

Memory

o�set = 0

15 in decimal
is 00001111

in binary

o�set = 3

0 0 0 0 1 1 1 1

Hands On AGK BASIC: Memory Blocks 887

SetMemblockShort()

A two-byte integer value can be written to a memory block using the
SetMemblockShort() statement (see FIG-24.7).

where

 id is an integer value giving the ID previously assigned to
 a reserved memory block.

 ioff is an integer value giving the offset within the memblock
 to which the value is to be written. Must be a multiple of
 2. (0, 2, 4, etc.)

 iv is an integer (-32,768 to 32,767) giving the value to
 be stored in the memory block.

Notice that the offset value (ioff) must be a multiple of 2; you cannot start a short
integer value at an odd offset location.

Another peculiarity of the storage method is that the bytes of the value specified are
stored in reverse order. For example, if we execute the statement

 SetMemblockShort(1,0,0X5397) //Value given in hexadecimal

we might expect the value to be stored as shown in FIG-24.8

but, in fact the bytes are stored in the reverse order (see FIG-24.9).

Generally, this reversal of the bytes that make up the value will be transparent to you
since the processor itself handles both the reversal when storing the value and
restoration of the correct byte order when the value is later retrieved. The only time
you are likely to be aware of this strange setup is if you were to write a short value
and then read the same value back a byte at a time.

This storage format is known as little endian since the least-significant byte is stored
first.

FIG-24.7

SetMemblockShort() ()SetMemblockShort id ioff iv

FIG-24.8

Expected Storage Format

Memory

Reserved block

0X53

0X97

0 1 0 1 0 0 1 1

1 0 0 1 0 1 1 1

FIG-24.9

Actual Storage Format

Memory

Reserved block

0X97

0 1 0 1 0 0 1 1

1 0 0 1 0 1 1 1

0X53

888 Hands On AGK BASIC: Memory Blocks

SetMemblockInt()

To write a four-byte integer value to a memory block, use SetMemblockInt() (see
FIG-24.10).

where

 id is an integer value giving the ID previously assigned to
 a reserved memory block.

 ioff is an integer value giving the offset within the memblock
 to which the value is to be written. Must be a multiple of
 4. (0, 4, 8, etc.)

 iv is an integer (-2,147,483,648 to 2,147,483,647) giving
 the value to be stored in the memory block.

Again, the bytes of the value are stored in reverse order, so executing

 SetMemblockInt(1,0,0xF612ACD3)

would store the bytes in the order

 D3
 AC
 12
 F6

SetMemblockFloat()

A four-byte real value can be stored in a memory block using the SetMemblockFloat()
statement (see FIG-24.11).

where

 id is an integer value giving the ID previously assigned to
 a reserved memory block.

 ioff is an integer value giving the offset within the memblock
 to which the value is to be written. Must be a multiple of
 4. (0, 4, 8, etc.)

 v is a real value giving the number to be stored in the
 memory block.

Real values are stored using a sign bit, bias exponent and significant.

GetMemblockByte(), GetMemblockShort(), GetMemblockInt()
and GetMemblockFloat()

AGK offers a companion set of functions for reading byte, short, integer and real

FIG-24.10

SetMemblockInt() ()SetMemblockInt id ioff iv

FIG-24.11

SetMemblockFloat() ()SetMemblockFloat id ioff v

Hands On AGK BASIC: Memory Blocks 889

values from a memblock. These are GetMemblockByte(), GetMemblockShort(),
GetMemblockInt() and GetMemblockFloat() (see FIG-24.12).

where

 id is an integer value giving the memblock ID.

 ioff is an integer value giving the offset within the memblock
 from which a value is to be read. For short values this
 must be a multiple of 2; for integer and real values, a
 multiple of 4.

The program in FIG-24.13 demonstrates the use of a memblock to store byte, short,
integer and real values as well as displaying those stored values on the screen.

The program’s memblock layout is shown in FIG-24.14 (each cell represents 1 byte).

FIG-24.12

GetMemblockByte()
GetMemblockShort()
GetMemblockInt()
GetMemblockFloat()

()GetMemblockInt id ioff

()GetMemblockFloat id ioff

()GetMemblockShort id ioff

()GetMemblockByte id ioff

float

integer

integer

integer

FIG-24.13

Writing and Reading a
Memory Block

rem *** Data Memblock ***

rem *** Set up memblock ***
CreateMemblock(1,12)
rem *** Store byte value in first byte ***
SetMemblockByte(1,0,255)
rem *** Store short value in third and fourth bytes ***
SetMemblockShort(1,2,1200)
rem *** Store integer in 5th to 8th bytes ***
SetMemblockInt(1,4,7654321)
rem *** Store real in 9th to 12th bytes ***
SetMemblockFloat(1,8,3.14159)
rem *** display each value ***
do
 Print(GetMemblockByte(1,0))
 Print(GetMemblockShort(1,2))
 Print(GetMemblockInt(1,4))
 Print(GetMemblockFloat(1,8))
 Sync()
loop

FIG-24.14

Memory Block Data
Layout

Memblock

Byte Short Integer Real

O�set 0 1 2 3 4 5 6 7 8 9 10 11

Unused

890 Hands On AGK BASIC: Memory Blocks

GetMemblockExists()

You can check that a memblock with a specified ID currently exists using
GetMemblockExists() (see FIG-24.15).

where

 id is an integer value giving the ID to be checked.

The function returns 1 if a memblock of the specified ID exists, otherwise zero is
returned.

DeleteMemblock()

To free up the memory reserved by an existing memblock, use DeleteMemblock()
(see FIG-24.16).

where

 id is an integer value giving the ID of the memblock to be
 deleted.

GetMemblockSize()

To discover the size of an existing memblock, use GetMemblockSize() (see FIG-
24.17).

where

 id is an integer value giving the ID of the memblock whose
 size is to be determined.

The function returns the number of bytes that have been allocated to the specified
memblock.

Activity 24.1

Why is the second byte of the memblock as shown in FIG-24.14 unused?

Activity 24.2

Start a new project called MemblockData and implement the code given in FIG-
24.13.

Test and save your program.

FIG-24.15

GetMemblockExists() ()GetMemblockExists idinteger

FIG-24.16

DeleteMemblock()

()DeleteMemblock id

FIG-24.17

GetMemblockSize()

()GetMemblockSize idinteger

Hands On AGK BASIC: Memory Blocks 891

Storing Characters and Strings in a Memory Block
Although there are commands to store integer and real values in a memblock, there
are none for storing characters or strings.

Storing a Character

Storing a single character is relatively simple. All we have to do is use the
SetMemblockByte() statement, having converted the character to its numeric ASCII
value using the Asc() function. For example we could store the letter A in the first
byte of an existing memblock (whose ID is 1) using the line:

 SetMemblockByte(1,0,Asc(”A”))

When reading the letter back from the memblock, we need to convert the number
back to a character using Chr() :

 letter$ = Chr(GetMemblockByte(1,0))

Storing a String

In order to store a string in a memblock, we must first know the number of characters
in that string. This will determine the size of the memblock which needs to be created.

If the string we wish to store is in the variable name$, then we would create the
memblock using the line

 id = CreateMemblock(Len(name$))

To store the string in the memblock, we must write each character of the string in
turn, remembering to first convert it to a numeric value. We can do this with the
following code:

 for c = 1 to Len(name$)
 SetMemblockByte(id,c-1,Asc(Mid(name$,c,1))
 next c

Reading the string from the memblock requires the characters to be retrieved a byte
at a time, converting each back from a number to a character. This is achieved by the
following code:

 result$ =””
 for c = 0 to GetMemblockSize(id)-1
 result$ = result$ + Chr(GetMemblockByte(id,c))
 next c

The program in FIG-24.18 demonstrates the storage and retrieval of a single string
from a memblock. The code contains three functions:

 CreateMemString() creates a memblock containing a specified string and
 returns the ID assigned to the memblock.

 SetMemString() stores a specified string in the memblock.

 GetMemString() returns the string held in a memblock.

892 Hands On AGK BASIC: Memory Blocks

Notice that the function SetMemString() deletes any existing memblock allocation.
This is necessary because the new string will almost certainly require a different
number of bytes in the memblock than the previous string held there.

The other point of interest in the code is that each function accesses the memblock
by making the ID of the memblock a parameter. This approach is identical to that
used by the various AGK statements used to handle resources such as images, sprites
and 3D objects.

FIG-24.18

Storing a String in a
Memory Block

rem *** Using a memblock to store a string ***

rem *** Set up string and display its contents ***
mystring = CreateMemString(“Klaatu barada nikto”)
do
 Print(GetMemString(mystring))
 Sync()
loop

function CreateMemString(s$)
 rem *** Create memblock for string ***
 id = CreateMemblock(Len(s$))
 rem *** Copy chars from string to memblock ***
 for c = 1 to Len(s$)
 SetMemblockByte(id,c-1,Asc(Mid(s$,c,1)))
 next c
endfunction id

function SetMemString(id,s$)
 rem *** If block exists, delete it ***
 if GetMemblockExists(id) = 1
 DeleteMemblock(id)
 endif
 rem *** Create memblock for string ***
 CreateMemblock(id,Len(s$))
 rem *** Copy chars from string to memblock ***
 for c = 1 to Len(s$)
 SetMemblockByte(id,c-1,Asc(Mid(s$,c,1)))
 next c
endfunction

function GetMemString(id)
 rem *** Return empty string if memblock does not exist ***
 if GetMemblockExists(id) = 0
 exitfunction “”
 endif
 rem *** Start with empty string ***
 result$ = “”
 for c = 0 to GetmemBlockSize(id)-1
 result$ = result$ + Chr(GetMemblockByte(id,c))
 next c
endfunction result$

Activity 24.3

Start a new project called MemblockString and implement the code given in
FIG-24.18.

Test and save your program.

Hands On AGK BASIC: Memory Blocks 893

Using a Memory Block as an Array
To emulate an array within a memblock, we again need functions to create the
memblock, assign a value to a particular “cell”, and retrieve the value from a given
“cell”.

The code in FIG-24.19 contains functions to set up and access an integer array. The
functions are then used to create a 10-element memblock array and assign the cells
of the array the values 3 to 30 (in sequence). The contents of the cells are then
displayed on the screen.

FIG-24.19

Emulating an Array
Using a Memblock

rem *** Integer array as memblock ***

rem *** Create a ten element memblock array ***
mydata = CreateMemIntArray(10)
rem *** Set values in array to 3 - 30 ***
for c = 0 to 9
 SetMemIntArrayCell(mydata,c,(c+1)*3)
next c

do
 rem *** Display the contents of array ***
 for c = 0 to 9
 Print (GetMemIntArrayCell(mydata,c))
 next c
 Sync()
loop

function CreateMemIntArray(size)
 rem *** Create memblock of required size ***
 id = CreateMemblock(size*4)
 rem *** Set all cells to zero ***
 for c = 0 to size-1
 SetMemblockInt(id,c*4,0)
 next c
endfunction id

function SetMemIntArrayCell(id,idx,v)
 rem *** Exit if memblock does not exist ***
 if GetMemblockExists(id)=0
 exitfunction
 endif
 rem *** Exit if array index invalid ***
 if idx < 0 or idx > GetMemblockSize(id)/4
 exitfunction
 endif
 SetMemblockInt(id,idx*4,v)
endfunction

function GetMemIntArrayCell(id,idx)
 rem *** Exit if memblock does not exist ***
 if GetMemblockExists(id)=0
 exitfunction 0
 endif
 rem *** Exit if array index invalid ***
 if idx < 0 or idx > GetMemblockSize(id)/4
 exitfunction 0
 endif
 result = GetMemblockInt(id,idx*4)
endfunction result

894 Hands On AGK BASIC: Memory Blocks

Using a Memory Block as a Record Structure
Simple Records

In standard AGK we create a record by first defining a type

 type ColourType
 red
 green
 blue
 endtype

and then creating a variable of that type:

 tint as ColourType

If we use a memblock to serve the same purpose, we need to start by calculating the
number of bytes required:

 Field Type Size
 red = byte = 1 byte
 green = byte = 1 byte
 blue = byte = 1 byte

 Total 3 bytes

Next we need to remember the offset within the memblock where each field starts:

 red = 0 offset
 green = 1 offset
 blue = 2 offset

Now we are ready to replace our record structure with a memblock and a set of
corresponding functions allowing us to set and get each of the record’s fields. The
code for this is shown in FIG-24.20.

Activity 24.4

Start a new project called MemblockArray and implement the code given in
FIG-24.19.

Test and save your program.

FIG-24.20

Storing a Record in a
Memory Block

rem *** Creating a Record-Type Structure using Memblocks ***

remstart
Below is the conceptual structure being created in the memblock
type ColourType
 red byte
 green byte
 blue byte
endtype
remend

Hands On AGK BASIC: Memory Blocks 895

FIG-24.20
(continued)

Storing a Record in a
Memory Block

rem *** Create a memblock of this type ***
mycolour = CreateMemColourType(255,200,100)
rem *** Display the contents of the memblock
do
 Print(“Red : “+Str(GetMemColourRed(mycolour)))
 Print(“Green : “+Str(GetMemColourGreen(mycolour)))
 Print(“Blue : “+Str(GetMemColourBlue(mycolour)))
 Sync()
loop

rem *** Creates and intialises the structure ***
rem *** returns the ID ***
function CreateMemColourType(r,g,b)
 rem *** Create memblock for record ***
 id = CreateMemblock(3)
 rem *** Store initial colours staying in range 0 to 255 ***
 SetMemblockByte(id,0,r mod 256)
 SetMemblockByte(id,1,g mod 256)
 SetMemblockByte(id,2,b mod 256)
endfunction id

rem *** Change all three colour elements ***
function SetMemColour(id,r,g,b)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction
 endif
 rem *** Set red component ***
 SetMemblockByte(id,0,r mod 256)
 rem *** Set green component ***
 SetMemblockByte(id,1,g mod 256)
 rem *** Set blue component ***
 SetMemblockByte(id,2,b mod 256)
endfunction

rem *** Change red only ***
function SetMemColourRed(id,r)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction
 endif
 rem *** Set red component ***
 SetMemblockByte(id,0,r mod 256)
endfunction

rem *** Change green only ***
function SetMemColourGreen(id,g)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction
 endif
 rem *** Set green component ***
 SetMemblockByte(id,1,g mod 256)
endfunction

896 Hands On AGK BASIC: Memory Blocks

By using the memblock approach, we can update fields within a record - something
that AGK does not guarantee when performed within a function.

FIG-24.20
(continued)

Storing a Record in a
Memory Block

rem *** Change blue only ***
function SetMemColourBlue(id,r)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction
 endif
 rem *** Set blue component ***
 SetMemblockByte(id,2,b mod 256)
endfunction

rem *** Get current red setting ***
function GetMemColourRed(id)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction 0
 endif
 rem *** Retrieve red value ***
 result = GetMemblockByte(id,0)
endfunction result

rem *** Get current green setting ***
function GetMemColourGreen(id)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction 0
 endif
 rem *** Retrieve red value ***
 result = GetMemblockByte(id,1)
endfunction result

rem *** Get current blue setting ***
function GetMemColourBlue(id)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction 0
 endif
 rem *** Retrieve red value ***
 result = GetMemblockByte(id,2)
endfunction result

Activity 24.5

Start a new project called MemblockColour and implement the code in FIG-
24.20.

Modify the code so that the initial colour values are changed before being
displayed.

Test and save your project.

Hands On AGK BASIC: Memory Blocks 897

Arrays within Records

A type definition that is not allowed in AGK BASIC is one which contains an array.
For example, let’s say a character in a role-playing game is allowed to carry up to 10
items but the weight of each item affects the character’s speed. The structure we
would like to create might be defined as:

type RPGCharacterType
 charactersnum as integer
 dim weights[9] as float
 endtype

To overcome this AGK BASIC restriction, we can make use of a memblock. Running
through the calculations we get:

Bytes required

 charactersnum 4
 weights[0]-[9] 40

 Total 44

Offsets

 charactersnum 0
 weights[0] 4
 weights[1] 8
 weights[2] 12
 .
 weights[9] 40

Although the array subscripts run from 0 to 9, most people are happier using the
values 1 to 10 and it is this range that we will use when implementing the routines to
handle the memblock.

This time we will need only five routines. These are:

CreateMemRPGCharacterType(chnum) creates RPGCharacterType memblock

Activity 24.6

Start a new project called MemblockPoint and create a memblock which is
equivalent to the definition
 type PointType
 x as float
 y as float
 endtype

The code should contain the following functions:

 CreateMemPointType(x#,y#) creates memblock and sets values in the x
 and y fields. Returns memblock ID.
 SetMemPoint(id,x#,y#) sets values in x and y fields. No return value.
 GetMemPointX(id) returns value of x field.
 GetMemPointY(id) returns value of y field.

Test and save your program.

898 Hands On AGK BASIC: Memory Blocks

 and sets charctersnum to chnum. All
 weights are set to zero. Returns memblock
 ID.
SetMemRPGCharNum(id, chnum) sets value of charactersnum to chnum.
SetMemRPGWeight(id, idx, w#) sets value of weights[idx] to w#.
GetMemRPGCharId(id) returns value of charactersnum.
GetMemRPGWeight(id,idx) returns value of weights[idx].

The program in FIG-24.21 demonstrates each of these functions.

 FIG-24.21

Using a Memory Block
to Emulate a Record
Containing an Array

rem *** Arrays within a Memblock ***

remstart *** Conceptual structure ***
type RPGCharacterType
 charcaternum as integer
 dim weights[9] as float
endtype
remend

rem *** Create a RPGCharacterType object ***
mychar = CreateMemRPGCharacterType(1234)

rem *** Set the first weight ***
SetMemRPGWeight(mychar,1,98.7)

rem *** Display the contents of the RPGCharacter object ***
do
 Print(“Character’s number : “+Str(GetMemRPGCharNum(mychar)))
 for c = 1 to 10
 Print(“Weight “+Str(c)+” : “+
 Str(GetMemRPGWeight(mychar,c), 2))
 next c
 Sync()
loop

rem *** Create RPG memblock and set charcater’s ***
rem *** number to chnum and all weights to zero ***
function CreateMemRPGCharacterType(chnum)
 rem *** Create memblock for record ***
 id = CreateMemblock(44)
 rem *** Store character’s number ***
 SetMemblockInt(id,0,chnum)
 rem *** Set all weights to zero ***
 for c = 1 to 10
 SetMemblockFloat(id,c*4,0)
 next c
endfunction id

rem *** Set character’s number ***
function SetMemRPGCharNum(id,chnum)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction
 endif
 rem *** Set char num component ***
 SetMemblockInt(id,0,chnum)
endfunction

Hands On AGK BASIC: Memory Blocks 899

Nested Records

Assuming we have already defined a structure for types PointType and ColourType,
then we could define the data structure for a line as:

 type LineType
 start as PointType //Start point of line
 finish as PointType //End point of line
 colour as ColourType //Line colour
 endtype

And although we could create such a structure without resorting to the use of
memblocks, the limitation hanging over such an approach is that it would not be
possible to update a record of this structure within a function.

FIG-24.21
(continued)

Using a Memory Block
to Emulate a Record
Containing an Array

rem *** Set weight in weight[idx] ***
function SetMemRPGWeight(id,idx,w#)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction
 endif
 rem *** Set weight[idx] component ***
 SetMemblockFloat(id,idx*4,w#)
endfunction

rem *** Get character’s number ****
function GetMemRPGCharNum(id)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction 0
 endif
 rem *** Retrieve character’s number value ***
 result = GetMemblockInt(id,0)
endfunction result

rem *** Get weight in weight[idx] ***
function GetMemRPGWeight(id,idx)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction 0.0
 endif
 rem *** Retrieve weight[idx] ***
 result# = GetMemblockFloat(id,idx*4)
endfunction result#

Activity 24.7

Start a new project called MemblockRecArray and implement the code given in
FIG-24.21.

Try saving values in other elements of the weights array.

Test and save your project.

What other precondition should be added to the SetMemRPGWeight() function?

900 Hands On AGK BASIC: Memory Blocks

On the other hand, if we have previously defined PointType and ColourType using
memblocks, we can make use of these to create a LineType which is also based on a
memblock.

However, when we create a record structure, LineType, containing fields which are
themselves record structures start, finish and colour, then these fields are set up as
simple integers which will hold the IDs of the actual data structures (see FIG-24.22).

With this structure, creating a LineType structure also requires us to create the data
areas where the coordinates and colour information will be stored. Hence, the
function CreateMemLineType() would be coded as:

 function CreateMemLineType()
 rem *** Create main memblock ***
 id = CreateMemblock(12)
 rem *** Create memblock for fields in record ***
 startid = CreateMemPointType(0,0)
 finishid = CreateMemPointType(0,0)
 colourid = CreateMemColourType(255,255,255)
 rem *** Store IDs in main memblock ***
 SetmemblockInt(id,0,startid)
 SetMemblockInt(id,4,finishid)
 SetMemblockInt(id,8,colourid)
endfunction id

Any function assigning a value to a field within a LineType structure would make use
of the appropriate existing function already defined within the PointType or
ColourType structures. Hence, the function SetMemLineStart() would be defined
as:

 function SetMemLineStart(id, x#, y#)
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 startid = GetMemblock(id,0)
 SetMemPoint(startid,x#,y#)
 endfunction

A complete program which demonstrates the use of a LineType memblock structure
is shown in FIG-24.23.

FIG-24.22

How Nested Records are
Implemented

LineType (Internal Structure)

start (id only)

x

red
green

blue

y

x y

�nish (id only) colour(id only)

Hands On AGK BASIC: Memory Blocks 901

FIG-24.23

Using a Memory Block
to Emulate a Nested
Records Structure

rem *** Using Memblocks to Create a Nested Record ***

rem *** Create a LineType structure ***
myline = CreateMemLineType()

rem *** Assign start, finish and colour to line ***
SetMemLineStart(myline,20.5,34.8)
SetMemLineFinish(myline,76.2,51.6)
SetMemLineColour(myline,255,100,200)

rem *** Display the details of the line ***
do
 Print(“Line start : (“+Str(GetMemLineStartX(myline),2)+
 ”,”+Str(GetMemLineStartY(myline),2)+”)”)
 Print(“Line finish : (“+Str(GetMemLineFinishX(myline),2)+
 ”,”+Str(GetMemLineFinishY(myline),2)+”)”)
 Print(“Line colour : “+Str(GetMemLineColourRed(myline))+
 ”,”+Str(GetMemLineColourGreen(myline))+
 ”,”+Str(GetMemLineColourBlue(myline)))
 Sync()
loop

rem *** Creates a linetype with default values ***
rem *** Start=(0,0); finish = (0,0) ***
rem *** colour = 255,255,255 (white)
function CreateMemLineType()
 rem *** Create main memblock ***
 id = CreateMemblock(12)
 rem *** Create memblock for fields in record ***
 startid = CreateMemPointType(0,0)
 finishid = CreateMemPointType(0,0)
 colourid = CreateMemColourType(255,255,255)
 rem *** Store IDs in main memblock ***
 SetMemblockInt(id,0,startid)
 SetMemblockInt(id,4,finishid)
 SetMemblockInt(id,8,colourid)
endfunction id

rem *** Sets start point to (x#,y#) ***
function SetMemLineStart(id,x#,y#)
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 startid = GetMemblockInt(id,0)
 SetMemPoint(startid,x#,y#)
endfunction

rem *** Sets finish point to (x#,y#) ***
function SetMemLineFinish(id,x#,y#)
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 finishid = GetMemblockInt(id,4)
 SetMemPoint(finishid,x#,y#)
endfunction

902 Hands On AGK BASIC: Memory Blocks

FIG-24.23
(continued)

Using a Memory Block
to Emulate a Nested
Records Structure

rem *** Sets the line’s colour to r,g,b ***
function SetMemLineColour(id,r,g,b)
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 colourid = GetMemblockInt(id,8)
 SetMemColour(colourid,r,g,b)
endfunction

rem *** Returns the X coord of the start point ***
function GetMemLineStartX(id)
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 startid = GetMemblockInt(id,0)
 result# = GetMemPointX(startid)
endfunction result#

rem *** Returns the Y coord of the start point ***
function GetMemLineStartY(id)
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 startid = GetMemblockInt(id,0)
 result# = GetMemPointY(startid)
endfunction result#

rem *** Returns the X coord of the finish point ***
function GetMemLineFinishX(id)
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 finishid = GetMemblockInt(id,4)
 result# = GetMemPointX(finishid)
endfunction result#

rem *** Returns the Y coord of the finish point ***
function GetMemLineFinishY(id)
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 finishid = GetMemblockInt(id,4)
 result# = GetMemPointY(finishid)
endfunction result#

rem *** Returns the red component of the line’s colour ***
function GetMemLineColourRed(id)
 if GetMemblockExists(id) = 0
 exitfunction 0
 endif
 colourid = GetMemblockInt(id,8)
 result = GetMemColourRed(colourid)
endfunction result

Hands On AGK BASIC: Memory Blocks 903

Records Containing Strings

When you need to define one or more fields within a record as a string, use exactly
the same approach as that for nested records, with the main memblock containing the
ID of the secondary memblock which holds the actual string. For example, FIG-
24.24 shows the structure we would use if we wanted to create a record holding the
name and high score achieved by the user of a game app.

FIG-24.23
(continued)

Using a Memory Block
to Emulate a Nested
Records Structure

rem *** Returns the green component of the line’s colour ***
function GetMemLineColourGreen(id)
 if GetMemblockExists(id) = 0
 exitfunction 0
 endif
 colourid = GetMemblockInt(id,8)
 result = GetMemColourGreen(colourid)
endfunction result

rem *** Returns the blue component of the line’s colour ***
function GetMemLineColourBlue(id)
 if GetMemblockExists(id) = 0
 exitfunction 0
 endif
 colourid = GetMemblockInt(id,8)
 result = GetMemColourBlue(colourid)
endfunction result

rem **
rem *** Place code for PointType here ***
rem **

rem **
rem *** Place code for ColourType here ***
rem **

Activity 24.8

Start a new project called MemblockLine and implement the code given in FIG-
24.23.

Remember to add the functions defined for PointType and ColourType.

Test and save your project.

FIG-24.24

Structure for
HighScoreType

HighScoreType (Internal Structure)

name (id only) score

904 Hands On AGK BASIC: Memory Blocks

Saving Memory Block Data to a File
If the contents of a memblock are required after the app which created them has
terminated, then you need to save the memblock’s data to a file. Since AGK does not
yet contain explicit commands to achieve this, we will need to write our own
functions.

When the memblock contains all the data that is to be saved, then the process of
writing that information to a file is a simple one. We will need five basic functions:

 Open file for writing function this opens a named file for writing.

 Open file for reading function this opens a named file for reading.

 Write data to file function this writes the contents of one memblock
 to the file.

 Read data from file function this reads the data required to file on
 memblock.

 Close file function this closes the file being used.

Activity 24.9

Start a new project called MemblockHighScore and create the code necessary to
allow the creation of a high score record structure as shown in FIG-24.24.

Create the following functions for manipulating the structure:

 CreateMemHighScoreType(n$,hs) creates a HighScoreType memblock and
 sets name to n$ and score to hs.
 Returns the memblock ID.

 SetMemHighScoreName(id,n$) sets the name field to n$.

 SetMemHighScoreScore(id,hs) sets the score field to hs.

 GetMemHighScoreName(id) returns the value of name.

 GetMemHighScoreScore(id) returns the value of score.

Parameter id is the ID of the memblock.

Make use of the functions previously created in the MemblockString project to
handle the assignment and retrieval of the player’s name.

Test your program by creating two HighScoreType variables. The first of these
should retain the details given at creation, the second should have the initial
name and score details changed. The program should then display the contents
of both variables.

Save your project.

Hands On AGK BASIC: Memory Blocks 905

For example, when a memblock is used to store a ColourType structure, then the five
functions would be coded as:

 rem ***
 rem *** Colour File Operations ***
 rem ***

 rem *** Opens named file for writing ***
 function OpenMemColourFileToWrite(filename$,mode)
 rem *** Create the file ***
 fileid = OpenToWrite(filename$,mode)
 endfunction fileid

 rem *** Opens named file for reading ***
 function OpenMemColourFileToRead(filename$)
 rem *** Create the file ***
 fileid = OpenToRead(filename$)
 endfunction fileid

 rem *** Writes a single colour (r,g, and b) to the file ***
 function WriteMemColour(fileid,id)
 rem *** If memblock or file doesn’t exist, exit ***
 if GetMemblockExists(id) = 0 or FileIsOpen(fileid) = 0
 exitfunction
 endif
 rem *** Write colour to file ***
 WriteByte(fileid,GetMemColourRed(id))
 WriteByte(fileid,GetMemColourGreen(id))
 WriteByte(fileid,GetMemColourBlue(id))
 endfunction

 rem *** Reads a single colour (r,g, and b) from the file ***
 function ReadMemColour(fileid,id)
 rem *** If file or colour don’t exist, exit ***
 if FileIsOpen(fileid)=0 or GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** Read colour from file ***
 SetMemColour(id,ReadByte(fileid),ReadByte(fileid),
 ReadByte(fileid))
 endfunction

 rem *** Closes file ***
 function CloseMemColourFile(fileid)
 rem *** If file ID doesn’t exist, exit ***
 if FileIsOpen(fileid) = 0
 exitfunction
 endif
 rem *** Close file ***
 CloseFile(fileid)
 endfunction

Note that the first two functions do nothing more than call the existing AGK statements
for opening files. However, by creating new functions for these operations we make
the purpose of the operations more explicit.

906 Hands On AGK BASIC: Memory Blocks

While a record structure such as ColourType and PointType are easily handled, if the
memblock contains the ID’s of other memblocks (as we have seen in earlier examples
such as LineType and HighScoreType), then the task of saving the information
becomes a little more difficult.

Activity 24.10

Load your existing project MemblockColour and add the functions given above
to your code.

To prove the file-handling functions operate correctly, we will create one
ColourType variable, write its data to a disk file, then read that data into a
second ColourType variable whose value is then displayed.

Modify the main section of your program to read:

 rem *** Create a ColourType object ***
 colour = CreateMemColourType(120,80,58)
 rem *** Write colour data to file ***
 file = OpenMemColourFileToWrite(“TestData.col”,0)
 WriteMemColour(file,colour)
 rem *** Close the file ***
 CloseMemColourFile(file)
 rem *** Open the file for reading ***
 file = OpenMemColourFileToRead(“Testdata.col”)
 rem *** Read colours into a new ColourType object ***
 colour2 = CreateMemColourType(0,0,0)
 ReadMemColour(file,colour2)
 rem *** Display colour info in new object ***
 do
 Print(“Red : “+Str(GetMemColourRed(colour2)))
 Print(“Green : “+Str(GetMemColourGreen(colour2)))
 Print(“Blue : “+Str(GetMemColourBlue(colour2)))
 Sync()
 loop

Test and save your program.

Activity 24.11

Load your existing project MemblockPoint and create the five functions
necessary to write and read PointType data to/from a file. The functions should
be named:

 OpenMemPointFileToWrite()
 OpenMemPointFileToRead()
 WriteMemPoint()
 ReadMemPoint()
 CloseMemPointFile()

Test your routines by creating a first PointType object, writing the object’s
contents to a file, and then reading the data from the file into a second
PointType object.

Save your program.

Hands On AGK BASIC: Memory Blocks 907

When a record contains the ID of another memblock, saving that ID will achieve
nothing since the ID value only has meaning while the program is running. Instead,
we need to access the data in that second memblock and write the information we
find there to the file (see FIG-24.25).

Adding save and load features to the LineType structure involves the same category
of functions as we had in the earlier examples to open the file, close the file, read from
the file and write to the file. The code for each of these function is given below.

 rem *** Opens named file for writing ***
 function OpenMemLineFileToWrite(filename$,mode)
 rem *** Create the file ***
 fileid = OpenToWrite(filename$,mode)
 Sleep(1000)
 endfunction fileid

 rem *** Opens named file for reading ***
 function OpenMemLineFileToRead(filename$)
 rem *** Create the file ***
 fileid = OpenToRead(filename$)
 endfunction fileid

 rem *** Writes a single line’s data to the file ***
 function WriteMemLine(fileid,id)
 rem *** If memblock or file doesn’t exist, exit ***
 if GetMemblockExists(id) = 0 or FileIsOpen(fileid) = 0
 exitfunction
 endif
 rem *** Write data to file ***
 WriteMemPoint(fileid,GetMemblockInt(id,0)) //start
 WriteMemPoint(fileid,GetMemblockInt(id,4)) //finish
 WriteMemColour(fileid,GetMemblockInt(id,8)) //colour
 endfunction

 rem *** Reads a single line’s data from the file ***
 function ReadMemLine(fileid,id)
 rem *** If file or colour don’t exist, exit ***

FIG-24.25

Writing a LineType Value
to a File

Contents of a LineType Item

start (id only)

x

red
green

blue

y

x y

�nish (id only) colour(id only)

1001 1002 1003

10.5 18.210.5 18.2

23.1

89 12 63

60.9

Data Saved to File
10.5 18.2 23.1 60.9 89 12 63

908 Hands On AGK BASIC: Memory Blocks

 if FileIsOpen(fileid)=0 or GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** Read line data ***
 SetMemLineStart(id,ReadFloat(fileid),ReadFloat(fileid))
 //start
 SetMemLineFinish(id,ReadFloat(fileid),ReadFloat(fileid))
 //finish
 SetLineColour(id,ReadByte(fileid),ReadByte(fileid),
 ReadByte(fileid)) //colour
 endfunction

 rem *** Closes file ***
 function CloseMemLineFile(fileid)
 rem *** If file ID doesn’t exist, exit ***
 if FileIsOpen(fileid) = 0
 exitfunction
 endif
 rem *** Close file ***
 CloseFile(fileid)
 endfunction

While the code within the open and close functions are identical to previous ones,
notice that WriteMemLine() makes use of the previously defined WriteMemPoint()
and WriteMemColour() functions to write the three elements that make up a LineType
object.

Summary
± A memblock is a block of user-allocated memory.

± Use CreateMemblock() to allocate a memblock of a specified size.

± Each memblock is assigned a unique ID.

± Locations within a memblock are identified by their offset from the start of the
memblock.

± The first location within a memblock has an offset value of zero.

± Use SetMemblockByte() to write one byte of data to a single byte location
within a specified memblock.

Activity 24.12

Load your existing project MemblockLine and create the five functions
necessary to write and read LineType data to/from a file.

Add the file handling functions for PointType and ColourType at appropriate
points in your code.

Test your routines by creating a first LineType object whose initial value is
[(12,45),(76,80),(128,45,200)] then writing the object’s contents to a file.

A second LineType object should then be assigned a value by reading the data
stored in the file. To check that the program works correctly, ensure that the
contents of the second LineType object matches that of the first.

Save your program.

Hands On AGK BASIC: Memory Blocks 909

± Use SetMemblockShort() to write two bytes of data to a double-byte location
within a specified memblock. The data must be stored starting at an even offset
value.

± Use SetMemblockInt() to write a four-byte integer value to a four-byte
location in a specified memblock. The data must be stored using an offset
value which is a multiple of four.

± Use SetMemblockFloat() to write a four-byte real value to a four-byte location
in a specified memblock. The data must be stored using an offset value which
is a multiple of four.

± Integer values are written with the least significant byte stored in the first
location.

± Use GetMemblockByte() to retrieve a single byte of data from a specified
memblock. The data is treated as an integer value.

± Use GetMemblockShort() to retrieve two bytes of data from a specified
memblock. The data is treated as an integer value.

± Use GetMemblockInt() to retrieve four bytes of data from a specified
memblock. The data is treated as an integer value.

± Use GetMemblockFloat() to retrieve four bytes of data from a specified
memblock. The data is treated as a real value.

± Use GetMemblockExists() to check if a memblock of a specified ID currently
exists.

± Use DeleteMemblock() to delete an existing memblock.

± Use GetMemblockSize() to determine the number of bytes allocated to an
existing memblock.

± To store a character in a memblock, use SetMemblockByte() after converting
the character to an integer using Asc().

± To read a character from a memblock, use GetMemblockByte() then convert
the value read to a character using Chr().

± A memblock can be used to create data structures which are not allowed when
using the type statement.

± Using a memblock allows you to update complex data structures from within
functions.

910 Hands On AGK BASIC: Memory Blocks

Memory Blocks For Images

Introduction
A second use for memory blocks is to use them to hold images. With an image’s data
available for manipulation, you can process the image in almost any way possible.
For example, an image can be changed from colour to black and white, colours can
be reversed, parts of the image can be made transparent, an image’s data can be
encrypted, or a new image can be constructed from scratch within a memblock.

Memory Block Image Statements
CreateMemblockFromImage()

The data of a loaded image can be placed within a memblock using the
CreateMemblockFromImage() statement (see FIG-24.26).

where

 id is an integer value giving the ID to be assigned to the
 memblock.

 imgId is an integer value giving the ID of the existing image that
 is to be copied into the memblock. Sub-images cannot be
 transferred to a memblock.

Using the first format requires you to supply the ID to be assigned to the memblock;
the second format will automatically assign an ID which is returned by the function.

We could load the image data for the file Bottlebrush.png into a memblock using the
statement:

 myMemImage = CreateMemblockFromImage(LoadImage(
 “Bottlebrush.png”))

A memblock used to hold an image has a specific format. It starts with details of the
image’s dimensions and colour depth and this is followed by the colour and
transparency settings for each pixel in the image. The exact format of the memblock
is shown in FIG-24.27.

FIG-24.26

CreateMemblock
FromImage()

(

Format 2

CreateMemblockFromImage (

)

id
Format 1

integer

)imgId

imgIdCreateMemblockFromImage

FIG-24.27

Memory Block Image
Data Structure

Memblock Containing Image Data

Image width
(pixels)

Image height
(pixels)

Image colour depth
(bits)

1st pixel detail 2nd pixel detail

red
green

blue
tra

nsp
arency

red
green

blue
tra

nsp
arency

Hands On AGK BASIC: Memory Blocks 911

The memblock is automatically sized to accommodate the loaded image’s data.

The pixel data is held in row order. So, if an image was 100 pixels wide by 50 pixels
high, the first 100 pixel data entries in the memblock would give the colour settings
for the top row of the image. Since each pixel data occupies four bytes, this means
that 400 bytes is required to store the first row of the image. With 50 rows, the image
would require 400 x 50 bytes + the 12 bytes at the start of the memblock which holds
the width, height and colour depth. In other words, the image’s memblock requires
2012 bytes (almost 2kB).

The program in FIG-24.28 loads an image and displays the image’s width and height.

Once we have the image’s data, you are free to manipulate it in any way you can
imagine. For example, we could change the image data from colour to black and
white by changing the green and blue values for each pixel to the same as that for the
red component.

CreateImageFromMemBlock()

Once the memblock’s contents have been changed, you need to create a new version
of the actual image. This is done using the CreateImageFromMemBlock() statement
(see FIG-24.29).

FIG-24.28

Displaying a Memory
Block Image’s
Dimensions

rem *** Image Size from Memblock ***

rem *** Load image into memblock ***
myMemImage = CreateMemblockFromImage(LoadImage(
“Bottlebrush.png”))

rem *** Get image dimensions ***
imgwidth = GetMemblockInt(myMemImage,0)
imgheight = GetMemblockInt(myMemImage,4)

rem *** Display image dimensions ***
do
 Print(“Image Details”)
 Print(“Width : “+Str(imgwidth))
 Print(“Height : “+Str(imgheight))
 Sync()
loop

Activity 24.13

Start a new project called MemblockImage01 and implement the code given in
FIG-24.28. Remember to copy Bottlebrush.png to the project’s media folder.

Test and save your project.

FIG-24.29

CreateImageFrom
Memblock()

(

Format 2

CreateImageFromMemblock (

)

id
Format 1

integer

)imemId

imemIdCreateImageFromMemblock

912 Hands On AGK BASIC: Memory Blocks

where

 id is an integer value giving the ID to be assigned to the
 image.

 imemId is an integer value giving the ID of the existing memblock
 that is to be converted to an image.

Using the first format requires you to supply the ID to be assigned to the new image;
the second format will automatically assign an ID to the image and return the value
of that ID.

Mapping a Pixel to a Memory Block
If we want to manipulate an image held in a memblock, then we need to be able to
convert a pixel’s position in the image to the offset value in the memblock where the
data for that pixel is stored.

We know that the first 12 bytes of the memblock hold width, height and colour depth
information, so the data for the first pixel (top-left pixel) will begin at offset 12 and
occupy four bytes (see FIG-24.30).

So, in the first row of pixels (row zero), the pixels’ offsets within the memblock are:

 pixel 0 = 12
 pixel 1 = 16
 pixel 2 = 20 ...

Or, in algebraic form:

 offset = column * 4 + 12

If the image was 200 pixels wide, then the last pixel of row zero would have its data
stored starting at offset

 199 * 4 + 12
 = 808

With a 200 pixel wide image, 800 bytes are required to store the information about a
single row of pixels (4 bytes per pixel). So to calculate the offset for any pixel in a
200 pixel-wide image we would use the formula:

 offset = row * 800 + column*4 + 12

We can generalise this further for an image of any width as

 offset = row *width*4 + column*4 +12

FIG-24.30

Mapping a Pixel Data to
a Position in a Memblock

Image

Memblock
width height depth 1st pixel data 2nd pixel data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 1 2 3 4 5 6 7 8 9 ...
column

row
0
1
2

Hands On AGK BASIC: Memory Blocks 913

Modifying an Image’s Data
The program in FIG-24.31 loads an existing image then converts all the green and
blue components of each pixel to match the existing red component’s value before
reshowing the image. The overall effect of this is to create a greyscale image based
on the original image’s red values.

Activity 24.14

If an image is 350 pixels wide and 200 pixels high, at which offset would the
data for the pixel at row 3 column 12 be stored in a memblock? Assume rows
and columns are numbered from zero.

rem *** Images in Memblocks ***

rem *** Load image into memblock ***
myMemImage = CreateMemblockFromImage(LoadImage(
“BottleBrush.png”))
rem *** Create Sprite to display image ***
CreateSprite(1,CreateImageFromMemBlock(myMemImage))
SetSpriteSize(1,100,-1)
Sync()
rem *** Start timer ***
ResetTimer
rem *** Not yet switched to monochrome ***
switched = 0
rem *** Convert image to B&W (but don’t show it) ***
MonoMemImage(myMemImage)
do
 rem *** After first 2 seconds, show monochrome image ***
 if Timer() > 2 and switched = 0
 SetSpriteImage(1,CreateImageFromMemBlock(myMemImage))
 Sync()
 switched = 1
 endif
loop

rem *** Change to monochrome based on pixel’s red value ***
function MonoMemImage(id)
 rem *** If memblock doesn’t exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** Get image dimesions ***
 imgwidth = GetMemblockInt(id,0)
 imgheight = GetMemblockInt(id,4)
 rem *** FOR each pixel... ***
 for row = 0 to imgheight-1
 for col = 0 to imgwidth-1
 rem *** Calculate offset to red value ***
 offset = row*imgwidth*4+col*4+12
 rem *** Get the value of red ***
 redvalue = GetMemblockByte(id,offset)
 rem *** Set green and blue to same value ***
 SetMemblockByte(id,offset+1,redvalue)
 SetMemblockByte(id,offset+2,redvalue)
 next col
 next row
endfunction

FIG-24.31

Changing an Image from
Colour to Black and
White

914 Hands On AGK BASIC: Memory Blocks

The image before and after grey-scaling is shown in FIG-24.32.

Notice that areas of bright red in the original picture become near-white in the
monochrome image, while areas that had little red in the original are near-black in
the new image.

Creating Your Own Images from Scratch
Rather than load and manipulate an existing image, you can also create an image
from scratch by writing the appropriate value to a memblock and then converting the
memblock to an image.

To do this we start by deciding on the dimensions of the image to be constructed and
the number of bytes required to store the image. For example, if we want to create an
image which is 400 pixels wide and 200 pixels high, then, since each pixel’s data
requires four bytes (to store colour and transparency details) the complete image
would require

 400 x 200 x 4 bytes
 = 320,000 bytes

FIG-24.32

Image in Colour and its
Red Channel

Original Colour Image Red Channel Monochrome

Activity 24.15

Start a new project called MemblockImage02 and implement the code given in
FIG-24.31. Remember to copy Bottlebrush.png to the project’s media folder.
Test your program.

Modify the function MonoMemImage() so that it takes a second integer
parameter called col. This second parameter should be used to determine how
the monochrome image is computed using the following rules:

 col Image processing

 0 Based on red value
 1 Based on green value
 2 Based on blue value
 3 Based on average of red, green and blue

Modify the main section of the program so that all five versions of the image
are displayed at the same time.

Test and save your project.

Hands On AGK BASIC: Memory Blocks 915

As we already know, any memblock which is to be converted to an image must also
contain width, height and colour depth information in the first 12 bytes, so the total
number of bytes needed in the memblock is:

 320,012 bytes

Any function we write to create the required memblock needs to be supplied with the
dimensions of the image. These are written to the first 8 bytes of the block (width
followed by height). The next 4 bytes are used to contain the colour depth (which is
always 32). The function must also return the ID assigned to the new memblock. The
code for this function is:

rem *** Creates memblock for image ***
function CreateMemImageType(width, height)
 rem *** If dimensions invalid, create 200 by 200
 if width < 1 or width > 4000 or height < 1 or height > 4000
 width = 200
 height = 200
 endif
 rem *** Create memblock for image ***
 id = CreateMemblock(width*height*4 + 12)
 rem *** Store width, height and colour depth ***
 SetMemblockInt(id,0,width)
 SetMemblockInt(id,4,height)
 SetMemblockInt(id,8,32)
endfunction id

Notice that the function begins by checking that the dimensions are valid and creates
a default 200 by 200 image block if they are not.

A second function is required to write data to the image part of the memblock. Of
course, the code for this function will depend on exactly what it is you are trying to
create within the image. This is most likely to be the graph of some mathematical
function since that is the easiest option to program.

The program in FIG-24.33 uses a draw function which creates a single randomly-
positioned pixel in a random colour within the memblock being used to construct an
image.

FIG-24.33

Creating An Image
Within a Memblock

rem *** Create Image in Memblock ***

rem *** Create memblock for image ***
memid = CreateMemImageType(800,800)

rem *** Create randomly coloured an positioned spots ***
for c = 1 to 40000
 DrawRandomSpotOnMemImage(memid)
next c

rem *** Convert memblock to image ***
imgId = CreateImageFromMemblock(memid)

rem *** Display image in sprite ***
CreateSprite(1,imgId)
SetSpriteSize(1,100,-1)
do
 Sync()
loop

916 Hands On AGK BASIC: Memory Blocks

Summary
± Use CreateMemblockFromImage() to convert an image’s data to a memblock.

± The memblock created from an image uses the first 12 bytes to store the
following information:
 image width (pixels) (4 bytes)
 image height (pixels) (4 bytes)
 image colour depth (4 bytes) always set to 32

FIG-24.33
(continued)

Creating An Image
Within a Memblock

rem *** Creates memblock for image ***
function CreateMemImageType(width, height)
 rem *** If dimensions invalid, create 200 by 200
 if width < 1 or width > 4000 or height < 1 or height > 4000
 width = 200
 height = 200
 endif
 rem *** Create memblock for image ***
 id = CreateMemblock(width*height*4 + 12)
 rem **8 Store width, height and colour depth ***
 SetMemblockInt(id,0,width)
 SetMemblockInt(id,4,height)
 SetMemblockInt(id,8,32)
endfunction id

rem *** Places a randomly positioned and coloured pixel ***
function DrawRandomSpotOnMemImage(id)
 rem *** If membock does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** Get dimensions of image ***
 width = GetMemblockInt(id,0)
 height = GetMemblockInt(id,4)
 rem *** Choose random point ***
 rem ** 0 to width -1 **
 x = Random(0,width-1)
 rem ** 0 to height -1 **
 y = Random(0,height-1)
 rem *** Choose random colour ***
 red = Random(0,255)
 green = Random(0,255)
 blue = Random(0,255)
 rem *** Modify appropriate bytes in memblock ***
 post = y*width*4+x*4+12
 SetMemblockByte(id,post,red)
 SetMemblockByte(id,post+1,green)
 SetMemblockByte(id,post+2,blue)
 SetMemblockByte(id,post+3,255)
endfunction

Activity 24.16

Start a new project called MemblockImage and implement the code given in
FIG-24.33.

Test and save your project.

Hands On AGK BASIC: Memory Blocks 917

± An image memblock contains the following information for each pixel in the
image:
 red component (1 byte)
 green component (1 byte)
 blue component (1 byte)
 transparency (1 byte) 0-invisible 255-opaque

± Use CreateImageFromMemblock() to convert a memblock of the correct format
to an image.

± Modifying the pixel data values will affect the appearance of the image when
the memblock is converted back to an image.

918 Hands On AGK BASIC: Memory Blocks

Creating a Mandelbrot Image

Introduction
FIG-24.34 shows a typical Mandelbrot Set image.

Zooming in on separate areas of the image creates new colourful graphics (see FIG-
24.35).

FIG-24.34

The Mandelbrot Set

The Mandelbrot Set

FIG-24.35

Zooming in on the
Mandelbrot Set

The Mandelbrot Set

Magni�ed Area

Hands On AGK BASIC: Memory Blocks 919

What is the Mandelbrot Set?

The Mandelbrot image is created by the application of a mathematical equation and
colouring the pixels according to the values derived by that equation.

For a deeper explanation we must start with the definition of imaginary numbers.

The square root of value a is a number, b, such that

 b x b = a

For example, the square root of 9 is 3 since 3 x 3 = 9

But there are some numbers that don’t really have a square root which we can write
in the traditional way. For example, what is the square root of -9? It isn’t -3 since

 -3 x -3 = 9

To handle such apparently impossible numbers we create a new set of numbers called
imaginary numbers.

Let’s take another look at trying to find the square root of -9:

	 	 √-9
	 =	 √9	x	√-1
	 =	 3	√-1

When using imaginary numbers, we use the term i in place of √-1. So, √-9 is written
as

 3i

In general, we end up with an imaginary number when we attempt to find the square
root of a negative value.

A complex number is one which consists of two part. These are a real component
and an imaginary component. For example, the value

 7 + 4i

is a complex number.

Perhaps surprisingly, complex numbers are used extensively in many branches of
science and engineering.

We can plot complex numbers on a two-dimensional plane if we replace the traditional
x-axis with an axis representing the real part of a complex number and replace the
y-axis with the imaginary part of the complex number. For example, the value 7 + 4i
is plotted on the graph shown in FIG-24.36.

Activity 24.17

Write down the square root of -25 as an imaginary number.

920 Hands On AGK BASIC: Memory Blocks

The Mandelbrot series is derived from finding how many iterations can be achieved
of the equation

 Zn+1 = Zn
2 + C

before the square of the real component of Z becomes greater than 4. This number
determines the colour used for that point on the graph.

The initial value of Z (Z0) is always zero, but C represents an imaginary number. To
create the Mandelbrot graph, the real part of C should lie in the range -2.4 and +0.8
and the imaginary part between -1.2i and +1.2i (see FIG-24.37).

FIG-24.36

The Complex Plane

real axis

imaginary axis

7

3

The complex value
 7 + 3i

The Mandelbrot Set Graph

-1 1

-1i

1i

0

FIG-24.37

The Area of the
Mandelbrot Set

Hands On AGK BASIC: Memory Blocks 921

If, starting with C = -1 + 0.5i, it required 125 iterations before the square of the real
component of Z was greater than 4, then the point (-1, 0.5i) on the graph would be
assigned a colour based on the value 125.

Producing the Program
Don’t worry if you didn’t follow the math behind the Mandelbrot image (in any case,
it was only a brief outline); after all, we are only interested in creating and manipulating
the image produced.

To create an image covering part of the Mandelbrot set we need to calculate all
combinations of the real and imaginary parts that make up the value C and run them
through the equation

 Zn+1 = Zn
2 + C

To this end we need to record the lowest real component and the lowest imaginary
component and the range we intend to cover. For example, if we wish to cover the
rectangular area from

-1.5 -1.5i to 1.0 +1i

then

 Realstart = -1.5
 Imaginarystart = -1.5
 Realrange = 2.5
 Imaginaryrange = 2.5

The area to be drawn is shown in FIG-24.38.

On the computer screen, where the y-axis is flipped over relative to the one in
traditional mathematical representation, the point (-1.5, -1.5i) would represent the
top-left corner of the area and (1,1i) the bottom-right.

FIG-24.38

Mandelbrot Data

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.2

0.2i

-0.2i

-0.4i

-0.6i

-0.8i

-1.0i

-1.2i

-1.4i

0.4i

0.6i

0.8i

1.0i

0.4 0.6 0.8 1.0

1 +1i

-1.5 -1.5i

Real range 2.5

Imaginary
range 2.5

922 Hands On AGK BASIC: Memory Blocks

 We’ll start by creating a memblock which is designed to contain, not the Mandelbrot
image itself, but the start and range information as well as the maximum iterations to
be performed when calculating Z and the ID of the second memblock which will
contain the actual image. The structure created is equivalent to

type MandelbrotDataType
 Rstart#,Istart# //Starting point of graph
 Rrange# //Range in real direction
 Irange# //Range in imaginary direction
 MaxIterations //Max iterations when calculating Z
 imageID //ID of memblock containing image
endtype

The code for the various routines to create and manipulate this structure is given in
FIG-24.39.

FIG-24.39

Creating the Mandelbrot
Set

rem *** Creates MandelbrotDataType structure and assigns initial
values ***
function CreateMemMandelbrotDataType(Rstart#, Istart#, Rrange#,
Irange#,maxiterations,width,height)
 rem *** Adjust parameters if not sensible ***
 if Rstart# < -2.4
 Rstart# = -2.4
 endif
 if Rstart# > 0.8
 Rstart# = 0.8
 endif
 if Istart# < -1.2
 Istart# = -1.2
 endif
 if Istart# > 1.2
 Istart# = 1.2
 endif
 if RRange# <= 0 or RRange# > 3.2
 RRange# = 3.2
 endif
 if IRange <= 0 or IRange# > 2.5
 IRange# = 2.5
 endif
 if maxiterations < 16
 maxiterations = 16
 endif
 rem *** Create space for values and blank ID ***
 id = CreateMemblock(24)
 rem *** Set values in memblock ***
 SetMemblockFloat(id,0,Rstart#)
 SetMemblockFloat(id,4,Istart#)
 SetMemblockFloat(id,8,Rrange#)
 SetMemblockFloat(id,12,Irange#)
 SetMemblockInt(id,16,maxiterations)
 rem *** Create memblock for image and record its ID ***
 SetMemblockInt(id,20,CreateMemImageType(width, height))
endfunction id

rem *** Sets the minimum real and imaginary values ***
function SetMemMandelbrotDataStart(id,rs#,is#)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction
 endif

Hands On AGK BASIC: Memory Blocks 923

 rem *** If invalid start, exit ***
 if rs# < -2.4 or rs# > 0.8 or is# < -1.2 or is# > 1.2
 exitfunction
 endif
 rem *** Set values ***
 SetMemblockFloat(id,0,rs#)
 SetMemblockFloat(id,4,is#)
endfunction

rem *** Sets the real and imaginary range ***
function SetMemMandelbrotDataRange(id,rr#,ir#)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** If invalid ranges, exit ***
 if rr# <= 0 or rr# > 3.2 or rs# <= 0 or rs# > 2.4
 exitfunction
 endif
 rem *** Set values ***
 SetMemblockFloat(id,8,rr#)
 SetMemblockFloat(id,12,ir#)
endfunction

rem *** Sets max iterations during calculation of Z ***
function SetMemMandelbrotDataMaxIterations(id,max)
 rem *** rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** If parameter too low, exit ***
 if max < 16
 exitfunction
 endif
 rem *** Set maximumiterations ***
 SetMemblockInt(id,16,max)
endfunction

rem *** Returns the minimum real value ***
function GetMemMandelbrotDataStartReal(id)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 rem *** Get result ***
 result# = GetMemblockFloat(id,0)
endfunction result#

rem *** Returns the minimum imaginary value ***
function GetMemMandelbrotDataStartImaginary(id)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 rem *** Get result ***
 result# = GetMemblockFloat(id,4)
endfunction result#

FIG-24.39
(continued)

Creating the Mandelbrot
Set

924 Hands On AGK BASIC: Memory Blocks

FIG-24.39
(continued)

Creating the Mandelbrot
Set

rem *** Returns the range along the real axis ***
function GetMemMandelbrotDataRangeReal(id)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 rem *** Get result ***
 result# = GetMemblockFloat(id,8)
endfunction result#

rem *** Returns the range along the imaginary axis ***
function GetMemMandelbrotDataRangeImaginary(id)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 rem *** Get result ***
 result# = GetMemblockFloat(id,12)
endfunction result#

rem *** Returns the maximum iterations ***
function GetMemMandelbrotDataMaxIterations(id)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0
 endif
 rem *** Get result ***
 result = GetMemblockInt(id,16)
endfunction result

rem *** Returns the ID of the Mandelbrot image ***
function GetMemMandelbrotDataImageID(id)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0
 endif
 rem *** Get result ***
 result = GetMemblockInt(id,20)
endfunction result

rem *** Returns width of image ***
function GetMemMandelbrotDataImageWidth(id)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0
 endif
 rem *** Get result ***
 result = GetMemblockInt(GetMemMandelbrotDataImageID(id),0)
endfunction result

rem *** Returns height of image ***
function GetMemMandelbrotDataImageHeight(id)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0
 endif
 rem *** Get result ***
 result = GetMemblockInt(GetMemMandelbrotDataImageID(id),4)
endfunction result

Hands On AGK BASIC: Memory Blocks 925

ProduceMemMandelbrotImage()

The final function of the basic program is the most complicated one ‒ calculating
values of Z for various starting values of C. Each selected value of C corresponds to
a pixel. The colour of that pixel is determined by the number of iterations required
for Zreal

2 to be greater than 4.

The logic of the routine can be expressed as:

 Retrieve necessary details from Mandelbrot memblock
 FOR each pixel column DO
 Map pixel’s column value to position on Real axis
 FOR each pixel row DO
 Map pixel’s row value to position on Imaginary axis
 Use these real and imaginary values obtained as value of C
 Set Z0 to 0
 REPEAT
 Calculate new value of Z
 UNTIL Zreal

2 > 4 or maximum iterations complete
 Colour the pixel at (row, col) based on number of iterations performed
 ENDFOR
 ENDFOR

The actual code required to achieve this is shown below:

function ProduceMemMandelbrotImage(id)
 rem *** If memblock does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** Retrieve ID of image area ***
 id1 = GetMemMandelbrotDataImageID(id)
 rem *** Retrieve graph details ***
 rem ** Retrieve image width and height **
 imagewidth = GetMemMandelbrotDataImageWidth(id)
 imageheight = GetMemMandelbrotDataImageHeight(id)
 rem ** Retrieve real and imaginary starts **
 Rstart# = GetMemMandelbrotDataStartReal(id)
 Istart# = GetMemMandelbrotDataStartImaginary(id)
 rem ** Retrieve real and imaginary ranges **

Activity 24.18

Start a new project called Mandelbrot and implement the code given in FIG-
24.39.

Also add the code for CreateMemImageType() function which you used in
Activity 24.16.

Add a main section to the program and create a MandelbrotDataType structure
using the following values:

 RealStart -1.7 ImaginaryStart -1.2
 RealRange 2.4 ImaginaryRange 2.4
 MaxIterations 256
 ImageWidth 80 ImageHeight 80

Use the Get functions to display all of the values held in the new data structure.

926 Hands On AGK BASIC: Memory Blocks

 Rrange# = GetMemMandelbrotDataRangeReal(id)
 Irange# = GetMemMandelbrotDataRangeImaginary(id)
 rem ** Retrieve max iterations **
 max_iterations = GetMemMandelbrotDataMaxIterations(id)
 rem *** For each column ***
 for x = 0 to imagewidth-1
 rem *** Set real part of C ***
 Creal# = x*Rrange#/imagewidth + Rstart#
 rem *** FOR each row ***
 for y = 0 to imageheight-1
 rem *** Set imaginary part of C ***
 Cimg# = y*Irange#/imageheight + Istart#
 rem *** Intialise Z to 0+0i
 Zreal# = 0
 Zimg# = 0
 rem *** Set iteration count to zero ***
 count = 0
 repeat
 inc count
 rem *** Calculate next value of Z ***
 nextZreal# = Creal# + Zreal#*Zreal# - Zimg#*Zimg#
 nextZimg# = Cimg# + 2*Zreal#*Zimg#
 Zreal# = nextZReal#
 Zimg# = nextZimg#
 until (Zreal#^2 + Zimg#^2 > 4) or (count = max_
 iterations)
 rem *** Set pixel colour ***
 r = count*3 mod 256
 g = count*8 mod 256
 b = 256-count
 rem *** Calculate pixel’s position in memblock ***
 position = x*4+y*imagewidth*4+12
 rem *** Write pixel colour to image’s memblock ***
 SetMemblockByte(id1, position , r)
 SetMemblockByte(id1, position+1, g)
 SetMemblockByte(id1, position+2, b)
 SetMemblockByte(id1, position+3, 255)
 next y
 next x
endfunction

Activity 24.19

Add the code for function ProduceMemMandelbrotImage() to the project
Mandelbrot. Change the main section of the program to read:

 rem *** Create MandelbrotDataType ***
 mandelid = CreateMemMandelbrotDataType(-1.7,-1.2,2.4,2.4,
 256,80,80)
 rem *** Create the Mandelbrot image ***
 ProduceMemMandelbrotImage(mandelid)
 rem *** Create Sprite to display image ***
 CreateImageFromMemBlock(1,GetMemMandelbrotDataImageID
 (mandelid))
 CreateSprite(1,1)
 SetSpriteSize(1,100,-1)
 do
 Sync()
 loop
Test and save your program.

Hands On AGK BASIC: Memory Blocks 927

The image created by Activity 24.19 is very poor quality, but it is created without
much delay. Changing the image resolution to 800 by 800 will give a much clearer
image but will take some time to produce. Because of this, it is best to display some
sort of message to indicate to the user that the program is busy and has not hung up.

Zooming In
The next feature we need to add to the program is to allow the user to select an area
of the image and to recalculate the image to cover only the selected area. This way
the user can zoom in on interesting features.

To do this we will make use of an image of a box outline. Clicking on the screen will
position the box and then dragging will resize it. This will give the user a visual
representation of the area being selected (see FIG-24.40).

The outline box needs to maintain the width-to-height ratio of the Mandelbrot image
area, otherwise the next iteration of the image will be distorted.

Activity 24.20

Modify the main section of Mandelbrot so that the image created is 800 by
800 and include a display showing the text Working... while the Mandelbrot
set is being calculated. The text should be removed when the calculations are
complete.

Test and save your program.

FIG-24.40

Selecting an Area of the
Mandelbrot Set

A rectangular outline
image is used to show the
area of the Mandelbrot set

being selected

928 Hands On AGK BASIC: Memory Blocks

We need three routines to handle the outline image. The first of these creates and
positions the image; the second resizes the image as the pointer is dragged, and the
third destroys the image when the next version of the Mandelbrot set is complete. The
code for these three routines is given below:

 rem *** Loads and positions the outline image ***
 function CreateBoundary(x#,y#)
 rem *** Load image and display in sprite ***
 LoadImage(33,”Boundary.png”)
 CreateSprite(33,33)
 rem *** Position sprite at pointer location
 SetSpritePosition(33,x#,y#)
 rem *** Set sprite to minimum size ***
 SetSpriteSize(33,1,-1)
 endfunction

 rem *** Resize outline ***
 function ResizeBoundary(id)
 rem *** New width (top-left - pointer’s x value) ***
 wh = GetPointerX()- GetSpriteX(33)
 rem *** Resize sprite (width to height ratio retained) ***
 SetSpriteSize(33,wh,wh*GetMemMandelbrotDataImageWidth(id)/
 GetMemMandelbrotDataImageHeight(id))
 endfunction

 rem *** Delete outline sprite and image ***
 function DeleteBoundary()
 DeleteSprite(33)
 DeleteImage(33)
 endfunction

Notice, that for simplicity, the sprite and image elements are assigned a fixed ID
value.

HandleNewSelection()

The HandleNewSelection() function is designed to let the user select an area of the
currently displayed Mandelbrot set and create a new image based on that selected
area. The concept behind the routine is shown in FIG-24.41.

Activity 24.21

Add the three functions given above to the end of your program. Save your
program.

FIG-24.41

How a New Area is
Calculated

The first image is based on the starting
point of the graph (top-left on the
device’s screen) and the ranges to be
covered.

When an area of the existing graph is
selected on the image, this changes
the starting point and ranges.

-1

1

0

-1

Rstart + Istart

Rrange

Irange

Rstart + Istart

Irange

Rrange

Hands On AGK BASIC: Memory Blocks 929

The logic of the HandleNewSelection() function can be summarised as:

 WHILE pointer pressed DO
 IF pointer just pressed THEN
 Get pointer coordinates
 Place minimised boundary image at pointer coordinates
 ELSE
 Resize boundary image so bottom-right at pointer coordinates
 ENDWHILE
 IF pointer just released THEN
 Change the Mandelbrot start point and ranges to match selected area
 Calculate Mandelbrot image for the new area
 Delete the boundary image
 ENDIF

The actual code for the function is:

rem *** Allows new area to be selected and redraws image ***
function HandleNewSelection(id)
 rem *** While pointer pressed DO ***
 while GetPointerState() = 1
 rem *** If pointer just pressed... ***
 if GetPointerPressed() = 1
 rem *** ... record pointer position ***
 x# = GetPointerX()
 y# = GetPointerY()
 rem *** create boundary image ***
 CreateBoundary(x#,y#)
 else
 rem *** ... ELSE resize boundary image ***
 ResizeBoundary(id)
 endif
 Sync()
 endwhile
 rem *** IF pointer just released ... ***
 if GetPointerReleased() = 1
 rem *** Calculate top-left coordinates of selected area
 as complex number ***
 px#=(GetSpriteXFromWorld(1,x#,y#)+GetSpriteXByOffset(1))/
 100
 py#=(GetSpriteYFromWorld(1,x#,y#)+GetSpriteYByOffset(1))/
 100
 rem *** Get release coords of pointer ***
 brx# = GetPointerX()
 bry# = GetPointerY()
 rem *** Calculate pointer’s position within image ***

FIG-24.41
(continued)

How a New Area is
Calculated

The new starting point and ranges are
then used to recalculate the
Mandelbrot image, covering only the
selected area of the graph.

You can continue the process of
selection several times, allowing you
to zoom in on smaller and smaller
areas.

930 Hands On AGK BASIC: Memory Blocks

 p2x# = (GetSpriteXFromWorld(1,brx#,bry#)+
 GetSpriteXByOffset(1))/100
 p2y# = (GetSpriteYFromWorld(1,brx#,bry#)+
 GetSpriteYByOffset(1))/100
 rem *** Retrieve current Mandelbrot start and range
 details ***
 Rstart# = GetMemMandelbrotDataStartReal(id)
 Istart# = GetMemMandelbrotDataStartImaginary(id)
 Rrange# = GetMemMandelbrotDataRangeReal(id)
 Irange# = GetMemMandelbrotDataRangeImaginary(id)
 rem *** Update Mandelbrot start coords ***
 SetMemMandelbrotDataStart(id,Rrange#*px# +
 Rstart#,Irange#*py# + Istart#)
 rem *** Calculate and save new range ***
 Rnewrange# = Rrange#*p2x# - Rrange#*px#
 Inewrange# = RnewRange# *
 GetMemMandelbrotDataImageHeight(id) /
 GetMemMandelbrotDataImageWidth(id)
 SetMemMandelbrotDataRange(id,Rnewrange#,Inewrange#)
 rem *** Calculate Mandelbrot for new area ***
 SetTextString(1,”Working...”)
 Sync()
 ProduceMemMandelbrotImage(id)
 SetTextString(1,””)
 DeleteBoundary()
 endif
 endfunction

Shortcomings
There are a couple of problems with the program.

The first of these is that the boundary image cannot be seen correctly when the
selected area is too small. We can alleviate that problem by adding the line

SetGenerateMipMaps(1)

Activity 24.22

Add the HandleNewSelection() function given above to your program.

Change the program’s main section’s do..loop to read:

do
 HandleNewSelection(mandelid)
 DeleteImage(1)
 CreateImageFromMemblock(1,
 GetMemMandelbrotDataImageID(mandelid))
 SetSpriteImage(1,1)
 Sync()
loop

Copy the file Boundary.png into the project’s media folder.

Test your program, checking that the area selection option works correctly.

Save your program.

Hands On AGK BASIC: Memory Blocks 931

to the start of the main section of the program. By using mipmaps, the image will be
displayed at smaller sizes (though it can still be difficult to see).

The second problem occurs when you zoom in too far. The image becomes blocky
(see FIG-24.42).

This problem is caused by the limited accuracy of the floating point values stored in
the program. Remember real values only occupy four bytes and so can only achieve
an accuracy to about 6 decimal places. Unfortunately, there is no easy remedy for this
problem.

Activity 24.23

Run your Mandelbrot program and observe the smallest boundary box which
can be seen.

Add the SetGenerateMipMaps(1) statement to the start of the main section of
your project.

Check how this affects the smallest boundary image visible.

Save your program.

FIG-24.42

Zooming in Too Far

932 Hands On AGK BASIC: Memory Blocks

Solutions
Activity 24.1

The second byte is unused because the next value (a short)
must start on a even offset byte.

Activity 24.2
No solution required.

Activity 24.3
No solution required.

Activity 24.4
No solution required.

Activity 24.5
To modify the colour, add lines such as those highlighted
below to the main section of the program.

rem *** Create a memblock of this type ***
mycolour = CreateMemColourType(255,200,100)
rem *** Change colour ***
SetMemColour(mycolour,186,219,88)
rem *** Display the contents of the memblock
do
 Print(“Red : “+Str(GetMemColourRed(mycolour)))
 Print(“Green : “ +
 Str(GetMemColourGreen(mycolour)))
 Print(“Blue : “+Str(GetMemColourBlue(mycolour)))
 Sync()
loop

Activity 24.6
Code for MemblockPoint:

rem *** Point Type as a Memblock ***

remstart
*** Conceptual structure ***
type PointType
 x as float
 y as float
endtype
remend

rem *** Create required memblock ***
mypoint = CreateMemPointType(23.4,-8.9)
x# = GetMemPointX(mypoint)
y# = GetMemPointY(mypoint)
do
 Print(“(“+Str(x#,2)+”,”+Str(y#,2)+”)”)
 Sync()
loop

rem *** Creates and initialises structure ***
rem *** and returns ID ***
function CreateMemPointType(x#,y#)
 rem *** Create memblock ***
 id = CreateMemblock(8)
 rem *** Assign values ***
 SetMemblockFloat(id,0,x#)
 SetMemblockFloat(id,4,y#)
endfunction id

rem *** Assigns new coordinates ***
function SetMemPoint(id,x#,y#)
 rem *** If memblock doesn’t exist, ***
 rem *** exit function ***
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** Assign new x and y values ***

 SetMemblockFloat(id,0,x#)
 SetMemblockFloat(id,4,y#)
endfunction

rem *** Get current x value ***
function GetMemPointX(id)
 rem *** If memblock doesn’t exist, ***
 rem *** return 0 ***
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 rem *** Retrieve current x value ***
 result# = GetMemblockFloat(id,0)
endfunction result#

rem *** Get current x value ***
function GetMemPointY(id)
 rem *** If memblock doesn’t exist, ***
 rem *** return 0 ***
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 rem *** Retrieve current x value ***
 result# = GetMemblockFloat(id,4)
endfunction result#

Activity 24.7
Typical code for adding more weights would be:

rem *** Set other weights ***
SetMemRPGWeight(mychar,5,12.3)
SetMemRPGWeight(mychar,10,2.6)

The SetMemRPGWeight() function does not check that the
idx parameter is in the range 1 to 10. Such a check could be
added using the code:

rem *** Set weight in weight[idx] ***
function SetMemRPGWeight(id,idx,w#)
 rem *** If memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction
 endif
 rem *** If idx not 1 to 10, exit ***
 if idx < 1 or idx > 10
 exitfunction
 endif
 rem *** Set weight[idx] component ***
 SetMemblockFloat(id,idx*4,w#)
endfunction

Activity 24.8
No solution required.

Activity 24.9
The code for MemblockHighScore:

rem *** Highscore using Memblock ***

rem *** Conceptual Type ***
remstart
type HighScoreType
 name as string
 score as integer
endtype
remend

rem *** Set up both variables ***
myScore1 = CreateMemHighScoreType(“Jack Ladd”,2890)
myScore2 = CreateMemHighScoreType(““,0)
rem *** Change contents of second variable ***
SetMemHighScoreName(myScore2,”Jane Doe”)
SetMemHighScoreScore(myScore2,8899)
rem *** Get details from both variables ***
name1$ = GetMemHighScoreName(myScore1)
score1 = GetMemHighScoreScore(myScore1)
name2$ = GetMemHighScoreName(myScore2)
score2 = GetMemHighScoreScore(myScore2)
rem *** Display details of both scores ***
do
 Print(“First high score”)
 Print(“Name : “+name1$)
 Print(“Score : “+Str(score1))
 Print(“Second high score”)

Hands On AGK BASIC: Memory Blocks 933

 Print(“Name : “+name2$)
 Print(“Score : “+Str(score2))
 Sync()
loop
rem **
rem *** HighScore Functions ***
rem **

function CreateMemHighScoreType(n$,hs)
 rem *** Create memblock for highscore record ***
 id = CreateMemblock(8)
 rem *** Create name in new memblock & store ID ***
 SetMemblockInt(id,0,CreateMemString(n$))
 rem *** Store high score ***
 SetMemblockInt(id,4,hs)
endfunction id

function SetMemHighScoreName(id,n$)
 rem *** If memblock doesn’t exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** Set new name ***
 SetMemString(GetMemblockInt(id,0),n$)
endfunction

function SetMemHighScoreScore(id,hs)
 rem *** If memblock doesn’t exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** Set new high score ***
 SetMemblockInt(id,4,hs)
endfunction

function GetMemHighScoreName(id)
 rem *** If memblock doesn’t exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction “”
 endif
 result$ = GetMemString(GetMemblockInt(id,0))
endfunction result$

function GetMemHighScoreScore(id)
 rem *** If memblock doesn’t exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0
 endif

 result = GetMemblockInt(id,4)
endfunction result

rem **
rem *** String Functions ***
rem **

rem *** Creates memblock for string ***
function CreateMemString(s$)
 rem *** Create memblock for string ***
 id = CreateMemblock(Len(s$))
 rem *** Copy chars from string to memblock ***
 for c = 1 to Len(s$)
 SetMemblockByte(id,c-1,Asc(Mid(s$,c,1)))
 next c
endfunction id

rem *** Set string to s$ ***
function SetMemString(id,s$)
 rem *** If block exists, delete it ***
 if GetMemblockExists(id) = 1
 DeleteMemblock(id)
 endif
 rem *** Create memblock for string ***
 CreateMemblock(id,Len(s$))
 rem *** Copy chars from string to memblock ***
 for c = 1 to Len(s$)
 SetMemblockByte(id,c-1,Asc(Mid(s$,c,1)))
 next c
endfunction

rem *** Retrieve string ***
function GetMemString(id)
 rem *** If no memblock, return empty string ***
 if GetMemblockExists(id) = 0
 exitfunction “”
 endif
 rem *** Start with empty string ***
 result$ = “”
 rem *** Add each character ***

 for c = 0 to GetMemBlockSize(id)-1
 result$ = result$ + Chr(GetMemblockByte(id,c))
 next c
endfunction result$

Activity 24.10
Modified version of MemblockColour:

rem *** Colour Type ***

rem *** Conceptual structure ***
remstart
type ColourType
 red
 green
 blue
endtype
remend

rem *** Create a ColourType object ***
colour = CreateMemColourType(120,80,58)
rem *** Write colour data to file ***
file = OpenMemColourFileToWrite(“TestData.col”,0)
WriteMemColour(file,colour)
rem *** Close the file ***
CloseMemColourFile(file)
rem *** Open the file for reading ***
file = OpenMemColourFileToRead(“Testdata.col”)
rem *** Read colours to a new ColourType object ***
colour2 = CreateMemColourType(0,0,0)
ReadMemColour(file,colour2)
rem *** Display colour info in new object ***
do
 Print(“Red : “+Str(GetMemColourRed(colour2)))
 Print(“Green : “+Str(GetMemColourGreen(colour2)))
 Print(“Blue : “+Str(GetMemColourBlue(colour2)))
 Sync()
loop

rem ***
rem *** Basic Colour Operations ***
rem ***

rem *** Creates and intialises the structure ***
rem *** returns the ID ***
function CreateMemColourType(r,g,b)

 rem *** Create memblock for record ***

 id = CreateMemblock(3)

 rem *** Store initial colours in range 0-255 ***
 SetMemblockByte(id,0,r mod 256)
 SetMemblockByte(id,1,g mod 256)
 SetMemblockByte(id,2,b mod 256)
endfunction id

rem *** Change all three colour elements ***
function SetMemColour(id,r,g,b)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction
 endif
 rem *** Set red component ***
 SetMemblockByte(id,0,r mod 256)
 rem *** Set green component ***
 SetMemblockByte(id,1,g mod 256)
 rem *** Set blue component ***
 SetMemblockByte(id,2,b mod 256)
endfunction

rem *** Change red only ***
function SetMemColourRed(id,r)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction
 endif
 rem *** Set red component ***
 SetMemblockByte(id,0,r mod 256)
endfunction

rem *** Change green only ***
function SetMemColourGreen(id,g)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction
 endif

934 Hands On AGK BASIC: Memory Blocks

 rem *** Set green component ***
 SetMemblockByte(id,1,g mod 256)
endfunction

rem *** Change blue only ***
function SetMemColourBlue(id,r)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction
 endif
 rem *** Set blue component ***
 SetMemblockByte(id,2,b mod 256)
endfunction

rem *** Get current red setting ***
function GetMemColourRed(id)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction 0
 endif
 rem *** Retrieve red value ***
 result = GetMemblockByte(id,0)
endfunction result

rem *** Get current green setting ***
function GetMemColourGreen(id)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction 0
 endif
 rem *** Retrieve red value ***
 result = GetMemblockByte(id,1)
endfunction result

rem *** Get current blue setting ***
function GetMemColourBlue(id)
 rem *** if memblock does not exist, exit ***
 if GetMemblockExists(id)=0
 exitfunction 0
 endif
 rem *** Retrieve red value ***
 result = GetMemblockByte(id,2)
endfunction result

rem ***
rem *** Colour File Operations ***
rem ***

rem *** Opens named file for writing ***
function OpenMemColourFileToWrite(filename$,mode)
 rem *** Create the file ***
 fileid = OpenToWrite(filename$,mode)
 Sleep(1000)
endfunction fileid

rem *** Opens named file for reading ***
function OpenMemColourFileToRead(filename$)
 rem *** Create the file ***
 fileid = OpenToRead(filename$)
endfunction fileid

rem *** Writes a single colour (r,g,b) to file ***
function WriteMemColour(fileid,id)
 rem *** If memblock or file doesn’t exist, exit ***
 if GetMemblockExists(id)=0 or FileIsOpen(fileid)=0
 exitfunction
 endif
 rem *** Write data to file ***
 WriteByte(fileid,GetMemColourRed(id))
 WriteByte(fileid,GetMemColourGreen(id))
 WriteByte(fileid,GetMemColourBlue(id))
endfunction

rem *** Reads a single colour (r,g,b) from file ***
function ReadMemColour(fileid,id)
 rem *** If file or colour don’t exist, exit ***
 if FileIsOpen(fileid)=0 or GetMemblockExists(id)=0
 exitfunction
 endif
 rem *** Read colour ***
 SetMemColour(id,ReadByte(fileid),ReadByte(fileid),
 ReadByte(fileid))
endfunction

rem *** Closes file ***
function CloseMemColourFile(fileid)
 rem *** If file ID doesn’t exist, exit ***
 if FileIsOpen(fileid) = 0

 exitfunction
 endif
 rem *** Close file ***
 CloseFile(fileid)
endfunction

Activity 24.11
Modified version of MemblockPoint:

rem *** Point Type as a Memblock ***
remstart
*** Conceptual structure ***
type PointType
 x as float
 y as float
endtype
remend

rem *** Create a PointType object ***
point = CreateMemPointType(12.6,20.9)
rem *** Write point data to file ***
file = OpenMemPointFileToWrite(“TestData.pnt”,0)
WriteMemPoint(file,point)
rem *** Close the file ***
CloseMemPointFile(file)
rem *** Open the file for reading ***
file = OpenMemPointFileToRead(“Testdata.pnt”)
rem *** Read colours into new ColourType object ***
point2 = CreateMemPointType(0,0)
ReadMemPoint(file,point2)
rem *** Display colour info in new object ***
do
 Print(“Point2 : (“+Str(GetMemPointX(point2),1)+
 ” , “+Str(GetMemPointY(point2),1)+”)”)
 Sync()
loop

rem *** Creates and initialises structure ***
rem *** and returns ID ***
function CreateMemPointType(x#,y#)
 rem *** Create memblock ***
 id = CreateMemblock(8)
 rem *** Assign values ***
 SetMemblockFloat(id,0,x#)
 SetMemblockFloat(id,4,y#)
endfunction id

rem *** Assigns new coordinates ***
function SetMemPoint(id,x#,y#)
 rem *** If memblock doesn’t exist, ***
 rem *** exit function ***
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** Assign new x and y values ***
 SetMemblockFloat(id,0,x#)
 SetMemblockFloat(id,4,y#)
endfunction

rem *** Get current x value ***
function GetMemPointX(id)
 rem *** If memblock doesn’t exist, ***
 rem *** return 0 ***
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 rem *** Retrieve current x value ***
 result# = GetMemblockFloat(id,0)
endfunction result#

rem *** Get current x value ***
function GetMemPointY(id)
 rem *** If memblock doesn’t exist, ***
 rem *** return 0 ***
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 rem *** Retrieve current x value ***
 result# = GetMemblockFloat(id,4)
endfunction result#

rem *** Opens named file for writing ***
function OpenMemPointFileToWrite(filename$,mode)
 rem *** Create the file ***
 fileid = OpenToWrite(filename$,mode)

Hands On AGK BASIC: Memory Blocks 935

endfunction fileid

rem *** Opens named file for reading ***
function OpenMemPointFileToRead(filename$)
 rem *** Create the file ***
 fileid = OpenToRead(filename$)
endfunction fileid

rem *** Writes a single point(x,y) to the file ***
function WriteMemPoint(fileid,id)
 rem *** If point or file doesn’t exist, exit ***
 if GetMemblockExists(id)=0 or FileIsOpen(fileid)=0
 exitfunction
 endif
 rem *** Write point to file ***
 WriteFloat(fileid,GetMemPointX(id))
 WriteFloat(fileid,GetMemPointY(id))
endfunction

rem *** Reads a single point (x,y) from the file ***
function ReadMemPoint(fileid,id)
 rem *** If file or point don’t exist, exit ***
 if FileIsOpen(fileid)=0 or GetMemblockExists(id)=0
 exitfunction
 endif
 rem *** Read point ***
 SetMemPoint(id,ReadFloat(fileid),ReadFloat(fileid))
endfunction

rem *** Closes file ***
function CloseMemPointFile(fileid)
 rem *** If file ID doesn’t exist, exit ***
 if FileIsOpen(fileid) = 0
 exitfunction
 endif
 rem *** Close file ***
 CloseFile(fileid)
endfunction

Activity 24.12
Modified version of MemblockLine:

rem *** Writing a LineType Item to a File ***

rem *** Create a LineType structure ***
line1 = CreateMemLineType()

rem *** Assign start, finish and colour to line ***
SetMemLineStart(line1,12,45)
SetMemLineFinish(line1,76,80)
SetMemLineColour(line1,128,45,200)

rem *** Write line data to file ***
file = OpenMemLineFileToWrite(“TestData.lin”,0)
WriteMemLine(file,line1)
rem *** Close the file ***
CloseMemLineFile(file)
rem *** Open the file for reading ***
file = OpenMemLineFileToRead(“TestData.lin”)
rem *** Read line data into a new LineType object

line2 = CreateMemLineType()
ReadMemLine(file,line2)
rem *** Display line info in new object ***
do
 Print(“Start : (“+Str(GetMemLineStartX(line2),2)
 +” , “+Str(GetMemLineStartY(line2),1)+”)”)
 Print(“Finish: (“+Str(GetMemLineFinishX(line2),1)
 +” , “+Str(GetMemLineFinishY(line2),1)+”)”)
 Print(“Red : “+Str(GetMemLineColourRed(line2)))
 Print(“Green : “+Str(GetMemLineColourGreen(
 line2)))
 Print(“Blue : “+Str(GetMemLineColourBlue(line2)))
 Sync()
loop

rem *** Creates a linetype with default values ***
rem *** Start=(0,0); finish = (0,0) ***
rem *** colour = 255,255,255 (white)
function CreateMemLineType()
 rem *** Create main memblock ***
 id = CreateMemblock(12)
 rem *** Create memblock for fields in record ***

 startid = CreateMemPointType(0,0)
 finishid = CreateMemPointType(0,0)
 colourid = CreateMemColourType(255,255,255)
 rem *** Store IDs in main memblock ***
 SetMemblockInt(id,0,startid)
 SetMemblockInt(id,4,finishid)
 SetMemblockInt(id,8,colourid)
endfunction id

rem *** Sets start point to (x#,y#) ***
function SetMemLineStart(id,x#,y#)
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 startid = GetMemblockInt(id,0)
 SetMemPoint(startid,x#,y#)
endfunction

rem *** Sets finish point to (x#,y#) ***
function SetMemLineFinish(id,x#,y#)
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 finishid = GetMemblockInt(id,4)
 SetMemPoint(finishid,x#,y#)
endfunction

rem *** Sets the line’s colour to r,g,b ***
function SetMemLineColour(id,r,g,b)
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 colourid = GetMemblockInt(id,8)
 SetMemColour(colourid,r,g,b)
endfunction

rem *** Returns the X coord of the start point ***
function GetMemLineStartX(id)
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 startid = GetMemblockInt(id,0)
 result# = GetMemPointX(startid)
endfunction result#

rem *** Returns the Y coord of the start point ***
function GetMemLineStartY(id)
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 startid = GetMemblockInt(id,0)
 result# = GetMemPointY(startid)
endfunction result#

rem *** Returns the X coord of the finish point ***
function GetMemLineFinishX(id)
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 finishid = GetMemblockInt(id,4)
 result# = GetMemPointX(finishid)
endfunction result#

rem *** Returns the Y coord of the finish point ***
function GetMemLineFinishY(id)
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 finishid = GetMemblockInt(id,4)
 result# = GetMemPointY(finishid)
endfunction result#

rem *** Returns red component of line’s colour ***
function GetMemLineColourRed(id)
 if GetMemblockExists(id) = 0
 exitfunction 0

 endif
 colourid = GetMemblockInt(id,8)
 result = GetMemColourRed(colourid)
endfunction result

rem *** Returns the green component of the line’s
colour ***
function GetMemLineColourGreen(id)
 if GetMemblockExists(id) = 0
 exitfunction 0
 endif
 colourid = GetMemblockInt(id,8)
 result = GetMemColourGreen(colourid)

936 Hands On AGK BASIC: Memory Blocks

endfunction result

rem *** Returns the blue component of the line’s
colour ***
function GetMemLineColourBlue(id)
 if GetMemblockExists(id) = 0
 exitfunction 0
 endif
 colourid = GetMemblockInt(id,8)
 result = GetMemColourBlue(colourid)
endfunction result

rem *** Opens named file for writing ***
function OpenMemLineFileToWrite(filename$,mode)
 rem *** Create the file ***
 fileid = OpenToWrite(filename$,mode)
 Sleep(1000)
endfunction fileid

rem *** Opens named file for reading ***
function OpenMemLineFileToRead(filename$)
 rem *** Create the file ***
 fileid = OpenToRead(filename$)
endfunction fileid

rem *** Writes a single line’s data to the file ***
function WriteMemLine(fileid,id)
 rem *** If memblock or file doesn’t exist, exit ***
 if GetMemblockExists(id)=0 or FileIsOpen(fileid)=0
 exitfunction
 endif
 rem *** Write data to file ***
 WriteMemPoint(fileid,GetMemblockInt(id,0)) //start
 WriteMemPoint(fileid,GetMemblockInt(id,4)) //finish
 WriteMemColour(fileid,GetMemblockInt(id,8)) //
 colour
endfunction

rem *** Reads a single line’s data from the file ***
function ReadMemLine(fileid,id)
 rem *** If file or colour don’t exist, exit ***
 if FileIsOpen(fileid)=0 or GetMemblockExists(id)=0
 exitfunction
 endif
 rem *** Read line data ***
 SetMemLineStart(id,ReadFloat(fileid),
 ReadFloat(fileid))//start
 SetMemLineFinish(id,ReadFloat(fileid),
 ReadFloat(fileid))//finish
 SetMemLineColour(id,ReadByte(fileid),
 ReadByte(fileid),ReadByte(fileid)) //colour
endfunction

rem *** Closes file ***
function CloseMemLineFile(fileid)
 rem *** If file ID doesn’t exist, exit ***
 if FileIsOpen(fileid) = 0
 exitfunction
 endif
 rem *** Close file ***
 CloseFile(fileid)
endfunction

******* Add Code for PointType here ******

******* Add Code for ColourType here *****

Activity 24.13
No solution required.

Activity 24.14
If the image is 350 pixels wide, then each row requires

 350 x 4 bytes

 = 1400 bytes

So rows 0 to 2 require a total of 4200 bytes.

Pixels 0 to 11 of row 3 need 48 bytes

So, remembering the 12 bytes needed at the start of an image
memblock, the offset required to access row 3 column 12 is:

 12 + 4200 + 48

 = 4260

Activity 24.15
The new version of the function MonoMemImage() could be
coded as:

rem *** Change to monochrome based on selected
option ***

function MonoMemImage(id,opt)
 rem *** Get image dimesions ***
 imgwidth = GetMemblockInt(id,0)
 imgheight = GetMemblockInt(id,4)
 rem *** FOR each pixel... ***
 for row = 0 to imgheight-1
 for col = 0 to imgwidth-1
 select opt
 case 0 // red
 rem *** Calculate offset to red ***
 offset = row*imgwidth*4+col*4+12
 rem *** Get the value of red ***
 redvalue = GetMemblockByte(id,offset)
 rem *** Green & blue to same value ***
 SetMemblockByte(id,offset+1,redvalue)
 SetMemblockByte(id,offset+2,redvalue)
 endcase
 case 1 //green
 rem *** Offset to green value ***
 offset = row*imgwidth*4+col*4+12 + 1
 rem *** Get the value of green ***
 greenvalue = GetMemblockByte(id,offset)
 rem *** Red & blue to same value ***
 SetMemblockByte(id,offset-1,greenvalue)
 SetMemblockByte(id,offset+1,greenvalue)
 endcase
 case 2 //blue
 rem *** Offset to blue value ***
 offset = row*imgwidth*4+col*4+12 + 2
 rem *** Get the value of blue ***
 bluevalue = GetMemblockByte(id,offset)
 rem *** Red & green to same value ***
 SetMemblockByte(id,offset-2,bluevalue)
 SetMemblockByte(id,offset-1,bluevalue)
 endcase
 case 3 //average
 rem *** Offset to red value ***
 offset = row*imgwidth*4+col*4+12
 rem *** Get the value of average ***
 averagevalue =
 (GetMemblockByte(id,offset)+
 GetMemblockByte(id,offset+1)+
 GetMemblockByte(id,offset+2))/3
 rem *** Set set colours to average ***
 SetMemblockByte(id,offset,averagevalue)
 SetMemblockByte(id,offset+1,averagevalue)
 SetMemblockByte(id,offset+2,averagevalue)
 endcase
 endselect
 next col
 next row
endfunction

To display all five versions of the image at the same time the
following code could be used.

rem *** Images in memblocks ***

rem *** Load image into memblock ***

myMemImage = CreateMemblockFromImage
(LoadImage(“BottleBrush.png”))
rem *** Show original image in sprite ***
CreateImageFromMemblock(1,myMemImage)
CreateSprite(1,1)
SetSpriteSize(1,48,-1)
rem *** Create remaining four versions of image ***
for c = 2 to 5
 rem *** Convert memblock to B&W ***
 MonoMemImage(myMemImage,c-2)
 rem *** Show image in new sprite ***

Hands On AGK BASIC: Memory Blocks 937

 CreateImageFromMemblock(c,myMemImage)
 CreateSprite(c,c)
 SetSpriteSize(c,48,-1)
 SetSpritePosition(c,(c-1) mod 2 * 50, (c-1)/
 2 * 33)
 rem *** Set up memblock for next conversion ***
 DeleteMemblock(myMemblock)
 myMemImage = CreateMemblockFromImage
 (LoadImage(“BottleBrush.png”))
next c
rem *** Show the five versions ***
do
 Sync()
loop

The code was used with a screen setting of 600 x 750.

The line
SetSpritePosition(c,(c-1) mod 2 * 50, (c-1)/2 * 33)

is used to position two images per row, with three rows (only
one image appears on the third row).

Activity 24.16
No solution required.

Activity 24.17
 √-25
= √25 x √-1
= 5√-1
= 5i

Activity 24.18
Code for Mandelbrot:

rem *** Use MandelbrotDataType ***

rem *** Create MandelbrotDataType item ***
mandelbrot =
CreateMemMandelbrotDataType(-1.7,-1.2,2.4,
2.4,256,80,80)
rem *** Display item’s data ***
do
 Print(“Start : (“ +
 Str(GetMemMandelbrotDataStartReal(mandelbrot),1)
 +” , “ + Str(GetMemMandelbrotDataStartImaginary(
 mandelbrot),1)+”)”)
 Print(“Real range : “ +
 Str(GetMemMandelbrotDataRangeReal(mandelbrot),1))
 Print(“Imaginary range : “ +
 Str(GetMemMandelbrotDataRangeImaginary(
 mandelbrot),1))
 Print(“Maximum Iterations : “ +
 Str(GetMemMandelbrotDataMaxIterations(
 mandelbrot)))
 Print(“Image ID : “ +
 Str(GetMemMandelbrotDataImageID(mandelbrot)))
 Print(“Image width : “ +
 Str(GetMemMandelbrotDataImageWidth(mandelbrot)))
 Print(“Image height : “ +
 Str(GetMemMandelbrotDataImageHeight(mandelbrot)))
 Sync()
loop

rem ***
rem *** MandelbrotDataType Functions ***
rem ***

rem *** Creates MandelbrotDataType structure and
assigns initial values ***
function CreateMemMandelbrotDataType(Rstart#,
Istart#, Rrange#, Irange#,maxiterations,width,
height)
 rem *** Adjust parameters if not sensible ***
 if Rstart# < -2.4
 Rstart# = -2.4
 endif
 if Rstart# > 0.8
 Rstart# = 0.8
 endif
 if Istart# < -1.2

 Istart# = -1.2
 endif
 if Istart# > 1.2
 Istart# = 1.2
 endif
 if RRange# <= 0 or RRange# > 3.2
 RRange# = 3.2
 endif
 if IRange <= 0 or IRange# > 2.4
 IRange# = 2.4
 endif
 if maxiterations < 16
 maxiterations = 16
 endif
 rem *** Create space for values and blank ID ***
 id = CreateMemblock(24)
 rem *** Set values in memblock ***
 SetMemblockFloat(id,0,Rstart#)
 SetMemblockFloat(id,4,Istart#)
 SetMemblockFloat(id,8,Rrange#)
 SetMemblockFloat(id,12,Irange#)
 SetMemblockInt(id,16,maxiterations)
 rem *** Create memblock for image and record its
 ID ***
 SetMemblockInt(id,20,CreateMemImageType(width,
 height))
endfunction id

rem *** Sets minimum real and imaginary values ***
function SetMemMandelbrotDataStart(id,rs#,is#)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** If invalid start, exit ***
 if rs# < -2.4 or rs# > 0.8 or is# < -1.2 or
 is# > 1.2
 exitfunction
 endif
 rem *** Set values ***
 SetMemblockFloat(id,0,rs#)
 SetMemblockFloat(id,4,is#)
endfunction

rem *** Sets the real and imaginary range ***
function SetMemMandelbrotDataRange(id,rr#,ir#)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** If invalid ranges, exit ***
 if rr# <= 0 or rr# > 3.2 or ir# <= 0 or ir# > 3.2
 exitfunction
 endif
 rem *** Set values ***
 SetMemblockFloat(id,8,rr#)
 SetMemblockFloat(id,12,ir#)
endfunction

function SetMemMandelbrotDataMaxIterations(id,max)
 rem *** rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** If parameter too low, exit ***
 if max < 16
 exitfunction
 endif
 rem *** Set maximumiterations ***
 SetMemblockInt(id,16,max)
endfunction

rem *** Returns the minimum real value ***
function GetMemMandelbrotDataStartReal(id)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 rem *** Get result ***
 result# = GetMemblockFloat(id,0)
endfunction result#

rem *** Returns the minimum imaginary value ***
function GetMemMandelbrotDataStartImaginary(id)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 rem *** Get result ***
 result# = GetMemblockFloat(id,4)

938 Hands On AGK BASIC: Memory Blocks

endfunction result#

rem *** Returns the range along the real axis ***
function GetMemMandelbrotDataRangeReal(id)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 rem *** Get result ***
 result# = GetMemblockFloat(id,8)
endfunction result#

rem *** Returns range along the imaginary axis ***
function GetMemMandelbrotDataRangeImaginary(id)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 rem *** Get result ***
 result# = GetMemblockFloat(id,12)
endfunction result#

rem *** Returns the maximum iterations ***
function GetMemMandelbrotDataMaxIterations(id)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0
 endif
 rem *** Get result ***
 result = GetMemblockInt(id,16)
endfunction result

rem *** Returns the ID of the mandelbrot image ***
function GetMemMandelbrotDataImageID(id)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0
 endif
 rem *** Get result ***
 result = GetMemblockInt(id,20)
endfunction result

rem *** Returns width of image ***
function GetMemMandelbrotDataImageWidth(id)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0
 endif
 rem *** Get result ***
 result =
 GetMemblockInt(GetMemMandelbrotDataImageID(id),
 0)
endfunction result

rem *** Returns height of image ***
function GetMemMandelbrotDataImageHeight(id)
 rem *** If ID does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0
 endif
 rem *** Get result ***
 result =
 GetMemblockInt(GetMemMandelbrotDataImageID(id),
 4)
endfunction result

rem ***
rem *** ImageType Functions ***
rem ***

rem *** Creates memblock for image ***
function CreateMemImageType(width, height)
 rem *** If dimensions invalid, create 200 by 200
 if width < 1 or width > 4000 or height < 1 or
 height > 4000
 width = 200
 height = 200
 endif
 rem *** Create memblock for image ***
 id = CreateMemblock(width*height*4 + 12)
 rem *** Store width, height and colour depth ***
 SetMemblockInt(id,0,width)
 SetMemblockInt(id,4,height)
 SetMemblockInt(id,8,32)
endfunction id

Activity 24.19
No solution required.

Activity 24.20
Modified code for the main section of Mandelbrot:

rem *** Displaying the Mandelbrot Set ***

rem *** Create MandelbrotDataType ***
mandelid = CreateMemMandelbrotDataType(-1.7,-1.2,2.4,
2.4,256,800,800)
rem *** Display message ***
CreateText(1,”Working...”)
Sync()
rem *** Create the Mandelbrot image ***
ProduceMemMandelbrotImage(mandelid)
rem *** Create Sprite to display image ***
CreateImageFromMemBlock(1,
GetMemMandelbrotDataImageID(mandelid))
CreateSprite(1,1)
SetSpriteSize(1,100,-1)
rem *** Remove message ***
SetTextString(1,””)
rem *** Display ***
do
 Sync()
loop

Activity 24.21
No solution required.

Activity 24.22
Change the do..loop structure in the main section of
Mandelbrot to read:

do
 HandleNewSelection(mandelid)
 DeleteImage(1)
 CreateImageFromMemblock(1,
 GetMemMandelbrotDataImageID(mandelid))
 SetSpriteImage(1,1)
 Sync()
loop

Activity 24.23
You should be able to see a smaller boundary box when the
SetGenerateMipMaps(1) statement has been added.

Hands On AGK BASIC : Drawing 939

Drawing

In this Chapter:

T Using the DrawLine() Statement

T Drawing Other Basic Shapes

T Creating a Bezier Curve

T Creating Wireframe Models from OBJ Files

940 Hands On AGK BASIC: Drawing

Drawing Shapes

Introduction
AGK contains only a single statement for drawing directly to the screen. And yet,
with that single statement we have enough power to create just about any geometric
shape we need.

Drawing a Line
DrawLine()

The DrawLine() command will draw a line of a specified colour between two points.
The format of this statement is shown in FIG-25.1.

where

 x1, y1 are real numbers giving the coordinates of the starting point of
the line.

 x2, y2 are real numbers giving the coordinates of the finishing point of
the line.

 r, g, b are integer values giving the red, green and blue components of
the line’s colour.

The DrawLine() statement has a property similar to the Print() statement: it must
be executed for each frame since, unlike sprites, text objects and 3D objects, its
output is not automatically included in the construction of the next screen frame. The
technique required to maintain the display is shown in FIG-25.2.

Drawing a Dot
An even simpler requirement than a line is drawing a single spot (covering just a few
pixels).

FIG-25.1

DrawLine()

()DrawLine x1 y1 r g bx2 y2

FIG-25.2

Using DrawLine()

do
 rem *** Draw a white line from top-left to bottom-right ***
 DrawLine(0,0,100,100,255,255,255)
 Sync()
loop

Activity 25.1

Start a new project called TestDrawLine and implement and run the code given
in FIG-25.2.

Now move the DrawLine() statement so that it becomes the first line of code.

How does this affect the program?

Hands On AGK BASIC: Drawing 941

We can do this quite easily by using the DrawLine() statement with a very small
difference between the start and finish points. For example, if we wanted to create a
single spot at the position (50,10) we could use the line

DrawLine(50,10,50.1,10,255,255,255)

or, more correctly, so that the required point is in the middle of the short line:
DrawLine(49.95,10,50.05,10,255,255,255)

Unfortunately, this code is not sophisticated enough to ensure that the dot covers a
single pixel only. The width (in pixels) of the screen on which your app is running
(or the width of its window) can be discovered using GetDeviceWidth(). When
using the percentage system for screen coordinates, a single pixel is equivalent to
(100/GetDeviceWidth())%. With this information, we can create a new function
called DrawDot() specifically for drawing a single point on the screen:

function DrawDot(x as float, y as float,r,g,b)
 pixel# = 100.0/GetDeviceWidth()
 DrawLine(x-pixel#/2,y,x+pixel#/2,y,r,g,b)
endfunction

Drawing a Rectangle
To draw a rectangle, we need only specify the coordinates of the top-left (x1,y1) and
bottom-right (x2,y2) corners along with the colour (r,g,b) in which the outline is to
be produced. The function has the heading

function DrawRectangle(x1 as float, x2 as float, x2 as float,
y2 as float, r,g,b)

followed by code to draw a line from the top-left corner to the top-right corner
DrawLine(x1,y1,x2,y1,r,g,b)

then from the top-right to the bottom-right:
DrawLine(x2,y1,x2,y2,r,g,b)

After drawing the remaining two lines we end up with the function as shown in FIG-
25.3.

Activity 25.2

Start a new project called DrawingFunctions.

Include the function DrawDot() (as given above) in the program and write a
main section to draw 5000 randomly coloured spots at random positions on the
screen.

Test and save your program.

FIG-25.3

Drawing a Rectangle

rem *** Draws a rectangle between points(x1,y1) and (x2,y2) ***
rem *** using colour r,g,b ***
function DrawRectangle(x1 as float, y1 as float, x2 as float,
y2 as float, r,g,b)
 DrawLine(x1,y1,x2,y1,r,g,b)
 DrawLine(x2,y1,x2,y2,r,g,b)
 DrawLine(x2,y2,x1,y2,r,g,b)
 DrawLine(x1,y2,x1,y1,r,g,b)
endfunction

942 Hands On AGK BASIC: Drawing

Fixing Mandelbrot

In the last chapter we made use of a rectangular outline image to select the zoom-in
area of the Mandelbrot set. The problem with this approach was that the rectangle
was invisible when small and produced a too-thick outline when large. We can solve
this problem by using the DrawRectangle() function to show the selected area.

The existing Mandelbrot functions responsible for drawing the outline are:
 CreateBoundary()
 ResizeBoundary()
 DeleteBoundary()

These functions load, resize and delete a sprite to create the outline.

We can keep the names and parameters of these routines unchanged but modify their
contents so that they now make use of the DrawRectangle() function. The new code
for CreateBoundary() is:

rem *** Loads and positions the outline image ***
function CreateBoundary(x#,y#)
 global startx#, starty#
 rem *** Save coords of top-left ***
 startx# = x#
 starty# = y#
 rem *** Draw small rectangle ***
 DrawRectangle(x#,y#,x#+0.5,y#+0.5,200,200,0)
endfunction

Notice that the function introduces two new global variables, startx# and starty#.
These store the coordinates of the top left corner of the rectangle. The contents of
these variables are unchanged as the rectangle is resized.

The ResizeBoundary() function (which makes use of the new global variables) is
recoded as:

rem *** Resize outline ***
function ResizeBoundary(id)
 rem *** Calculate image ratio ***
 w# = GetMemMandelbrotDataImageWidth(id)
 h# = GetMemMandelbrotDataImageHeight(id)
 ratio# = w#/h#
 rem *** Redraw rectangle with ratio of the image ***
 DrawRectangle(startx#,starty#,GetPointerX(),starty#+
 (GetPointerX()-startx#)*ratio#,200,200,0)
endfunction

Activity 25.3

Add the function DrawRectangle() to DrawingFunctions.
Test the new function by drawing a yellow rectangle from (10,50) to (80,90)
and save your program.

Activity 25.4

Add a new function called DrawTriangle() to DrawingFunctions which draws
a triangle. Test the function by drawing a red triangle with corners at (35,10),
(10,30) and (70,60).

Hands On AGK BASIC: Drawing 943

The unusual part of this function is that the y-coordinate of the bottom-right corner
is not taken from the pointer device but is calculated to maintain the width to height
ratio of the sprite showing the Mandelbrot image.

The final routine, DeleteBoundary() is now redundant since there are no sprites or
images to delete when the rectangle is no longer visible. However, rather than remove
the routine entirely, we will recode it as an empty function:

rem *** Delete outline ***
function DeleteBoundary()
endfunction

All three of these functions are called by HandleNewSelection(). But since we have
retained the name, parameters and purpose of the routines in the new coding, there is
no need to change any of the lines in HandleNewSelection().

One of the aims of good design is that changes to one section of a program should
have minimal effect on other sections. The changes made in Activity 25.5 are an
excellent example of this. Although we rewrote three functions within our Mandelbrot
project, no changes were required elsewhere in the code. The primary reason for this
being that we did not change function names, parameters, or purpose.

It seems less than efficient to retain a function (DeleteBoundary()) which executes
no code. However, when the function is removed from the project, we now affect
other parts of the program since we must also delete the call to that function at the
end of HandleNewSelection().

Drawing a Circle
To draw a circle, all you need to remember from your school math is that the points
on the circumference of a circle whose centre is at the origin and which has a radius
r are defined as:

	 x	=	r	*	cos	θ
	 y	=	r	*	sin	θ

By drawing a line from point to point around the circumference, we can create the
outline of a circle. For example, if we wanted to create a circle with a radius of 10
centred on the origin, we could use the techniques described in FIG-25.4.

Activity 25.5

Open the projects Mandelbrot and DrawFunctions.

Copy the code for DrawRectangle() from DrawFunctions and place it at the
end of the project code in Mandelbrot. Close the DrawFunctions project.

In Mandelbrot, modify the code for the functions CreateBoundary(),
ResizeBoundary() and DeleteBoundary() to match that given above.

Test and save your project.

Activity 25.6

In your Mandelbrot project, remove the code for DeleteBoundary() and delete
the call to DeleteBoundary() in HandleNewSelection(). Test and save your
program.

944 Hands On AGK BASIC: Drawing

FIG-25.4

How to Draw a Circle

When the string lies exactly along the
positive part of the x-axis the angle θ
between the string and axis is zero...

...so this point’s coordinates are
 x = 10 cos 0
 y = 10 sin 0
or (10,0)

If we move the string so that it is now
at 5o to the x-axis, the new coordinates
are: x = 10 cos 5
 y = 10 sin 5

Now we draw a straight line from the
first point to the second.

Moving the string another 5o gives us
our third point
 x = 10 cos 10
 y = 10 sin 10

Joining each point to the last and
moving the string in increments of 5o

until it comes back round to the x-axis
will create our circle.

Imagine we have fixed one end of a
piece of string 10 units in length to the
origin and a pencil to the other end.

Let’s go back to traditional math, where
the origin is in the centre of the area
we are working in.

Fixed
end

0o

5o

10o

(10,0)

(10,0)(10cos 5,
10sin 5)

(10cos 5,
10sin 5)

(10cos 10,
10sin 10)

Hands On AGK BASIC: Drawing 945

If we want the circle to be centred elsewhere other than the origin - say at a point (cx,
cy) - then the formula for points on the circumference becomes:

 x = r cos θ + cx
 y = r sin θ + cy

Any function we create to draw a circle will need the following parameters:

 Position of the centre of the circle
 Radius
 Colour of outline

The function’s code is shown in FIG-25.5.

Notice that the points on the circle are 8o apart. The less steps we take to move all the
way around the circumference, the quicker the circle is drawn, so 8o is a compromise
between accuracy of the circle’s outline and the time taken.

Drawing an Ellipse
We can think of an ellipse as a circle which has been stretched in one direction. A
typical ellipse and its main properties is shown in FIG-25.6.

FIG-25.5

DrawCircle() Function

rem *** Draws a circle centre (x,y) radius, radius using ***
rem *** colour r,g,b ***
function DrawCircle(x as float,y as float, radius as float, r, g, b)
 rem *** First point on circumference ***
 x# = radius + x
 y# = y
 rem *** Cal remaining points as 8.0 degree steps ***
 for degree# = 8 to 360 step 8.0
 rem *** Store previously calculated point ***
 oldx# = x#
 oldy# = y#
 rem *** Calculate next point on circumference ***
 x# = cos(degree#)*radius + x
 y# = sin(degree#)*radius + y
 rem *** Draw line between previous and new points ***
 drawline(oldx#,oldy#,x#,y#,r,g,b)
 next degree#
endfunction

Activity 25.7

Add the DrawCircle() function given in FIG-25.5 to DrawingFunctions.

Modify the main section to draw a red circle at the centre of the screen with a
radius of 20.

Test and save your program.

Modify the step size in DrawCircle()’s for loop from 8 to 1. Does this make the
form of the circle appear more accurate?

Do NOT save this version of the function.

946 Hands On AGK BASIC: Drawing

The simplest way to draw an ellipse is to modify the circle calculation so that the x
value is calculated by multiplying cos θ by one semi axis length (rather than the
radius) and the y value calculated by multiplying sin θ by the other semi axis length.
This gives us the routine shown in FIG-25.7.

FIG-25.6

Characteristics of an
Ellipse

An ellipse looks like a squashed circle. It has a centre, a major axis (between
the widest parts) and a minor axis
(between the narrowest parts).

Centre Major axis

Minor axis

The distance from the centre to the
nearest point in the circumference is
known as the semi-minor axis.

The distance from the centre to the
furthest point is known as the semi-
major axis.

Semi-minor
axis Semi-major

axis

FIG-25.7

The DrawEllipse()
Function

rem *** Draws an ellipse centre (x,y) semi-major, ax1, ***
rem *** semi-minor ax2 in colour r,g,b ***
function DrawEllipse(x as float,y as float, ax1 as float,
ax2 as float, r, g, b)
 rem *** First point on circumference ***
 x# = ax1 + x
 y# = y
 rem *** Cal remaining points as 8.0 degree steps ***
 for degree# = 8 to 360 step 8.0
 rem *** Store previously calculated point ***
 oldx# = x#
 oldy# = y#
 rem *** Calculate next point on the circumference ***
 x# = cos(degree#)*ax1 + x
 y# = sin(degree#)*ax2 + y
 rem *** Draw line between previous and new points ***
 drawline(oldx#,oldy#,x#,y#,r,g,b)
 next degree#
endfunction

Hands On AGK BASIC: Drawing 947

Note that it is not possible to draw an ellipse which lies at an angle.

Creating a Data Structure for Basic Shapes
In the last chapter we saw how memblocks can be used to create user-defined data
structures. It would be neater and better style if we do the same thing for our basic
drawing shapes.

Memblock LineType

The easiest memblock structure to adapt is LineType which we created in the previous
chapter.

Activity 25.8

Add the DrawEllipse() function given in FIG-25.7 to DrawingFunctions.

Change the main section to draw an ellipse with parameter ax1 set to 30 and
ax2 set to 10. Test and save your program.

Activity 25.9

Load project MemblockLine (Activity 24.12) and add the following function
which draws a line based on the details held in a LineType variable.

rem *** Draws the line on the screen ***
function DrawMemLine(id)
 rem *** Retrieve line details ***
 x1# = GetMemLineStartX(id)
 y1# = GetMemLineStartY(id)
 x2# = GetMemLineFinishX(id)
 y2# = GetMemLineFinishX(id)
 red = GetMemLineColourRed(id)
 green = GetMemLineColourGreen(id)
 blue = GetMemLineColourBlue(id)
 rem *** Draw the line ***
 DrawLine(x1#,y1#,x2#,y2#,red,green,blue)
endfunction

Change the main section to read:

rem *** Drawing a Memblock Line ***
rem *** Create a LineType structure ***
line1 = CreateMemLineType()
rem *** Assign start, finish and colour to line ***
SetMemLineStart(line1,20.5,34.8)
SetMemLineFinish(line1,76.2,51.6)
SetMemLineColour(line1,255,100,200)
rem *** Draw the line ***
do
 DrawMemLine(line1)
 Sync()
loop

Test and save your program.

948 Hands On AGK BASIC: Drawing

Now we are ready to try creating new memblock-based data types for other shapes.

The data structure for a circle would be defined conceptually as:
type CircleType
 centre as PointType //Centre of circle
 radius as float //Radius of circle
 colour as ColourType //Colour of circumference
endtype

The number of bytes required in a memblock for this structure would be:

 Field Type Bytes
 centre integer (memblock ID) 4
 radius float 4
 colour integer (memblock ID) 4

with the offsets being:

 Field Offset
 centre 0
 radius 4
 colour 8

A visual representation of the structure is shown in FIG-25.8.

The basic functions this structure will require are:

Activity 25.10

What pre-condition test is missing from the code for DrawMemLine()?

Add the pre-condition test to the function, exiting if the condition is not met.

Test and save your project.

Activity 25.11

Create a new file called MemUDTLibrary in your DrawingFunctions project
and copy the memblock-based functions for PointType and ColourType. These
were created in projects MemblockPoint and MemblockColour.

Make sure you copy only the functions and not the main sections of each
project. Save your project.

FIG-25.8

Representation of a
CircleType Structure

Contents of a CircleType Item

centre (id only)

x

red
green

blue

y

radius colour (id only)

1001 10.7 1002

10.5 18.210.5 18.2

89 12 63

Hands On AGK BASIC: Drawing 949

 CreateMemCircleType() creates the memblock, initialises the fields
and returns the ID assigned to the
memblock.

 SetMemCircleCentre() sets the centre of the circle to a specified
position.

 SetMemCircleRadius() sets the circle radius.

 SetMemCircleColour() sets the colour to be used when drawing the
circle’s outline.

 DrawMemCircle() draws the circle on the screen.

 GetMemCircleCentreX() returns the x coordinate of the circle’s
centre.

 GetMemCircleCentreY() returns the y coordinate of the circle’s
centre.

 GetMemCircleRadius() returns the radius of the circle.

 GetMemCircleColourRed() returns the red component of the circle’s
colour.

 GetMemCircleColourGreen() returns the green component of the circle’s
colour.

 GetMemCircleColourBlue() returns the blue component of the circle’s
colour.

The code for each of these functions is similar to that in many previous functions and
is presented without explanation in FIG-25.9.

FIG-25.9

Implementing CircleType
Using Memblocks

rem ***********************************
rem *** CircleType ***
rem ***********************************

remstart
Below is the conceptual structure being created in the memblock
type CircleType
 centre as PointType
 radius as float
 colour as ColourType
endtype
remend

rem *** Creates the memblock for CircleType data ***
rem *** Circle created defaults to centre (50,50) ***
rem *** radius 10 and colour red ***
function CreateMemCircleType()
 rem *** Create main memblock ***
 id = CreateMemblock(12)
 rem *** Create memblock for centre and colour fields ***
 centreid = CreateMemPointType(50,50)
 colourid = CreateMemColourType(255,0,0)
 rem *** Store IDs in main memblock ***

950 Hands On AGK BASIC: Drawing

 FIG-25.9
(continued)

Implementing CircleType
Using Memblocks

 SetmemblockInt(id,0,centreid)
 SetMemblockInt(id,8,colourid)
 rem *** Store radius ***
 SetMemblockFloat(id,4,10.0)
endfunction id

rem *** Sets the centre of the circle ***
function SetMemCircleCentre(id,x#,y#)
 rem *** IF memblock doesn’t exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** Set the new centre position ***
 centreid = GetMemblockInt(id,0)
 SetMemPoint(centreid,x#,y#)
endfunction

rem *** Sets the circle’s radius ***
function SetMemCircleRadius(id, rad#)
 rem *** IF memblock doesn’t exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** IF rad# < 0,exit function ***
 if rad# < 0
 exitfunction
 endif
 rem *** Set the new radius ***
 SetMemblockFloat(id,4,rad#)
endfunction

rem *** Sets new colour for circle outline ***
function SetMemCircleColour(id,r,g,b)
 rem *** IF memblock doesn’t exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** Set the new colour ***
 colourid = GetMemblockInt(id,8)
 SetMemColour(colourid,r,g,b)
endfunction

rem *** Draws the circle ***
function DrawMemCircle(id)
 rem *** IF memblock doesn’t exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction
 endif
 rem *** Get drawing colour ***
 r = GetMemCircleColourRed(id)
 g = GetMemCircleColourGreen(id)
 b = GetMemCircleColourBlue(id)
 rem *** Get circle’s radius ***
 radius# = GetMemCircleRadius(id)
 rem *** Get centre of circle ***
 centrex# = GetMemCircleCentreX(id)
 centrey# = GetMemCircleCentreY(id)
 rem *** First point on circumference ***
 x# = radius#+centrex#
 y# = centrey#
 rem *** Cal remaining points as 8.0 degree steps ***

Hands On AGK BASIC: Drawing 951

 for degree# = 8 to 360 step 8.0
 rem *** Store previously calculated point ***
 oldx# = x#
 oldy# = y#
 rem *** Calculate next point on circumference ***
 x# = cos(degree#)*radius# + centrex#
 y# = sin(degree#)*radius# + centrey#
 rem *** Draw line between previous and new points ***
 drawline(oldx#,oldy#,x#,y#,r,g,b)
 next degree#
endfunction

rem *** Returns the X coord of circle’s centre ***
function GetMemCircleCentreX(id)
 rem *** IF memblock doesn’t exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 rem *** Get centre’s x coord ***
 centreid = GetMemblockInt(id,0)
 result# = GetMemPointX(centreid)
endfunction result#

rem *** Returns the Y coord of circle’s centre ***
function GetMemCircleCentreY(id)
 rem *** IF memblock doesn’t exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 rem *** Get centre’s y coord ***
 centreid = GetMemblockInt(id,0)
 result# = GetMemPointY(centreid)
endfunction result#

rem *** Returns the circle’s radius ***
function GetMemCircleRadius(id)
 rem *** IF memblock doesn’t exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0.0
 endif
 rem *** Get circle’s radius ***
 result# = GetMemblockFloat(id,4)
endfunction result#

rem *** Returns the red component of circle’s colour ***
function GetMemCircleColourRed(id)
 rem *** IF memblock doesn’t exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0
 endif
 rem *** Get circle’s red component ***
 colourid = GetMemblockInt(id,8)
 result = GetMemColourRed(colourid)
endfunction result

rem *** Returns the green component of circle’s colour ***
function GetMemCircleColourGreen(id)
 rem *** IF memblock doesn’t exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0
 endif

FIG-25.9
(continued)

Implementing CircleType
Using Memblocks

952 Hands On AGK BASIC: Drawing

Summary
± Use DrawLine() to draw a line of a specified colour between two points.

± Use DrawLine() in subsequent functions to create other basic shapes.

± You can use memblock structures to define the properties of basic drawing
shapes.

FIG-25.9
(continued)

Implementing CircleType
Using Memblocks

 rem *** Get circle’s green component ***
 colourid = GetMemblockInt(id,8)
 result = GetMemColourGreen(colourid)
endfunction result

rem *** Returns the blue component of the circle’s colour ***
function GetMemCircleColourBlue(id)
 rem *** IF memblock doesn’t exist exit ***
 if GetMemblockExists(id) = 0
 exitfunction 0
 endif
 rem *** Get circle’s blue component ***
 colourid = GetMemblockInt(id,8)
 result = GetMemColourBlue(colourid)
endfunction result

Activity 25.12

Add the code for the CircleType functions (as shown in FIG-25.9) to
MemUDTLibrary.

Change the main section of DrawingFunctions to:

 rem *** Test CircleType ***
 #include “MemUDTLibrary.agc”

 circle = CreateMemCircleType()
 do
 DrawMemCircle(circle)
 Sync()
 loop

Test and save your program.

Hands On AGK BASIC: Drawing 953

Drawing a Simple Bezier Curve

Introduction
As we have seen from the circle and ellipse examples, it is possible to draw a series
of straight lines which, when small enough, fool the eye into thinking it is seeing a
curved line.

While the curves in a circle and ellipse are somewhat limited, a Bezier curve allows
for a greater flexibility in form although its construction is more complex than that
required for circles and ellipses. A typical Bezier curve is shown in FIG-25.10.

Calculating the Curve
The simplest of the Bezier curves can be defined using three points. These are the
start and end points of the line and a control point. It is the position of the control
point that determines the line’s curvature. The steps in creating a Bezier curve are
shown in FIG-25.11.

FIG-25.10

A Bezier Curve

FIG-25.11

How to Construct a
Simple Bezier Curve

A typical Bezier curve is shown below. A simple Bezier curve is defined using
three points. Two specify the start and
end points of the line and the third
controls the shape of the curve.

start

control

end

To construct the curve we begin by
creating imaginary lines between the
start and control points and between
the control and end points.

Now we move a percentage of the way
along each of these two lines and draw
a new imaginary line. (The fraction
determines the accuracy of the curve.)

25%

25%

These are
the primary control

lines

new line

954 Hands On AGK BASIC: Drawing

In the description above we see only three intermediate points along the Bezier curve
being calculated. Of course, in reality we need to calculate many more if we are to
create a realistic, smooth curve.

To minimise the code required, we will implement the Bezier curve without creating
a memblock data structure as we did previously with CircleType. The parameters of
the DrawBezierCurve() function which will draw the curve are:

The coordinates of the start point
The	coordinates	of	the	finish	point
The coordinates of the control point
The colour of the line

This list gives us the first line of the function:
function DrawBezierCurve(x1 as float, y1 as float, x2 as float,
y2 as float, x3 as float, y3 as float, r,g,b)

The drawing function requires the following logic:

Calculate the two primary control lines
Calculate the step size used on each primary control line
Calculate and store the set of secondary control lines
Calculate and draw points on secondary control lines to create the Bezier curve

Before coding the actual logic of the function, it will help if we start by defining

FIG-25.11
(continued)

How to Construct a
Simple Bezier Curve

Next we move further along each of
the original lines and
draw another line.

We continue with this until we reach the
other end of the original lines.

50% 75% 75%50%

Now we are ready to draw the Bezier
curve. A line is drawn from start point
to 25% along the first of the new lines...

...from there to 50% along the second
of the new lines, on to 75% along the
third line and finally to the end point.

75%25%
50%

These are
the secondary control

lines

The
Bezier curve

Hands On AGK BASIC: Drawing 955

PointType and LinePointsType structures:
 type PointType
 x as float
 y as float
 endtype

 type LinePointsType
 start as PointType
 fin as PointType
 endtype

Next we can specify the number of points we are going to calculate on the Bezier
curve by defining a constant:

 #constant POINTS_ON_CURVE = 20

The final important item is an array in which to store the start and end points of the
secondary control lines:

 global dim lines[POINTS_ON_CURVE] as LinePointsType

Finally, we are ready to implement the logic of the function:

Calculate the two primary control lines

 rem *** Calculate the two primary control lines ***
 c1 as LinePointsType //Control line from start point (x1,y1)
 to control point(x3,y3)
 c2 as LinePointsType //Contol line from control point
 (x3,y3)to end point (x2,y2)
 c1.start.x = x1
 c1.start.y = y1
 c1.fin.x = x3
 c1.fin.y = y3
 c2.start.x = x3
 c2.start.y = y3
 c2.fin.x = x2
 c2.fin.y = y2

Calculate the step size used on each primary control line

 rem *** Calculate step size on each primary control line ***
 c1_stepx# = (c1.fin.x - c1.start.x)/POINTS_ON_CURVE
 c1_stepy# = (c1.fin.y - c1.start.y)/POINTS_ON_CURVE
 c2_stepx# = (c2.fin.x - c2.start.x)/POINTS_ON_CURVE
 c2_stepy# = (c2.fin.y - c2.start.y)/POINTS_ON_CURVE

Calculate and store the set of secondary control lines

 rem *** Create and store set of secondary control lines ***
 for c = 1 to POINTS_ON_CURVE
 lines[c].start.x = c1.start.x + c*c1_stepx#
 lines[c].start.y = c1.start.y + c*c1_stepy#
 lines[c].fin.x = c2.start.x + c*c2_stepx#
 lines[c].fin.y = c2.start.y + c*c2_stepy#
 next c

Calculate and draw points on secondary control lines to create the Bezier curve

 rem *** Calculate and draw points on secondary control lines
 to create Bezier curve ***
 rem *** Start point for line ***
 x# = x1
 y# = y1
 for c = 1 to POINTS_ON_CURVE
 oldx# = x#

956 Hands On AGK BASIC: Drawing

 oldy# = y#
 rem *** Retrieve secondary control line & calc step
 size ***
 sc_stepx# = (lines[c].fin.x-lines[c].start.x)/
 POINTS_ON_CURVE
 sc_stepy# = (lines[c].fin.y-lines[c].start.y)/
 POINTS_ON_CURVE
 rem *** Calculate point on retrieved line ***
 x# = lines[c].start.x + c*sc_stepx#
 y# = lines[c].start.y + c*sc_stepy#
 DrawLine(oldx#, oldy#, x#, y#, r,g,b)
 next c

Timing Issues

As you can see from the code, creating a Bezier curve takes a considerable amount
of calculations and the DrawBezierCurve() function needs to be called every time a
frame is constructed. Anything we can do to reduce the time taken to draw the curve
will have an effect on the overall speed of any app which uses the function. We can
start by finding out how long it takes to execute the DrawBezierCurve() function
10,000 times by changing the main section of the program to read:

CreateText(1,””)
ResetTimer()
for c = 1 to 10000
 DrawBezierCurve(10,50,80,30,20,80,255,0,0)
 //Sync()
next c
SetTextString(1,”Time for 10000 Bezier curves : “
+count$+Str(Timer(),2))
do
 Sync()
loop

Notice that the Sync() statement after the call to DrawBezierCurve() has been
disabled. This is because the screen refresh caused by Sync() takes much longer than
the time to execute the function under test and hides any improvements we may make
to the function’s execution time. Sync() is only called when we want to see the time
taken for 10,000 calls to DrawBezierCurve().

The first modification we could make to the DrawBezierCurve() function is to

Activity 25.13

Create a DrawBezierCurve() function from the code given above and add it to
DrawingFunctions, placing the constant, global and type declarations at the
start of the project’s code.

Try drawing a red Bezier curve using the coordinates (10,50),(80,30),(20,80).
The points are listed in the order start, finish and control.

Test and save your program.

Activity 25.14

Modify the main section of code in DrawingFunctions to match that given
above. Test the program and find out the time taken to execute the for loop.

Save your program.

Hands On AGK BASIC: Drawing 957

eliminate the creation of the primary control line variables c1 and c2.

If you examine how these variables are used later in the function’s code, you see that
they are only needed when accessing the start and end points of the primary control
lines. Since the start and end points are actual parameters to the function in the first
place, we can easily remove the lines

 rem *** Calculate the two primary control lines ***
 c1 as LineType //Control line from start point (x1,y1) to
 control point(x3,y3)
 c2 as LineType //Contol line from control point (x3,y3)to
 end point (x2,y2)
 c1.start.x = x1
 c1.start.y = y1
 c1.fin.x = x3
 c1.fin.y = y3
 c2.start.x = x3
 c2.start.y = y3
 c2.fin.x = x2
 c2.fin.y = y2

and change the lines
 rem *** Calculate step size on each primary control line ***
 c1_stepx# = (c1.fin.x - c1.start.x)/POINTS_ON_CURVE
 c1_stepy# = (c1.fin.y - c1.start.y)/POINTS_ON_CURVE
 c2_stepx# = (c2.fin.x - c2.start.x)/POINTS_ON_CURVE
 c2_stepy# = (c2.fin.y - c2.start.y)/POINTS_ON_CURVE
 rem *** Create and store set of secondary control lines ***
 for c = 1 to POINTS_ON_CURVE
 lines[c].start.x = c1.start.x + c*c1_stepx#
 lines[c].start.y = c1.start.y + c*c1_stepy#
 lines[c].fin.x = c2.start.x + c*c2_stepx#
 lines[c].fin.y = c2.start.y + c*c2_stepy#
next c

to
 rem *** Calculate step size on each primary control line ***
 c1_stepx# = (x3 - x1)/POINTS_ON_CURVE
 c1_stepy# = (y3 - y1)/POINTS_ON_CURVE
 c2_stepx# = (x2 - x3)/POINTS_ON_CURVE
 c2_stepy# = (y2 - y3)/POINTS_ON_CURVE

 rem *** Create and store set of secondary control lines ***
 for c = 1 to POINTS_ON_CURVE
 lines[c].start.x = x1 + c*c1_stepx#
 lines[c].start.y = y1 + c*c1_stepy#
 lines[c].fin.x = x3 + c*c2_stepx#
 lines[c].fin.y = y3 + c*c2_stepy#
 next c

This gives us the version of DrawBezierCurve() shown in FIG-25.12.

FIG-25.12

The DrawBezierCurve()
Function

rem *** Draws a Bezier curve start:(x1,y1) ***
rem *** end: (x2,y2), control:(x3,y3) ***
rem *** colour : r,g,b ***
function DrawBezierCurve(x1 as float, y1 as float, x2 as float,
y2 as float, x3 as float, y3 as float, r,g,b)
 rem *** Calculate step size on each primary control line ***
 c1_stepx# = (x3 - x1)/POINTS_ON_CURVE
 c1_stepy# = (y3 - y1)/POINTS_ON_CURVE

958 Hands On AGK BASIC: Drawing

Perhaps surprisingly, the execution time does not appear to change despite the
reduction in the code for DrawBezierCurve(). However, if we have another look at
the function’s logic we can see that before the curve can be drawn, a significant
amount of calculation needs to be performed. And yet, since the calculations always
produce the same results for a given set of parameters, these calculations really only
need to be performed once.

So another approach would be to separate the DrawBezierCurve()’s code into two
separate functions: one to calculate the points on the curve (which only needs to be
performed once) and the second to draw a line between these calculated points
(which needs to be executed before each call to Sync()).

The first routine (which needs a new global array) is shown in FIG-25.13.

FIG-25.12
(continued)

The DrawBezierCurve()
Function

 c2_stepx# = (x2 - x3)/POINTS_ON_CURVE
 c2_stepy# = (y2 - y3)/POINTS_ON_CURVE
 rem *** Create and store set of secondary control lines ***
 for c = 1 to POINTS_ON_CURVE
 lines[c].start.x = x1 + c*c1_stepx#
 lines[c].start.y = y1 + c*c1_stepy#
 lines[c].fin.x = x3 + c*c2_stepx#
 lines[c].fin.y = y3 + c*c2_stepy#
 next c
 rem *** Draw curve ***
 x# = x1
 y# = y1
 for c = 1 to POINTS_ON_CURVE
 oldx# = x#
 oldy# = y#
 rem *** retrieve secondary control line ***
 sc_stepx# =(lines[c].fin.x-lines[c].start.x)/POINTS_ON_CURVE
 sc_stepy# =(lines[c].fin.y-lines[c].start.y)/POINTS_ON_CURVE
 x# = lines[c].start.x + c*sc_stepx#
 y# = lines[c].start.y + c*sc_stepy#
 DrawLine(oldx#, oldy#, x#, y#, r,g,b)
 next c
endfunction

Activity 25.15

Change the code for DrawBezierCurve() in DrawingFunctions to match that
given in FIG-25.12.

Test the program. Has the execution time been reduced?

Save your program.

FIG-25.13

The CalcBezierCurve()
Function

global dim Bpoints[50] as PointType

rem *** Calculate points on a Bezier curve. Parameters give ***
rem *** start, end and control points ***

function CalcBezierCurve(x1 as float, y1 as float, x2 as float,
y2 as float, x3 as float, y3 as float)
 dim lines[50] as LineType

Hands On AGK BASIC: Drawing 959

Lines in the new function which match those from the previous version of
DrawBezierCurve() have been greyed-out in the code.

Notice that a new global array (Bpoints) is defined within the function. This array
stores the points on the curve and will be used by the second routine to draw the
actual curve.

The second new function, used to draw the Bezier curve, is given in FIG-25.14.

FIG-25.13
(continued)

The CalcBezierCurve()
Function

 rem *** Calculate step size on each primary control line ***
 c1_stepx# = (x3 - x1)/POINTS_ON_CURVE
 c1_stepy# = (y3 - y1)/POINTS_ON_CURVE
 c2_stepx# = (x2 - x3)/POINTS_ON_CURVE
 c2_stepy# = (y2 - y3)/POINTS_ON_CURVE
 rem *** Create and store set of secondary control lines ***
 for c = 1 to POINTS_ON_CURVE
 lines[c].start.x = x1 + c*c1_stepx#
 lines[c].start.y = y1 + c*c1_stepy#
 lines[c].fin.x = x3 + c*c2_stepx#
 lines[c].fin.y = y3 + c*c2_stepy#
 next c
 rem *** Calculate points on curve ***
 Bpoints[0].x = x1
 Bpoints[0].y = y1
 for c = 1 to POINTS_ON_CURVE
 rem *** Retrieve secondary control line ***
 sc_stepx# =(lines[c].fin.x-lines[c].start.x)/POINTS_ON_CURVE
 sc_stepy# =(lines[c].fin.y-lines[c].start.y)/POINTS_ON_CURVE
 x# = lines[c].start.x + c*sc_stepx#
 y# = lines[c].start.y + c*sc_stepy#
 Bpoints[c].x = x#
 Bpoints[c].y = y#
 next c
endfunction

FIG-25.14

The DrawBezierCurve()
Function (Version 2)

rem *** Draw the Bezier curve whose points are stored in ***
rem *** Bpoints, using a line of colour r,g,b ***

function DrawBezierCurve(r,g,b)
 for c = 1 to POINTS_ON_CURVE
 DrawLine(Bpoints[c-1].x,Bpoints[c-1].y, Bpoints[c].x,
 Bpoints[c].y,r,g,b)
 next c
endfunction

Activity 25.16

Remove the previous version of DrawBezierCurve() from DrawingFunctions
and add the two new functions given in FIG-25.13 and FIG-25.14.

Modify the code in the main section so that CalcBezierCurve() is called
immediately before the start of the for loop.

Remember to change the parameter list given in the call to DrawBezierCurve().

Test and save your program. Has the execution time been reduced?

960 Hands On AGK BASIC: Drawing

Creating a Bezier Curve in Real Time
The parameters required to create a specific Bezier curve are not easily calculated by
hand. A better approach is to allow the user to edit the curve in real time by enabling
him to move the position of the start, end and control points. Once the required curve
is achieved, then necessary values can be read off the screen and used in other code.

The Screen Layout

The next program (see screenshot in FIG-25.15) allows the user to drag the three
defined points of the curve in real time, with the curve’s shape automatically updating
as changes are made.

The moveable points of the curve are indicated using red rectangles. By dragging on
these, the curve’s start, end and control points can be adjusted. When a red rectangle
is selected, the primary lines are displayed in green.

The Program Logic

The overall program logic can be described as:

Create the resources required
Set up the initial points of the curve
Calculate the curve
Position adjustment icons (red rectangles)
Display points’ cordinates
do
 Check for adjustment to start,end or control points
 IF any point adjusted THEN
 Calculate the curve
 Move adjustment icons and update position displayed
 Update the displayed coordinates
 ENDIF
 Draw the curve
loop

The Program Code

This time we will use the top-down approach to create the program. The main section
of the program can be written as:

FIG-25.15

Real Time Bezier Curve
Program Screenshot

Start:(10.00,50.00) End:(63.67,56.56) Control:(78.67,14.44)

Start, End
and Control Point

Coords

Bezier Curve

Moveable
Point

Moveable
Point

Moveable
Point

Primary Control
Lines

Hands On AGK BASIC: Drawing 961

rem *** Real Time Bezier Curve ***

rem *** Include drawing definitions and functions ***
#include “DrawingLibrary.agc”

rem *** Points for curve ***
global start as PointType
global fin as PointType
global control as PointType

rem *** Create adjust-icons and text string ***
SetUpResources()
rem *** Set initial points of curve ***
SetUpInitialCurvePoints()
rem *** Calculate curve ***
CalcBezierCurve(start.x,start.y, fin.x,fin.y,
control.x,control.y)
rem *** Position adjustment icons ***
PositionAdjustIcons()
rem *** Display Bezier points’ coords ***
SetTextString(1,”Start:(“+Str(start.x,2)+”,”+Str(start.y,2)+
”) End:(“+Str(fin.x,2)+”,”+Str(fin.y,2)+”) Control:(“
+Str(control.x,2)+”,”+Str(control.y,2)+”)”)
do
 rem *** Check for repositioning of point ***
 moved = CheckPoints()
 if moved <> 0
 rem *** Reposition adjustment icons ***
 PositionAdjustIcons()
 rem *** Display Bezier point coords ***
 SetTextString(1,”Start:(“+Str(start.x,2)+”,”+
 Str(start.y,2)+”) End:(“+Str(fin.x,2)+”,”+Str(fin.y,2)+
 ”) Control:(“+Str(control.x,2)+”,”+Str(control.y,2)+
 ”)”)
 rem *** Calculate curve ***
 CalcBezierCurve(start.x,start.y, fin.x,fin.y, control.x,
 control.y)
 endif
 rem *** Draw curve ***
 DrawBezierCurve(255,255,0)
 Sync()
loop

Activity 25.17

Start a new project called RealTimeBezier and enter the code given above.

Add a new file called DrawingLibrary to the new project.

Open the project DrawingFunctions and copy the type, global and function
code from that project to DrawingLibrary. Make sure you do not copy the main
section of the DrawingFunctions code.

Close the DrawingFunctions project.

Create test stubs for each of the functions called in the code above that are not
defined in DrawingLibrary.

Test and save your program.

962 Hands On AGK BASIC: Drawing

SetUpResources()

This function simply creates the sprite and text resources used by the program and
requires the following code:

rem *** Creates sprite and text resources ***
function SetUpResources()
 rem *** Create icon for Bezier points ***
 CreateSprite (1,LoadImage(“ControlIcon.png”))
 SetSpriteSize(1,3.5,-1)
 CloneSprite(2,1)
 CloneSprite(3,1)
 rem *** Text to display point positions ***
 CreateText(1,””)
 SetTextSize(1,2.5)
endfunction

SetUpInitialCurvePoints()

The next routine assigns the coordinates of the three Bezier points (start, end and
control).

rem *** Sets initial value of start,end, and control points ***
function SetUpInitialCurvePoints()
 rem *** Set initial value for start point ***
 start.x = 10
 start.y = 50
 rem *** Set initial value for end point ***
 fin.x = 80
 fin.y = 50
 rem *** Set initial value for control point ***
 control.x = 50
 control.y = 20
endfunction

PositionAdjustIcons()

The red rectangles sprites - referred to as the adjustment icons - need to be positioned
at the three Bezier points. The function for this is coded as:

rem *** Moves adjustment icons ***
function PositionAdjustIcons()
 rem *** Position sprites ***
 SetSpritePositionByOffset(1,start.x,start.y)
 SetSpritePositionByOffset(2,fin.x,fin.y)
 SetSpritePositionByOffset(3,control.x,control.y)
endfunction

Activity 25.18

Add the above function to RealTimeBezier and copy the file ControlIcon.png
into the media folder.

Test and save your program.

Activity 25.19

Add SetUpInitialCurvePoints() to RealTimeBezier. Test and save your
program.

Hands On AGK BASIC: Drawing 963

CheckPoints()

The final function of the program is the longest and most complex one. It checks to
see if the pointer has been clicked over one of the adjustment icons and if that icon
has been moved. It returns a value of 1 if an icon has moved, otherwise zero is
returned.

The logic for the routine is:

IF pointer not pressed THEN
 Exit function
ENDIF
Get ID of any sprite hit by pointer
IF a sprite has been hit THEN
 Record the position of the sprite’s centre
 IF the pointer has just been pressed THEN
 Calculate pointer’s offset from sprite’s centre
 ENDIF
 Move hit sprite to pointer’s position (taking into account initial offset)
 IF the sprite moved THEN
 IF
 start adjust sprite:
 Modify value of start point
 end adjust sprite:
 Modify value of end point
 control adjust sprite:
 Modify value of control sprite
 ENDIF
 Draw the primary control lines
 Set result to 1
 ELSE
 Set result to zero
 ENDIF
 (return value of result)

Fixing the Problem

The trouble with this version of the CheckPoints() is that it is very easy to have the
pointer slip off an adjustment icon and this causes the reshaping of the curve to stop
prematurely.

A better version of the routine would continue moving an icon once it has been

Activity 25.20

Add PositionAdjustIcons() to RealTimeBezier. Test and save your program.

Activity 25.21

Create the function CheckPoints() which implements the logic given above
and add the function to RealTimeBezier.

Test your program by dragging the three adjustment icons and checking that the
line is correctly redrawn and the new points’ coordinates are displayed.

Are there any problems when moving an adjustment icon?

Save your program.

964 Hands On AGK BASIC: Drawing

selected until the pointer is released. We can do this by activating icon selection when
an icon is hit and deactivating it only when the pointer is released. This requires
several changes to our code. First, we need to store the ID of the selected icon in a
global variable so that its value will be retained between calls to CheckPoints():

rem *** ID of adjust icon being moved ***
rem *** (zero if none) ***
global id

Next we need to make a few changes within the CheckPoints() function itself. These
are highlighted in the code below:

function CheckPoints()
 rem *** IF pointer not pressed THEN ***
 if GetPointerState()= 0
 rem *** Set ID of selected adjust icon to zero ***
 id = 0
 rem *** Exit function ***
 exitfunction
 endif
 rem *** If no icon selected, check for hit ***
 if id = 0
 id = GetSpriteHit(GetPointerX(), GetPointerY())
 endif
 rem *** IF an icon selected THEN ***
 if id <> 0
 rem *** Record current position of selected sprite ***
 oldx# = GetSpriteXByOffset(id)
 oldy# = GetSpriteXByOffset(id)
 rem *** Calc pointer’s offset from sprite’s centre ***
 if GetPointerPressed() = 1
 xoff# = GetPointerX() - GetSpriteXByOffset(id)
 yoff# = GetPointerY() - GetSpriteYByOffset(id)
 endif
 rem *** Move the sprite with pointer taking into ***
 rem *** account the pointer’s offset ***
 newx# = GetPointerX()-xoff#
 newy# = GetPointerY()-yoff#
 SetSpritePositionByOffset(id,newx#,newy#)
 rem *** If the sprite moved, adjust point ***
 if newx# <> oldx# or newy# <> oldy#
 select id
 case 1: // Adjust start point
 start.x = newx#
 start.y = newy#
 endcase
 case 2: // Adjust end point
 fin.x = newx#
 fin.y = newy#
 endcase
 case 3: //Adjust control point
 control.x = newx#
 control.y = newy#
 endcase
 endselect
 rem *** Draw primary control lines ***
 DrawLine(start.x,start.y,control.x,control.y,100,
 200,100)
 DrawLine(control.x,control.y,fin.x,fin.y,100,200,100)
 endif
 endif
endfunction

Notice that the function no longer returns a value since the data required by the main

Hands On AGK BASIC: Drawing 965

section is stored in the global variable id.

Lastly, we need a slight change to the do..loop in the main section:
do
 rem *** Check for repositioning of point ***
 CheckPoints()
 rem *** IF adjust icon selected THEN ***
 if id <> 0
 rem *** Reposition adjustment icons ***
 PositionAdjustIcons()
 rem *** Display Bezier point coords ***
 SetTextString(1,”Start:(“+Str(start.x,2)+”,”
 +Str(start.y,2)+”) End:(“+Str(fin.x,2)+”,”+Str(fin.y,2)+
 ”) Control:(“+Str(control.x,2)+”,”+Str(control.y,2)+
 ”)”)
 rem *** Calculate curve ***
 CalcBezierCurve(start.x,start.y, fin.x,fin.y, control.x,
 control.y)
 endif
 rem *** Draw curve ***
 DrawBezierCurve(255,255,0)
 Sync()
loop

Activity 25.22

Make the necessary changes, as described above, to your RealTimeBezier
project and check that there is no problem when moving the adjustment icons.

Save your project.

966 Hands On AGK BASIC: Drawing

Displaying 3D Models in Wireframe

Introduction
AGK uses OBJ format when saving 3D models to a file. This type of file holds all of
the model information in text format. An example of a simple OBJ file is shown in
FIG-25.16.

Each line of text begins with an identifying code of one or two characters.

Lines which start with the symbol # are comments. Other line codes are as follows:

FIG-25.16

The Contents of an OBJ
File

Wavefront OBJ exported by MilkShape 3D

v -0.500000 12.000000 7.750000
v -0.500000 0.250000 7.750000
v 15.000000 12.000000 7.750000
v 15.000000 0.250000 7.750000
v 15.000000 12.000000 -7.750000
v 15.000000 0.250000 -7.750000
v -0.500000 12.000000 -7.750000
v -0.500000 0.250000 -7.750000
8 vertices

vt 0.000000 1.000000
vt 0.000000 0.000000
vt 1.000000 1.000000
vt 1.000000 0.000000
4 texture coordinates

vn 0.000000 0.000000 1.000000
vn 1.000000 0.000000 0.000000
vn 0.000000 0.000000 -1.000000
vn -1.000000 0.000000 0.000000
vn 0.000000 1.000000 0.000000
vn 0.000000 -1.000000 0.000000
6 normals

g Box01
s 1
f 1/1/1 2/2/1 3/3/1
f 2/2/1 4/4/1 3/3/1
s 2
f 3/1/2 4/2/2 5/3/2
f 4/2/2 6/4/2 5/3/2
s 1
f 5/1/3 6/2/3 7/3/3
f 6/2/3 8/4/3 7/3/3
s 2
f 7/1/4 8/2/4 1/3/4
f 8/2/4 2/4/4 1/3/4
s 3
f 7/1/5 1/2/5 5/3/5
f 1/2/5 3/4/5 5/3/5
f 2/1/6 8/2/6 4/3/6
f 8/2/6 6/4/6 4/3/6
12 triangles in group

12 triangles total

Hands On AGK BASIC: Drawing 967

 v vertex
 vt vertex texture UV coordinates
 vn vertex normals
 g group name
 s smoothing group
 f face

This is not an exhaustive description of the OBJ format but it is sufficient to allow us
to create a wireframe model of an object.

Two types of entries in an OBJ file are of interest to us. These are the vertex lines,
which specify all points on the model and the face lines which tell us how these
vertices are joined together. For example, the lines

v -0.500000 12.000000 7.750000
v -0.500000 0.250000 7.750000
v 15.000000 12.000000 7.750000

tell us that the first three vertices of the model are at points (-0.5, 12, 7.75),
(-0.5, 0.25, 7.75) and (15, 12, 7.75). These are numbered as vertices 1, 2 and 3.

Over half way down the file we meet the first face details in the line:

f 1/1/1 2/2/1 3/3/1

Don’t be confused by the three numbers in each group (each number separated by /);
only the first number in a group refers to a vertex (the second and third are vertex
texture and vertex normal information).

So, the line above says that one face in the model is constructed from joining vertices
1 and 2, 2 and 3, and ‒ since the last vertex must join to the first ‒ 3 and 1 (see FIG-
25.17).

FIG-25.17

Creating a Face

1
(-0.5, 12.0, 7.75)

3
(15.0, 12.0, 7.75)

2
(-0.5, 0.25, 7.75)

968 Hands On AGK BASIC: Drawing

While a 3D model can be loaded and displayed within an AGK program in a few
simple statements, the model is always shown as a solid object. However, by writing
a program which reads in the details of an OBJ file and draws lines to represent the
edges of every face defined for the model, we can create a wireframe representation
(see FIG-25.18).

Developing the Program Logic
To draw a model in wireframe, we must first select the OBJ file, load all the vertices
and faces of the model before drawing lines between the three vertices in each face.

We can summarise this in structured English as:

	 1	 Select	OBJ	file
	 2	 Read	vertices	and	faces	from	file
 3 Draw lines to construct each face

 This short desription is worth expanding into more detail using stepwise refinement:

	 1	 Select	OBJ	file

	 1.1	Create	a	list	of	all	OBJ	files
 1.2 Select entry in list

	 2	 Read	vertices	and	faces	from	file

	 2.1	Open	file	for	reading
	 2.2	Read	line	of	text	from	file
 2.3 WHILE not EOF DO
 2.4 IF lines starts with “v” THEN

FIG-25.18

A 3D Model in
Wireframe

Hands On AGK BASIC: Drawing 969

 2.5 Save three vertices
 2.6 ELSE IF line starts with “f” THEN
 2.7 Save face details
 2.8 ENDIF
	 2.9	 	 Read	line	of	text	from	file
2.10 ENDWHILE
2.11	 Close	file

3 Draw lines to construct each face

3.1 FOR each face DO
3.2 Draw lines between vertices 1&2, 2&3, and 3&1 in face
3.3 ENDFOR

Implementing the Program
ListOBJFiles()

We begin by implementing the outline logic statement

	 1.1	Create	a	list	of	all	OBJ	files

as the following function
rem *** Returns list of all OBJ files as single string ***
function ListOBJFiles()
 rem *** Create empty list string ***
 list$ = “”
 rem *** Get name of first file in folder ***
 filename$ = GetFirstFile()
 rem *** Get file’s extension ***
 fileextension$ = GetStringToken(filename$,”.”,2)
 rem *** WHILE not looked at all files ***
 while filename$<>””
 rem *** IF OBJ file, add to list ***
 if lower(fileextension$) = “obj”
 list$ = list$+filename$+chr(10)
 endif
 rem *** Look at next file’s extension ***
 filename$ = GetNextFile()
 fileextension$ = GetStringToken(filename$,”.”,2)
 endwhile
endfunction list$

Notice that the function inserts a newline character (chr(10)) after each OBJ file
name. This means that when the string is displayed, each name will be placed on a
separate line of the screen.

Activity 25.23

Start a new project called Wireframe and enter the code for function
ListOBJFiles().

Add a test driver to call the function and display the returned string.

Copy the files box.obj, cylinder.obj, sphere.obj, cone.obj, chair.obj and raygun.
obj into the project’s media folder.

Test your program, ensuring all six files are listed. Save your program.

970 Hands On AGK BASIC: Drawing

SelectOBJFile()

The next function implements the logic statement
 1.2 Select entry in list
as:

rem *** Selects OBJ file to open ***
function SelectOBJFile()
 rem *** Show prompt ***
 CreateText(1,”Click on a file below to open”+Chr(10)+
 ”(no files listed: no OBJs)”)
 rem *** List available files ***
 filelist$ = ListOBJFiles()
 CreateText(2,filelist$)
 SetTextPosition(2,20,10)
 rem *** Count number of files ***
 filecount = CountStringTokens(filelist$,Chr(10))
 rem *** Create an invisible sprite over each name ***
 heightofsprite# = GetTextTotalHeight(2)/filecount
 widthofsprite# = GettextTotalWidth(2)
 for c = 1 to filecount
 CreateSprite(c,0)
 SetSpritePosition(c,20,(c-1)*heightofsprite#+10)
 SetSpriteSize(c,widthofsprite#,heightofsprite#)
 SetSpriteColor(c,200,200,0,100)
 next c
 rem *** Click to select file ***
 selected = 0
 while GetPointerReleased() <> 1 or selected = 0
 if GetPointerPressed() = 1
 selected = GetSpriteHit(GetPointerX(),GetPointerY())
 endif
 Sync()
 endwhile
 rem *** Delete function resources ***
 DeleteAllSprites()
 DeleteAllText()
 rem *** Extract filename ***
 result$ = GetStringToken(filelist$,Chr(10),selected)
endfunction result$

This function calls our original function, ListOBJFiles() and then displays the
returned string. It then places a sprite over each OBJ file listed and waits for the user
to click on one of these sprites to select the required file. The selected file name is
returned by the function.

ReadOBJVerticesAndFaces()

With the file required now selected, the next function needs to read the vertices and
faces of the model. This means we are implementing the line

2	 	 Read	vertices	and	faces	from	file

Activity 25.24

Add function SelectOBJFile() to Wireframe.

Change the test driver to call the new function and display the name of the file
selected. Test and save your program.

Hands On AGK BASIC: Drawing 971

The logic used within the function is described in the previous stepwise refinement
of this statement.

Before we look at the function itself, we need to start by declaring global arrays to
hold the vertex and face information:

global dim vertices#[6000,3] //Holds vertices (starts at 1)
global dim faces[6000,3] //Holds faces

The vertices# array can hold details for up to 6000 vertices (the second dimension
gives us space for the x,y and z coordinates of each vertex). The first vertex’s details
are held in vertices#[1,1],[1,2] and [1,3] with vertices#[0,0] used to contain a count
of the number of vertices actually held in the array (see FIG-25.18).

The faces array holds details for up to 6000 faces. For Milkshape models at least,
every face consists of exactly three vertices. The position of a face’s vertices in the
vertices# array are held in the second dimension of the faces array. The element
faces[0,0] contains a count of the actual number of faces in the model (see FIG-
25.19).

FIG-25.18

Copying Vertex Details
to an Array

vertices#
0 1 2 3

0

1

2

3

4

5

6

v -0.500000 12.000000 7.750000

v -0.500000 0.250000 7.750000

v 15.000000 12.000000 7.750000

Sample
of vertex lines

from file

Sample
of vertex lines

from file

Vertex
data transferred

to array

-0.5 12.0 7.75

-0.5 0.25 7.75

15.0 12.0 7.75

3

count
of entries

FIG-25.19

Copying Face Details to
an Array

faces
0 1 2 3

0

1

2

3

4

5

6

Sample
of faces lines

from file

Face
data transferred

to array

1 2 3

2 4 3

2

count
of entries

Vertex
info highlighted

f 1/1/1 2/2/1 3/3/1

f 2/2/1 4/4/1 3/3/1

972 Hands On AGK BASIC: Drawing

Now we are ready to create the code for this function:
rem *** Read vertices and faces ***
function ReadOBJVerticesAndFaces(file$)
 rem *** Set vertex count to zero ***
 vcount = 0
 rem *** Set face count to zero ***
 fcount = 0
 rem *** Open OBJ file ***
 fileid = OpenToRead(file$)
 rem *** Read first line in file ***
 text$ = ReadLine(fileid)
 rem *** WHILE not EOF, process then read next line ***
 while FileEOF(fileid)=0
 rem *** Get first token in line ***
 linetype$ = GetStringToken(text$,” “,1)
 rem *** If it’s a vertex, save coords ***
 if linetype$ = “v”
 inc vcount
 for c = 1 to 3
 vertices#[vcount,c]= ValFloat(GetStringToken(text$,
 ” “,c+1))
 next c
 rem *** If it’s a face, save vertex numbers ***
 elseif linetype$ = “f”
 inc fcount
 for c = 1 to 3
 faces[fcount,c] = Val(GetStringToken(text$,
 ” /”,c*3-1))
 next c
 endif
 rem *** Read next line ***
 text$ = ReadLine(fileid)
 endwhile
 rem *** Record vertex count in cell zero ***
 vertices#[0,0] = vcount
 rem *** Record faces count in cell zero ***
 faces[0,0] = fcount
 rem *** Close the file ***
 CloseFile(fileid)
endfunction

DrawWireframe()

Finally, we can make use of the data we have acquired to draw the 3D model. The
code for this function is

rem *** Draws wireframe of model ***
function DrawWireframe(scale#)
 rem *** FOR each face DO ***
 for face = 1 to faces[0,0]

Activity 25.25

Add the global variables vertices# and faces as well as the function
ReadOBJverticesAndFaces() to Wireframe.

Change the test driver to call the new function and display the number of
vertices and faces held in the global arrays.

Test and save your program.

Hands On AGK BASIC: Drawing 973

 rem *** FOR each edge DO ***
 for edge = 1 to 3
 rem *** Get starting point ***
 x1# =GetScreenXFrom3D(vertices#[faces[face,edge],1]
 *scale#, vertices#[faces[face,edge],2]*scale#,
 vertices#[faces[face,edge],3]*scale#)
 y1# =GetScreenYFrom3D(vertices#[faces[face,edge],1]
 *scale#,vertices#[faces[face,edge],2]*scale#,
 vertices#[faces[face,edge],3]*scale#)
 rem *** Get end point ***
 fin = edge mod 3 + 1
 x2# = GetScreenXFrom3D(vertices#[faces[face,fin],1]
 *scale#, vertices#[faces[face,fin],2]*scale#,
 vertices#[faces[face,fin],3]*scale#)
 y2# = GetScreenYFrom3D(vertices#[faces[face,fin],1]
 *scale#, vertices#[faces[face,fin],2]*scale#,
 vertices#[faces[face,fin],3]*scale#)
 DrawLine(x1#,y1#,x2#,y2#,200,200,0)
 next edge
 next face
endfunction

The first thing to note about the function is that it takes a scaling factor parameter so
that the model can be resized to fit the screen.

At the heart of this function is the DrawLine() command which draws lines between
the vertices in each face. However, DrawLine() operates in only two dimensions,
while the model’s vertices are defined in three dimensions. To overcome this problem
we make use of the GetScreenXFrom3D() and GetScreenYFrom3D() to convert the
model’s 3D coordinates to 2D screen coordinates.

RotateCamera()

A useful addition to the original design is a new function to rotate the camera about
the origin so that the object can be viewed from various angles.

Activity 25.26

Add function DrawWireframe() to Wireframe.

Change the main section of the program to the match the following:

rem *** Displaying 3D Models in Wireframe ***

rem *** Global variables ***
global dim vertices#[200,3] //Holds vertices (starts at 1)
global dim faces[400,3] //Holds faces

rem *** Get name of OBJ file ***
file$ = SelectOBJFile()
rem *** Read data from file ***
ReadOBJVerticesandFaces(file$)
do
 DrawWireFrame(0.4)
 Sync()
loop

Test your program with each of the OBJ files. Save your project.

974 Hands On AGK BASIC: Drawing

For this we start with a new global variable to hold the camera’s angle of rotation
about the world y-axis:

 global angle //Camera angle

and the function itself is coded as
function RotateCamera()
 rem *** Calculate camera’s new x and z coordinates ***
 x# = 20*cos(angle)
 z# = 20*sin(angle)
 rem *** Reposition camera to match ***
 SetCameraPosition(1,x#,10,z#)
 rem *** Make camera point at origin ***
 SetCameraLookAt(1,0,0,0,0)
 rem *** Increase angle of rotation ***
 angle = angle mod 360 + 1
endfunction

Activity 25.27

Add the global variable angle and the function RotateCamera() to Wireframe.

In the do..loop of the main section, add a call to RotateCamera().

Test and save your program.

Activity 25.28

You can see from FIG-25.18 and 25.19 that a whole column in both the
vertices# and faces arrays is unused. When the array is large, this represents a
significant waste of memory space.

Modify your program so that no column remains unused in either array.

Test and save your program.

Hands On AGK BASIC: Drawing 975

Solutions
Activity 25.1

When the DrawLine() statement is moved out of the loop, the
line is no longer visible. It is draw only in the first frame and
since the frame changes so quickly, you are unlikely to see it
even for a brief moment.

Activity 25.2
Code for DrawingFunctions:

rem *** Test dot drawing ***

rem *** Draw 5000 random dots ***
for c = 1 to 5000
 DrawDot(Random(0,100),Random(0,100),Random(0,255),
 Random(0,255), Random(0,255))
next c
Sync()
do
loop

rem *** Draws a single dot at (x,y) ***
rem *** using colour r,g,b ***
function DrawDot(x as float, y as float,r,g,b)
 pixel# = 100.0/GetDeviceWidth()
 DrawLine(x-pixel#/2,y,x+pixel#/2,y,r,g,b)
endfunction

Activity 25.3
Updated code for DrawingFunctions:

rem *** Test rectangle drawing ***
do
 DrawRectangle(10,50,80,90,255,255,0)
 Sync()
loop

rem *** Draws a single dot at (x,y) ***
rem *** using colour r,g,b ***
function DrawDot(x as float, y as float,r,g,b)
 pixel# = 100.0/GetDeviceWidth()
 DrawLine(x-pixel#/2,y,x+pixel#/2,y,r,g,b)
endfunction

rem *** Draws a rectangle between points(x1,y1) ***
rem *** and (x2,y2) using colour r,g,b ***
function DrawRectangle(x1 as float, y1 as float,
x2 as float,y2 as float, r,g,b)
 DrawLine(x1,y1,x2,y1,r,g,b)
 DrawLine(x2,y1,x2,y2,r,g,b)
 DrawLine(x2,y2,x1,y2,r,g,b)
 DrawLine(x1,y2,x1,y1,r,g,b)
endfunction

Activity 25.4
New code for DrawFunctions:
(NOTE: existing functions have been omitted from the
listing)

rem *** Test triangle drawing ***
do
 DrawTriangle(35,10,10,30,70,60,255,0,0)
 Sync()
loop

rem *** Draws a triangle between points (x1.y1), ***
rem *** (x2,y2), (x3,y3) using colour r,g,b ***
function DrawTriangle(x1 as float, y1 as float, x2 as
float, y2 as float, x3 as float, y3 as float, r,g,b)
 DrawLine(x1,y1,x2,y2,r,g,b)
 DrawLine(x2,y2,x3,y3,r,g,b)
 DrawLine(x3,y3,x1,y1,r,g,b)
endfunction

Activity 25.5
No code solution required.

You should notice that the outline of the selected area is
visible even when a small area is selected and that the lines
remain the same thickness as the selected area changes size.

Activity 25.6
No code solution required.

The program should operate exactly as before.

Activity 25.7
New code for DrawFunctions:

rem *** Test circle drawing ***
do
 DrawCircle(50,50,20,255,0,0)
 Sync()
loop

rem *** Draws a circle centre (x,y) radius, radius
using ***
rem *** colour r,g,b

function DrawCircle(x as float,y as float,
radius as float, r, g, b)
 rem *** First point on circumference ***
 x# = radius + x
 y# = y
 rem *** Calc remaining points as 8.0 deg steps ***
 for degree# = 8 to 360 step 8.0
 rem *** Store previously calculated point ***
 oldx# = x#
 oldy# = y#
 rem *** Calc next point on circumference ***
 x# = cos(degree#)*radius + x
 y# = sin(degree#)*radius + y
 rem *** Draw line from old to new point ***
 DrawLine(oldx#,oldy#,x#,y#,r,g,b)
 next degree#
endfunction

To change to 1 degree steps, change the line
for degree# = 8 to 360 step 8.0

to
for degree# = 1 to 360

There should be little or no change to the smoothness of the
circle’s outline.

Activity 25.8
New code for DrawFunctions:

rem *** Test ellipse drawing ***
do
 DrawEllipse(50,50,30,10,255,255,255)
 Sync()
loop

rem *** Draws an ellipse centre (x,y) semi-major,
ax1, ***
rem *** semi-minor ax2 in colour r,g,b

function DrawEllipse(x as float,y as float, ax1 as
float,ax2 as float, r, g, b)
 rem *** First point on circumference ***
 x# = ax1 + x
 y# = y
 rem *** Calc remaining points as 8.0 deg steps ***
 for degree# = 8 to 360 step 8.0
 rem *** Store previously calculated point ***
 oldx# = x#
 oldy# = y#
 rem *** Calc next point on circumference ***
 x# = cos(degree#)*ax1 + x

976 Hands On AGK BASIC: Drawing

 y# = sin(degree#)*ax2 + y
 rem *** Draw line from old to new point ***
 DrawLine(oldx#,oldy#,x#,y#,r,g,b)
 next degree#
endfunction

Activity 25.9
No solution required

Activity 25.10
As with all other functions which accept a memblock ID, we
must check that the memblock exists. This means that the
function DrawMemLine() should begin with the code:

function DrawMemLine(id)
 rem *** If memblock does not exist, exit ***
 if GetMemblockExists(id) = 0
 exitfunction

 endif

Activity 25.11
Make sure DrawingFunctions is the active project.

Add a new file to the project. There are three ways to do this:
 Press Ctrl+Shift+N
 Press the new file button in the task bar.
 then select Empty File.
 Select File|New|Empty file from the menu bar.

Enter the name of the file as MemUDTLibrary.

Open project MemblockPoint and copy the functions listed.

Paste the code into MemUDTLibrary.

Close project MemblockPoint.

Open project MemblockColour and copy the functions listed.

Paste the code into MemUDTLibrary.

Close project MemblockColour.

Select File|Save everything

Activity 25.12
No solution required.

Activity 25.13
The updated version of DrawFunctions:

rem *** Test Bezier curve ***

rem *** Number of points calculated for curve ***
#constant POINTS_ON_CURVE = 20

rem *** Types used by Bezier curve ***
type PointType
 x as float
 y as float
endtype

type LinePointsType
 start as PointType
 fin as PointType
endtype

do
 DrawBezierCurve(10,50,80,30,20,80,255,0,0)
 Sync()
loop

rem *** Draws a single dot at (x,y) ***
rem *** using colour r,g,b ***
function DrawDot(x as float, y as float,r,g,b)
 pixel# = 100.0/GetDeviceWidth()
 DrawLine(x-pixel#/2,y,x+pixel#/2,y,r,g,b)

endfunction
rem *** Draws a rectangle between points(x1,y1) and
(x2,y2) using colour r,g,b ***
function DrawRectangle(x1 as float, y1 as float,
x2 as float,y2 as float, r,g,b)
 DrawLine(x1,y1,x2,y1,r,g,b)
 DrawLine(x2,y1,x2,y2,r,g,b)
 DrawLine(x2,y2,x1,y2,r,g,b)
 DrawLine(x1,y2,x1,y1,r,g,b)
endfunction

rem *** Draws a triangle between points (x1.y1), ***
rem *** (x2,y2), (x3,y3) using colour r,g,b ***
function DrawTriangle(x1 as float, y1 as float, x2 as
float, y2 as float, x3 as float, y3 as float, r,g,b)
 DrawLine(x1,y1,x2,y2,r,g,b)
 DrawLine(x2,y2,x3,y3,r,g,b)
 DrawLine(x3,y3,x1,y1,r,g,b)
endfunction

rem *** Draws circle, centre: (x,y) radius: radius
using colour r,g,b ***
function DrawCircle(x as float,y as float,
radius as float, r, g, b)
 rem *** First point on circumference ***
 x# = radius + x
 y# = y
 rem *** Calc remaining points as 8.0 deg steps ***
 for degree# = 8.0 to 360.0 step 8.0
 rem *** Store previously calculated point ***
 oldx# = x#
 oldy# = y#
 rem *** Calc next point on circumference ***
 x# = cos(degree#)*radius + x
 y# = sin(degree#)*radius + y
 rem *** Draw line from old to new point ***
 DrawLine(oldx#,oldy#,x#,y#,r,g,b)
 next degree#
endfunction

rem *** Draws an ellipse centre (x,y) semi-major,
ax1, ***
rem *** semi-minor ax2 in colour r,g,b

function DrawEllipse(x as float,y as float, ax1 as
float,ax2 as float, r, g, b)
 rem *** First point on circumference ***
 x# = ax1 + x
 y# = y
 rem *** Calc remaining points as 8.0 deg steps ***
 for degree# = 8 to 360 step 8.0
 rem *** Store previously calculated point ***
 oldx# = x#
 oldy# = y#
 rem *** Calc next point on circumference ***
 x# = cos(degree#)*ax1 + x
 y# = sin(degree#)*ax2 + y
 rem *** Draw line from old to new point ***
 DrawLine(oldx#,oldy#,x#,y#,r,g,b)
 next degree#
endfunction

rem *** Draws a Bezier curve start:(x1,y1) ***
rem *** end: (x2,y2), control:(x3,y3) ***
rem *** colour : r,g,b ***
function DrawBezierCurve(x1 as float, y1 as float,
x2 as float, y2 as float, x3 as float, y3 as float,
r,g,b)
 rem *** Secondary control lines ***
 dim lines[POINTS_ON_CURVE] as LinePointsType
 rem *** Calculate two primary control lines ***
 c1 as LinePointsType //Control line from start
 point (x1,y1) to control point(x3,y3)
 c2 as LinePointsType //Contol line from control
 point (x3,y3)to end point (x2,y2)
 c1.start.x = x1
 c1.start.y = y1
 c1.fin.x = x3
 c1.fin.y = y3
 c2.start.x = x3
 c2.start.y = y3
 c2.fin.x = x2
 c2.fin.y = y2
 rem *** Calculate step size on each primary
 control line ***
 c1_stepx# = (c1.fin.x - c1.start.x)/POINTS_ON_CURVE
 c1_stepy# = (c1.fin.y - c1.start.y)/POINTS_ON_CURVE
 c2_stepx# = (c2.fin.x - c2.start.x)/POINTS_ON_CURVE
 c2_stepy# = (c2.fin.y - c2.start.y)/POINTS_ON_CURVE
 rem *** Create and store set of secondary control

Hands On AGK BASIC: Drawing 977

lines ***
 for c = 1 to POINTS_ON_CURVE
 lines[c].start.x = c1.start.x + c*c1_stepx#
 lines[c].start.y = c1.start.y + c*c1_stepy#
 lines[c].fin.x = c2.start.x + c*c2_stepx#
 lines[c].fin.y = c2.start.y + c*c2_stepy#
 next c
 rem *** Calculate and draw points on secondary
 control lines to create Bezier curve ***
 rem *** Start point for line ***
 x# = x1
 y# = y1
 for c = 1 to POINTS_ON_CURVE
 oldx# = x#
 oldy# = y#
 rem *** Retrieve secondary control line & calc
 step size ***
 sc_stepx# = (lines[c].fin.x-lines[c].start.x)/
 POINTS_ON_CURVE
 sc_stepy# = (lines[c].fin.y-lines[c].start.y)/
 POINTS_ON_CURVE
 rem *** Calculate point on retrieved line ***
 x# = lines[c].start.x + c*sc_stepx#
 y# = lines[c].start.y + c*sc_stepy#
 DrawLine(oldx#, oldy#, x#, y#, r,g,b)
 next c
endfunction

Activity 25.14
Obviously, the exact time taken will depend on the hardware
being used but a typical time might be 6.25 seconds.

Activity 25.15
There is no (or very little) change in the execution time.

Activity 25.16
The main section of DrawFunctions should now be:

CreateText(1,””)
ResetTimer()
CalcBezierCurve(10,50,80,30,20,80)
for c = 1 to 10000
 DrawBezierCurve(255,0,0)
 //Sync()
next c
SetTextString(1,”Time for 10000 Bezier curves : “
+count$+Str(Timer(),2))
do
 Sync()
loop

Even with the calculations removed to a separate function,
the execution time is reduced by about only 0.1 seconds.

Activity 25.17
Contents of DrawingLibrary (with added comments):

rem ***
rem *** Functions using DrawLine() ***
rem ***

rem *************** Constants *******************
rem *** Number of points calculated for Bezier curve

#constant POINTS_ON_CURVE = 20

rem *****************Types***********************
type PointType
 x as float
 y as float
endtype

type LineType
 start as PointType
 fin as PointType
endtype

rem ***************Globals***********************
rem *** Contains points on the Bezier curve ***
global dim Bpoints[POINTS_ON_CURVE] as PointType

rem **************Functions**********************

rem *** Draws a rectangle. top-left:(x1,y1) ***
rem *** bottom-right:(x2,y2), colour: 9r,g,b) ***
function DrawRectangle(x1 as float, y1 as float,x2 as
float, y2 as float, r,g,b)
 DrawLine(x1,y1,x2,y1,r,g,b)
 DrawLine(x2,y1,x2,y2,r,g,b)
 DrawLine(x2,y2,x1,y2,r,g,b)
 DrawLine(x1,y2,x1,y1,r,g,b)
endfunction

rem *** Draws a circle. centre:(x,y) ***
rem *** radius:radius, colour:(r,g,b) ***
function DrawCircle(x as float,y as float, radius as
float, r, g, b)
 rem *** First point on circumference ***
 x# = radius + x
 y# = y
 rem *** Calc remainining points in 8 deg steps ***
 for degree# = 8 to 360 step 8.0
 oldx# = x#
 oldy# = y#
 x# = cos(degree#)*radius + x
 y# = sin(degree#)*radius + y
 DrawLine(oldx#,oldy#,x#,y#,r,g,b)
 next degree#
endfunction

rem *** Draws an ellipse centre:(x1,y1) ***
rem *** x-semiaxis:ax1, y-semiaxis:ax2 ***
rem *** colour:(r,g,b) ***
function DrawEllipse(x as float,y as float, ax1 as
float, ax2 as float, r, g, b)
 rem *** First point on circumference ***
 x# = ax1 + x
 y# = y
 rem *** Calc remainining points as 8deg steps ***
 for degree# = 8 to 360 step 8.0
 oldx# = x#
 oldy# = y#
 x# = cos(degree#)*ax1 + x
 y# = sin(degree#)*ax2 + y
 DrawLine(oldx#,oldy#,x#,y#,r,g,b)
 next degree#
endfunction

rem *** Calculates the points on a Bezier curve ***
rem *** start(x1,y1),end:(x2,y2),control:(x3,y3)***
function CalcBezierCurve(x1 as float, y1 as float,
x2 as float, y2 as float, x3 as float, y3 as float)
 dim lines[POINTS_ON_CURVE] as LineType
 rem *** Calc step size on each primary control
 line ***
 c1_stepx# = (x3 - x1)/POINTS_ON_CURVE
 c1_stepy# = (y3 - y1)/POINTS_ON_CURVE
 c2_stepx# = (x2 - x3)/POINTS_ON_CURVE
 c2_stepy# = (y2 - y3)/POINTS_ON_CURVE
 rem *** Create secondary control lines ***
 for c = 1 to POINTS_ON_CURVE
 lines[c].start.x = x1 + c*c1_stepx#
 lines[c].start.y = y1 + c*c1_stepy#
 lines[c].fin.x = x3 + c*c2_stepx#
 lines[c].fin.y = y3 + c*c2_stepy#
 next c
 rem *** Calculate curve points ***
 Bpoints[0].x = x1
 Bpoints[0].y = y1
 for c = 1 to POINTS_ON_CURVE
 rem *** retrieve secondary control line ***
 sc_stepx# = (lines[c].fin.x - lines[c].start.x)/
 POINTS_ON_CURVE
 sc_stepy# = (lines[c].fin.y - lines[c].start.y)/
 POINTS_ON_CURVE
 x# = lines[c].start.x + c*sc_stepx#
 y# = lines[c].start.y + c*sc_stepy#
 Bpoints[c].x = x#
 Bpoints[c].y = y#
 next c
endfunction

rem *** Draws Bezier curve using colour (r,g,b) ***
rem *** Points in global variable Bpoints[] ***
function DrawBezierCurve(r,g,b)
 for c = 1 to POINTS_ON_CURVE
 DrawLine(Bpoints[c-1].x,Bpoints[c-1].y,
 Bpoints[c].x,Bpoints[c].y,r,g,b)
 next c
endfunction

978 Hands On AGK BASIC: Drawing

Code for RealTimeBezier:
rem *** Real Time Bezier Curve ***

rem *** Include drawing definitions and functions ***
#include “DrawingLibrary.agc”

rem *** Points for curve ***
global start as PointType
global fin as PointType
global control as PointType

rem *** Create adjust-icons and text string ***
SetUpResources()
rem *** Set initial points of curve ***
SetUpInitialCurvePoints()
rem *** Calculate curve ***
CalcBezierCurve(start.x,start.y, fin.x,fin.y,
control.x,control.y)
rem *** Position adjustment icons ***
PositionAdjustIcons()
rem *** Display Bezier points’ coords ***
SetTextString(1,”Start:(“+Str(start.x,2)+”,”+
Str(start.y,2)+
”) End:(“+Str(fin.x,2)+”,”+Str(fin.y,2)+”)
Control:(“
+Str(control.x,2)+”,”+Str(control.y,2)+”)”)
do
 rem *** Check for repositioning of point ***
 moved = CheckPoints()
 if moved <> 0
 rem *** Reposition adjustment icons ***
 PositionAdjustIcons()
 rem *** Display Bezier point coords ***
 SetTextString(1,”Start:(“+Str(start.x,2)+”,”+
 Str(start.y,2)+”) End:(“+Str(fin.x,2)+”,”
 +Str(fin.y,2)+”) Control:(“+Str(control.x,2)
 +”,”+Str(control.y,2)+”)”)
 rem *** Calculate curve ***
 CalcBezierCurve(start.x,start.y, fin.x,fin.y,
 control.x, control.y)
 endif
 rem *** Draw curve ***
 DrawBezierCurve(255,255,0)
 Sync()
loop

function SetUpResources()
endfunction

function SetUpInitialCurvePoints()
endfunction

function PositionAdjustIcons()
endfunction

function CheckPoints()
endfunction

The program will not run because the text resource referred
to in the main program has not yet been created.

Activity 25.18
There is a problem with the current version of AGK (108
beta11) such that the global declaration of the array Bpoints[]
is not recognised when the program is run.

If you have this problem, cut the line in which Bpoints[]
is declared and paste it as the first line within the function
CalcBezierCurve(). This will solve the problem.

When the program is run you should see a display of the
start, end and control points of the curve (these are all zero).
Also, in the top-left corner are the adjustment icons (all three
are in the same position).

Activity 25.19
The curve is now displayed in yellow, but the adjust icons are
still in the top-left corner.

Activity 25.20
The adjustment icons are now correctly position at the start,
end and control points on the line.

Activity 25.21
The code for CheckPoints() is:

function CheckPoints()
 rem *** IF pointer not pressed, exit ***
 if GetPointerState() = 0
 exitfunction 0
 endif
 rem *** Get ID of any sprite hit ***
 id = GetSpriteHit(GetPointerX(),GetPointerY())
 rem *** IF a sprite has been hit THEN ***
 if id <> 0
 rem *** Record position of sprite’s centre ***
 oldx# = GetSpriteXByOffset(id)
 oldy# = GetSpriteXByOffset(id)
 rem *** IF pointer just pressed THEN ***
 if GetPointerPressed() = 1
 rem *** Calc pointer offset from sprite
 centre ***
 xoff# = GetPointerX() -
 GetSpriteXByOffset(id)
 yoff# = GetPointerY() -
 GetSpriteYByOffset(id)
 endif
 rem *** Move hit sprite to pointer position ***
 newx# = GetPointerX()-xoff#
 newy# = GetPointerY()-yoff#
 SetSpritePositionByOffset(id,newx#,newy#)
 rem *** IF the sprite moved THEN
 if newx# <> oldx# or newy# <> oldy#
 select id
 case 1: //start adjust sprite:
 start.x = newx#
 start.y = newy#
 endcase
 case 2: // Adjust end point
 fin.x = newx#
 fin.y = newy#
 endcase
 case 3: //Adjust control point
 control.x = newx#
 control.y = newy#
 endcase
 endselect
 endif
 rem *** Draw primary control lines ***
 DrawLine(start.x,start.y,control.x,control.y,
 100,200,100)
 DrawLine(control.x,control.y,fin.x,fin.y,
 100,200,100)
 rem *** Set result to 1 ***
 result = 1
 else
 rem *** Set result to 0 ***
 result = 0
 endif
endfunction result

When the program is run, the pointer has to be moved quite
slowly otherwise it moves off the adjustment icon and
redrawing of the line is terminated.

Activity 25.22
With the changes in place, the selected icon will continue to
move until the pointer is released.

Activity 25.23
The code for WireFrame (function and driver):

rem *** Displaying 3D Models in Wireframe ***
rem *** ListOBJFiles test driver ***
do
 Print(ListOBJFiles())
 Sync()
loop

Hands On AGK BASIC: Drawing 979

rem *** Returns list of all OBJ files as single
string ***
function ListOBJFiles()
 rem *** Create empty list string ***
 list$ = “”
 rem *** Get name of first file in folder ***
 filename$ = GetFirstFile()
 rem *** Get file’s extension ***
 fileextension$ = GetStringToken(filename$,”.”,2)
 rem *** WHILE not looked at all files ***
 while filename$<>””
 rem *** IF OBJ file, add to list ***
 if lower(fileextension$) = “obj”
 list$ = list$+filename$+chr(10)
 endif
 rem *** Look at next file’s extension ***
 filename$ = GetNextFile()
 fileextension$ = GetStringToken(filename$,”.”,2)
 endwhile
endfunction list$

Activity 25.24
Wireframe test driver for SelectOBJFile():

file$ = SelectOBJFile()
do
 Print(file$)
 Sync()
loop

Each file listed is shown in a light orange area (which appear
to merge into a single box). These are the sprites used to help
select an entry from the list.

Activity 25.25
New Wireframe test driver:

rem *** Global variables ***
global dim vertices#[6000,3] //Holds vertices
 (starts at 1)
global dim faces[6000,3] //Holds faces

file$ = SelectOBJFile()
ReadOBJVerticesAndFaces(file$)
do
 Print(file$)
 Print(“Vertices: “+Str(vertices#[0,0],0)+
 ” Faces: “+Str(faces[0,0]))
 Sync()
loop

Activity 25.26
The OBJ models should now appear in wireframe mode.

You may wish to adjust the scaling factor for some models.

Activity 25.27
The final code for Wireframe’s main section:

rem *** Displaying 3D Models in Wireframe ***

rem *** Global variables ***
global dim vertices#[6000,3] //Holds vertices (starts
at 1)
global dim faces[6000,3] //Holds faces
global angle //Camera angle

rem *** Get name of OBJ file ***
file$ = SelectOBJFile()
rem *** Read data from file ***
ReadOBJVerticesandFaces(file$)
do
 DrawWireFrame(0.4)
 RotateCamera()
 Sync()
loop

The camera now rotates to allow you to see each model from
a varying angle. Some models are offset from the origin and
therefore change position on the screen as the camera rotates.

Activity 25.28
Obviously, we must start by reducing the number of columns
in the arrays:

global dim vertices#[6000,2] //Holds vertices ***
global dim faces[6000,2] //Holds faces ***

Now we must ensure that when the vertex and face details
are stored that the second subscript is between 0 and 2 rather
than 1 and 3.

The required changes to ReadOBJVerticesAndFaces() are
highlighted:

rem *** Read vertices and faces ***
function ReadOBJVerticesAndFaces(file$)
 rem *** Set vertex count to zero ***
 vcount = 0
 rem *** Set face count to zero ***
 fcount = 0
 rem *** Open OBJ file ***
 fileid = OpenToRead(file$)
 rem *** Read first line in file ***
 text$ = ReadLine(fileid)
 rem *** WHILE not EOF, process then read next line

 while FileEOF(fileid)=0
 rem *** Get first token in line ***
 linetype$ = GetStringToken(text$,” “,1)
 rem *** If it’s a vertex, save coords ***
 if linetype$ = “v”
 inc vcount
 for c = 1 to 3
 vertices#[vcount,c-1]=
 ValFloat(GetStringToken(text$,” “,c+1))
 next c
 rem *** If it’s a face, save vertex numbers ***
 elseif linetype$ = “f”
 inc fcount
 for c = 1 to 3
 faces[fcount,c-1] =
 Val(GetStringToken(text$,” /”,c*3-1))
 next c
 endif
 rem *** Read next line ***
 text$ = ReadLine(fileid)
 endwhile
 rem *** Record vertex count in cell zero ***
 vertices#[0,0] = vcount
 rem *** Record faces count in cell zero ***
 faces[0,0] = fcount
 rem *** Close the file ***
 CloseFile(fileid)
endfunction

The required changes to DrawWireframe() are highlighted:
rem *** Draws wireframe of model ***
function DrawWireframe(scale#)
 rem *** FOR each face DO ***
 for face = 1 to faces[0,0]
 rem *** FOR each edge DO ***
 for edge = 0 to 2
 rem *** Get starting point ***
 x1# = GetScreenXFrom3D(vertices#[
 faces[face,edge],0]*scale#,
 vertices#[faces[face,edge],1]* scale#,
 vertices#[faces[face,edge],2]*scale#)
 y1# = GetScreenYFrom3D(vertices#
 [faces[face,edge],0]*scale#,
 vertices#[faces[face,edge],1]*scale#,
 vertices#[faces[face,edge],2]*scale#)
 rem *** Get end point ***
 fin = (edge+1) mod 3
 x2# = GetScreenXFrom3D(vertices#
 [faces[face,fin],0]*scale#,
 vertices#[faces[face,fin],1]*scale#,
 vertices#[faces[face,fin],2]*scale#)
 y2# = GetScreenYFrom3D(vertices#
 [faces[face,fin],0]*scale#,
 vertices#[faces[face,fin],1]*scale#,
 vertices#[faces[face,fin],2]*scale#)
 DrawLine(x1#,y1#,x2#,y2#,200,200,0)
 next edge
 next face
endfunction

980 Hands On AGK BASIC: Drawing

Appendix A

ASCII Codes

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

@ A B C D E F G H I J K L M N O

0 1 2 3 4 5 6 7 8 9 : ; < = > ?

! ì # $ % & ë () * + , - . /

P Q R S T U V W X Y Z [\] ^ _

ë a b c d e f g h i j k l m n o

p q r s t u v w x y z { | } ~

space

delete

bell H tab line
feed V tab return

escape

form
feed

back-
spacenull

ASCII characters occupy the 7 least-significant bits of a byte and are coded as
00 to 7F (hexadecimal).
The characters coded 0 to 1F are non-printing control characters. Only those
which may affect cursor position or produce audio output have been named
in the table given above.

First
hex digit

Second
hex digit

Index

Symbols
^ 73
- 72
.. 314
* 72
/ 73
// 47
&& 315
% 311
+ 72
< 98
<< 313
<> 99
= 70, 99
> 99
>> 314
|| 316
~~ 316
0C 311
0X 311
3D animation 782
3D primitives 778
3D ray casting 837
3D axes 772
#constant 68
#include 88

A
Abs() 259
accelerometer 432
accessing array elements 272
accessing files 324
accessing memory 884
ACos() 257
ACosRad() 257
actual parameter 197
adding to an array 285
AddParticlesColorKeyFrame() 350
AddParticlesForce() 348
AddSpriteShapeBox() 631
AddSpriteShapeCircle() 633
AddSpriteShapePolygon() 631
AddVirtualButton() 392
AddVirtualJoystick() 421
AddZipEntry() 335
advertising 756
AGK BASIC 36

algorithm 2
alpha channel 148, 459
ambient light 780
anchor 658
and 10, 102
anti-aliasing 147
arithmetic expression 72
array concepts 271
array declaration 272
arrays 269, 893
arrays and functions 296
arrays of records 309
arrays within records 897
Asc() 236
ASCII 100
ASin() 257
ASinRad() 257
assignment statement 65, 70
ATan() 257
ATanFull() 258
ATanFullRad() 258
ATanRad() 257
atlas texture image 451

B
back buffer 81
back face 777, 838
benchmarking 761
billboarding 828
Bin() 239
binary 311
Binary Selection 4, 98
bit 884
bitmap 146
bitwise and operator 315
bitwise boolean operators 314
bitwise exclusive or operator 316
bitwise not operator 314
bitwise or operator 316
BMP 146
Boolean expression 4
bottom-up programming 219
bytes 884

C
C 36
C++ 36
CalculateSpritePhysicsCOM() 627
calculation 21
calling a function 193
camera 462, 783, 790, 816

Cartesian coordinates 250
case 112
Ceil() 260
Chr() 236
ClearLightDirectionals() 832
ClearLightPoints() 835
ClearParticlesColors() 352
ClearParticlesForces() 349
ClearScreen() 605
ClearSpriteShapes() 634
CloneObject() 796
CloneSprite() 154
CloseFile() 326
CloseZip() 336
collisions 628, 837
colour channels 148
comments 47
comparison 21
compile button 43
compiler 37
CompleteRawJoystickDetection() 437
complex number 919
compound conditions 102
computer program 3
condition 4, 98
conditional instruction 4
controlling speed 523
coordinates 250
CopyImage() 457
copyright issues 180
Cos() 251, 254
CountStringTokens() 240
CRB button 43
CreateAdvert() 756
CreateDistanceJoint() 663
CreateDummySprite() 652
CreateEditBox() 405
CreateGearJoint() 678
CreateImageFromMemBlock() 911
CreateLightDirectional() 789
CreateLightPoint() 833
CreateLineJoint() 676
CreateMemblock() 885
CreateMemblockFromImage() 910
CreateMouseJoint() 665
CreateObjectBox() 793
CreateObjectCone() 794
CreateObjectCylinder() 795
CreateObjectPlane() 796
CreateObjectSphere() 793
CreatePhysicsForce() 638
CreatePrismaticJoint() 673

CreatePulleyJoint2() 679
CreateRevoluteJoint() 666
CreateSprite() 149
CreateText() 166
CreateWeldJoint() 658
CreateZip() 335
cropping 600
cull 777

D
data 20, 64
data storage 304
date 748
dec 74
declaring variables 304
DecodeQRCode() 754
default 112
degrees 256
Delete() 246
DeleteAdvert() 757
DeleteAllImages() 156
DeleteAllSprites() 155
DeleteAllText() 169
DeleteEditBox() 418
DeleteFile() 331
DeleteFolder() 334
DeleteImage() 156
DeleteJoint() 662
DeleteLightDirectional() 832
DeleteLightPoint() 835
DeleteMemblock() 890
DeleteMusic() 162
DeleteObject() 798
DeletePhysicsForce() 640
DeleteSound() 157
DeleteSprite() 155
DeleteText() 168
DeleteVirtualButton() 397
DeleteVirtualJoystick() 427
deleting from an array 290
denary 311
depth buffer 863
designing a function 192
designing algorithms 2
desk checking 29
device identity 442
directional light 780
distance joint 663
do .. loop 135
DrawSprite() 606
dry running 29
dword 304

dynamic arrays 293
dynamic object 614

E
edge 776
edit box 405
else 106
elseif 111
emitter 342
EncodeQRCode() 753
endif 98
errors 759
executable file 37
exit 134
exitfunction 200
ExtractZip() 336

F
fields 305
FileEOF() 328
file handling 323
FileIsOpen() 330
file management 330
FinishPulleyJoint() 679
first person perspective 823
FixEditBoxToScreen() 589
FixParticlesToScreen() 354
FixSpriteToScreen() 589
FixTextToScreen() 589
float 80
Floor() 260
Fmod() 262
folder management 331
font replacement 383
for..endfor 14
formal parameter 197
for..next 128
FOV 816
frame 81, 604
front buffer 81
front face 777
functions 192

G
game description 176
game design 176
gear join 678
Get3DVectorXFromScreen() 860
Get3DVectorYFromScreen() 860
Get3DVectorZFromScreen() 860
GetAccelerometerExists() 432

GetButtonPressed() 429
GetButtonReleased() 430
GetButtonState() 430
GetCameraAngleX() 822
GetCameraAngleY() 822
GetCameraAngleZ() 822
GetCameraExists() 462
GetCameraQuatW() 871
GetCameraQuatX() 871
GetCameraQuatY() 871
GetCameraQuatZ() 871
GetCameraX() 822
GetCameraY() 822
GetCameraZ() 822
GetCapturedImage() 463
GetChosenImage() 461
GetContactSpriteID1() 644
GetContactSpriteID2() 644
GetContactWorldX() 644
GetContactWorldY() 644
GetCurrentDate() 748
GetCurrentEditBox() 408
GetCurrentTime() 751
GetDayFromUnix() 750
GetDayOfWeek() 748
GetDeviceHeight() 580
GetDeviceName() 442
GetDeviceWidth() 580
GetDirectionAngle() 432
GetDirectionSpeed() 434
GetDirectionX() 433
GetDirectionY() 433
GetDisplayAspect() 580
GetDrawingSetupTime() 761
GetDrawingTime() 761
GetEditBoxActive() 417
GetEditBoxChanged() 408
GetEditBoxExists() 418
GetEditBoxHasFocus() 408
GetEditBoxHeight() 406
GetEditBoxLines() 411
GetEditBoxText() 407
GetEditBoxVisible() 417
GetEditBoxWidth() 406
GetEditBoxX() 407
GetEditBoxY() 407
GetErrorOccurred() 759
GetFileExists() 330
GetFileSize() 331
GetFirstContact() 643
GetFirstFile() 334
GetFirstFolder() 333

GetFolder() 331
GetFrameTime() 523
GetHoursFromUnix() 751
GetImage() 458, 606
GetImageExists() 450
GetImageFilename() 459
GetImageHeight() 451
GetImageWidth() 451
GetJointExists() 682
GetJointReactionForceX() 661
GetJointReactionForceY() 661
GetJointReactionTorque() 682
GetJoystickX() 428
GetJoystickY() 428
GetKeyboardExists() 440
GetLastChar() 403
GetLastError() 759
GetLeapYear() 749
GetLightDirectionalExists() 832
GetLightPointExists() 835
GetManagedSpriteCount() 761
GetManagedSpriteDrawCalls() 762
GetManagedSpriteDrawnCount() 762
GetManagedSpriteSortedCount() 762
GetMemblockByte() 888
GetMemblockExists() 890
GetMemblockFloat() 888
GetMemblockInt() 888
GetMemblockShort() 888
GetMemblockSize() 890
GetMilliSeconds() 83
GetMinutesFromUnix() 751
GetMonthFromUnix() 750
GetMouseExists() 435
GetMultiTouchExists() 595
GetMusicExists() 162
GetNextContact() 644
GetNextFile() 335
GetNextFolder() 333
GetObjectAngleX() 811
GetObjectAngleY() 811
GetObjectAngleZ() 811
GetObjectCullMode() 803
GetObjectDepthReadMode() 866
GetObjectDepthWrite() 866
GetObjectExists() 798
GetObjectInScreen() 823
GetObjectQuatW() 870
GetObjectQuatX() 870
GetObjectQuatY() 870
GetObjectQuatZ() 870
GetObjectRayCastBounceX() 850

GetObjectRayCastBounceY() 850
GetObjectRayCastBounceZ() 850
GetObjectRayCastDistance() 855
GetObjectRayCastHitID() 848
GetObjectRayCastNormalX() 852
GetObjectRayCastNormalY() 852
GetObjectRayCastNormalZ() 852
GetObjectRayCastNumHits() 848
GetObjectRayCastSlideX() 849
GetObjectRayCastSlideY() 849
GetObjectRayCastSlideZ() 849
GetObjectRayCastX() 842
GetObjectRayCastY() 842
GetObjectRayCastZ() 842
GetObjectTransparency() 801
GetObjectVisible() 802
GetObjectX() 810
GetObjectY() 810
GetObjectZ() 810
GetOrientation() 581
GetParticleDrawnPointCount() 762
GetParticleDrawnQuadCount() 762
GetParticlesAngle() 356
GetParticlesAngleRad() 356
GetParticlesDepth() 356
GetParticlesDirectionX() 356
GetParticlesDirectionY() 357
GetParticlesExists() 357
GetParticlesFrequency() 357
GetParticlesLife() 357
GetParticlesMaxReached() 358
GetParticlesSize() 358
GetParticlesVisible() 358
GetParticlesX() 358
GetParticlesY() 359
GetPhysicsCollision() 628
GetPhysicsCollisionWorldX() 629
GetPhysicsCollisionWorldY() 629
GetPhysicsCollisionX() 629
GetPhysicsCollisionY() 629
GetPhysicsTime() 761
GetPixelsDrawn() 763
GetPointerPressed() 163
GetPointerReleased() 163
GetPointerState() 163
GetPointerX() 164
GetPointerY() 164
GetRawAccelX() 434
GetRawAccelY() 434
GetRawAccelZ() 434
GetRawFirstTouchEvent() 596
GetRawJoystickButtonPressed() 437

GetRawJoystickButtonReleased() 437
GetRawJoystickButtonState() 438
GetRawJoystickExists() 437
GetRawJoystickRX() 438
GetRawJoystickRY() 438
GetRawJoystickRZ() 438
GetRawJoystickX() 438
GetRawJoystickY() 438
GetRawJoystickZ() 438
GetRawKeyPressed() 440
GetRawKeyReleased() 440
GetRawKeyState() 441
GetRawLastKey() 441
GetRawMouseLeftPressed() 435
GetRawMouseLeftReleased() 435
GetRawMouseLeftState() 435
GetRawMouseRightPressed() 435
GetRawMouseRightReleased() 435
GetRawMouseRightState() 435
GetRawMouseX() 436
GetRawMouseY() 436
GetRawNextTouchEvent() 596
GetRawTouchCount() 595
GetRawTouchCurrentX() 598
GetRawTouchCurrentY() 598
GetRawTouchLastX() 598
GetRawTouchLastY() 598
GetRawTouchReleased() 597
GetRawTouchStartX() 598
GetRawTouchStartY() 598
GetRawTouchTime() 597
GetRawTouchType() 596
GetRawTouchValue() 599
GetRayCastFraction() 528
GetRayCastNormalX() 528
GetRayCastNormalY() 528
GetRayCastSpriteID() 527
GetRayCastX() 527
GetRayCastY() 527
GetResumed() 766
GetScreenXFrom3D() 857
GetScreenYFrom3D() 857
GetSeconds() 83
GetSecondsFromUnix() 751
GetSoundExists() 158
GetSoundInstances() 158
GetSoundsPlaying() 158
GetSpriteAngle() 473
GetSpriteAngleRad() 473
GetSpriteCollision() 519
GetSpriteColorAlpha() 475
GetSpriteColorBlue() 475

GetSpriteColorGreen() 475
GetSpriteColorRed() 475
GetSpriteContactSpriteID2() 646
GetSpriteContactWorldX() 647
GetSpriteContactWorldY() 647
GetSpriteDepth() 154, 472
GetSpriteDistance() 521
GetSpriteExists() 471
GetSpriteFirstContact() 646
GetSpriteGroup() 506
GetSpriteHeight() 479
GetSpriteHit() 165, 476
GetSpriteHitCategory() 509
GetSpriteHitGroup() 506
GetSpriteHitTest() 475
GetSpriteImageID() 479
GetSpriteNextContact() 647
GetSpritePhysicsAngularVelocity() 621
GetSpritePhysicsMass() 625
GetSpritePhysicsVelocityX() 616
GetSpritePhysicsVelocityY() 616
GetSpritePixelFromX() 491
GetSpritePixelFromY() 493
GetSpriteVisible() 471
GetSpriteWidth() 479
GetSpriteX() 478
GetSpriteXByOffset() 496
GetSpriteXFromPixel() 493
GetSpriteY() 478
GetSpriteYByOffset() 496
GetSpriteYFromPixel() 493
GetStringToken() 241
GetTextAlpha() 367
GetTextBlue() 367
GetTextCharAngle() 379
GetTextCharAngleRad() 379
GetTextCharColorAlpha() 381
GetTextCharColorBlue() 381
GetTextCharColorGreen() 381
GetTextCharColorRed() 381
GetTextCharX() 377
GetTextCharY() 377
GetTextDepth() 374
GetTextExists() 374
GetTextGreen() 367
GetTextHitTest() 374
GetTextInput() 401
GetTextInputCancelled() 401
GetTextInputCompleted() 401
GetTextInputState() 402
GetTextLength() 371
GetTextRed() 367

GetTextSize() 369
GetTextTotalHeight() 369
GetTextTotalWidth() 370
GetTextVisible() 369
GetTextX() 368
GetTextY() 368
GetUnixFromDate() 752
GetUpdateTime() 761
GetViewOffsetX() 592
GetViewOffsetY() 592
GetViewZoom() 590
GetVirtualButtonExists() 397
GetVirtualButtonPressed() 396
GetVirtualButtonReleased() 396
GetVirtualButtonState() 397
GetVirtualHeight() 580
GetVirtualJoystickExists() 427
GetVirtualJoystickX() 424
GetVirtualJoystickY() 424
GetVirtualWidth() 580
GetWritePath() 331
GetYearFromUnix() 750
global variables 215
gosub 207

H
hangman 6
Hex() 240

I
IDE 39
if 98
if..then 107
image formats 146
ImageJoiner utility 455
images 146, 450
image transparency 147
imaginary numbers 919
inc 74
inertial axes 808
infinite loops 20
initialising arrays 272
input 21
Insert() 245
InstanceObject() 797
integer 20, 64
integer variables 65
IsCapturingImage() 463
IsChoosingImage() 461
iteration 3, 14, 124

j

joints 658
joystick 421, 437
JPG 146

K
keyboard 400, 440
keyword 67
kinematic object 614

L
Left() 234
left-handed coordinate system 772
Len() 232
levels of detail 22
library 209
lighting 780
lights 831
line joint 676
lines 774
little endian 887
LoadImage() 149
LoadMusic() 160
LoadObject() 786
LoadShader() 867
LoadSound() 156
LoadSubImage() 451
local axes 779
local variables 195
lossless formats 146
lossy formats 146
Lower() 234

M
machine code 36
main.agc 36
MakeFolder() 332
MakeParticles() 342
Mandelbrot 918
mapping a pixel 912
math functions 250
meaningful names 67
memblock 884
Message() 51
Mid() 235
Milkshape 773
mini-spec 193
mips 3
mod 72
model resolution 778
modular software 211
monospaced font 383

motor 670
mouse 435
mouse joint 665
mouse scrolling 593
MoveCameraLocalX() 822
MoveCameraLocalY() 822
MoveCameraLocalZ() 822
MoveObjectLocalX() 804
MoveObjectLocalY() 804
MoveObjectLocalZ() 804
moving sprites 511
MP3 format, 180
multi-dimensional arrays 294
multiple counts 276
multiple parameters 199
multi-way selection 7, 10
music 159
mutually exclusive conditions 7

N
named constants 68
naming rules 67
nested if statements 8, 109
nested loops 135
nested parentheses 76
nested records 307, 899
new project 56
normals 780
not 12, 105
numbers to text 292
number systems 311

O
object code 37
ObjectRayCast() 837
Object Reflectivity 835
ObjectSphereCast() 843
ObjectSphereSlide() 848
Occurs() 244
offset lines 254
OGG Vorbis 180
one dimensional arrays 271
OpenToRead() 326
OpenToWrite() 324
operator precedence 75
or 11, 102
output 21
overall game document 179

P
parameters 196

parentheses 76
particle emitter 342
particles 342
paused apps 766
PauseMusic() 162
physical joysticks 427
physics 614
physics categories 648
physics groups 648
PhysicsRayCast() 653
PhysicsRayCastCategory() 656
PhysicsRayCastGroup() 655
planes 775
PlayMusic() 160
PlaySound() 157
PNG 55, 146
point light 780
point lights 833
polycount 778
polygon 776
polygonal mesh 777
Pos() 242
pre-conditions 200
primitives 793
Print() 45, 52, 77
PrintC() 47
PrintImage() 459
prismatic joint 673
program 3
program code 42
program data 64
programming language 3
project 36
proportional font 383
proportional fonts 456
pulley joint 679

Q
QR coding 753
Quaternion rotation 869

R
radians 256
Random() 84
random non-repeating values 277
RandomSign() 87
range 817
ray casting 524
ReadFloat() 327
ReadInteger() 327
ReadLine() 328

ReadString() 327
real 20, 64
real variables 66
record 305
records containing strings 903
record structure 894
rem 47
remend 47
remstart 47
Render() 605
repeat .. until 17, 126
Replace() 248
ResetParticleCount() 344
ResetSpriteUV() 491
ResetTimer() 83
resources 146
ResumeMusic() 162
return 207
return types 201
revolute joint 666
Right() 235
roll 788
RotateCameraGlobalX() 821
RotateCameraGlobalY() 821
RotateCameraGlobalZ() 821
RotateCameraLocalX() 821
RotateCameraLocalY() 821
RotateCameraLocalZ() 821
RotateObjectGlobalX() 808
RotateObjectGlobalY() 809
RotateObjectGlobalZ() 809
RotateObjectLocalX() 807
RotateObjectLocalY() 807
RotateObjectLocalZ() 807
Round() 261
routines 192
run 3
Run button 43

S
SaveImage() 459
screen buffers 604
screen coordinates 583
ScreenFPS() 524
screen handling 580
screen layouts 176
screen size 57
ScreenToWorldX() 586
ScreenToWorldY() 586
scrolling 583
select 112
selection 3, 4

sentinel 284
sequence 3
SetAdvertPosition() 757
SetBorderColor() 58
SetCameraFOV() 816
SetCameraLookAt() 787
SetCameraPosition() 787
SetCameraRange() 817
SetCameraRotation() 820
SetCameraRotationQuat() 870
SetClearColor() 51
SetDefaultMagFilter() 464
SetDefaultMinFilter() 464
SetDisplayAspect() 57
SetEditBoxActive() 416
SetEditBoxBackgroundColor() 413
SetEditBoxBackgroundImage() 413
SetEditBoxBorderColor() 414
SetEditBoxBorderImage() 414
SetEditBoxBorderSize() 415
SetEditBoxCursorBlinkTime() 415
SetEditBoxCursorColor() 415
SetEditBoxCursorWidth() 415
SetEditBoxDepth() 418
SetEditBoxFocus() 407
SetEditBoxFontImage() 410
SetEditBoxMaxChars() 407
SetEditBoxMaxLines() 411
SetEditBoxMultiLine() 410
SetEditBoxPosition() 406
SetEditBoxScissor() 416
SetEditBoxSize() 406
SetEditBoxText() 411
SetEditBoxTextColor() 410
SetEditBoxTextSize() 409
SetEditBoxVisible() 417
SetErrorMode() 759
SetFolder() 333
SetGenerateMipmaps() 466
SetGlobal3DDepth() 863
SetImageMagFilter() 464
SetImageMask() 459
SetImageMinFilter() 465
SetImageWrapU() 486
SetImageWrapV() 486
SetInneractiveDetails() 756
SetJointLimitOff() 673
SetJointLimitOn() 672
SetJointMotorOff() 670
SetJointMotorOn() 670
SetJointMouseTarget() 665
SetJoystickDeadZone() 429

SetJoystickScreenPosition() 427
SetLightDirectionalColor() 831
SetLightDirectionalDirection() 831
SetLightPointColor() 834
SetLightPointPosition() 833
SetLightPointRadius() 834
SetMemblockByte() 886
SetMemblockFloat() 888
SetMemblockInt() 888
SetMemblockShort() 887
SetMusicFileVolume() 162
SetMusicSystemVolume() 163
SetObjectCollisionMode() 842
SetObjectColor() 798
SetObjectCullMode() 802
SetObjectDepthReadMode() 864
SetObjectDepthWrite() 865
SetObjectImage() 799
SetObjectLightMode() 835
SetObjectLookAt() 809
SetObjectPosition() 803
SetObjectRotation() 805
SetObjectRotationQuat() 870
SetObjectScale() 812
SetObjectShader() 867
SetObjectTransparency() 799
SetObjectVisible() 802
SetOrientationAllowed() 581
SetParticleFrequency() 343
SetParticlesActive() 355
SetParticlesAngle() 345
SetParticlesAngleRad() 346
SetParticlesColorInterpolation() 351
SetParticlesDepth() 354
SetParticlesDirection() 346
SetParticlesImage() 352
SetParticlesLife() 344
SetParticlesMax() 344
SetParticlesSize() 343
SetParticlesStartZone() 349
SetParticlesVelocityRange() 345
SetParticlesVisible() 354
SetPhysicsDebugOff() 630
SetPhysicsDebugOn() 630
SetPhysicsForcePosition() 641
SetPhysicsForcePower() 641
SetPhysicsForceRange() 641
SetPhysicsGravity() 636
SetPhysicsMaxPolygonPoints() 634
SetPhysicsScale() 636
SetPhysicsWallBottom() 638
SetPhysicsWallLeft() 638

SetPhysicsWallRight() 638
SetPhysicsWallTop() 638
SetPrintColor() 48
SetPrintSize() 50
SetPrintSpacing() 50
SetRandomSeed() 86
SetRawJoystickDeadZone() 439
SetRawMouseVisible() 436
SetRawTouchValue() 598
SetResolutionMode() 583
SetScissor() 600
SetShaderConstantByName() 868
SetSoundSystemVolume() 157
SetSpriteAngle() 473
SetSpriteAngleRad() 473
SetSpriteCategoryBit() 509
SetSpriteCategoryBits() 508
SetSpriteCollideBit() 652
SetSpriteCollideBits() 650
SetSpriteColor() 474
SetSpriteColorAlpha() 474
SetSpriteColorBlue() 474
SetSpriteColorGreen() 474
SetSpriteColorRed() 474
SetSpriteDepth() 153
SetSpriteFlip() 481
SetSpriteGroup() 505
SetSpriteImage() 479
SetSpriteOffset() 494
SetSpritePhysicsAngularDamping() 619
SetSpritePhysicsAngularImpulse() 620
SetSpritePhysicsAngularVelocity() 618
SetSpritePhysicsCanRotate() 621
SetSpritePhysicsCOM() 626
SetSpritePhysicsDamping() 626
SetSpritePhysicsDelete() 617
SetSpritePhysicsForce() 621
SetSpritePhysicsFriction() 625
SetSpritePhysicsImpulse() 624
SetSpritePhysicsIsBullet() 629
SetSpritePhysicsIsSensor() 627
SetSpritePhysicsMass() 625
SetSpritePhysicsOff() 617
SetSpritePhysicsOn() 614
SetSpritePhysicsRestitution() 617
SetSpritePhysicsTorque() 619
SetSpritePhysicsVelocity() 615
SetSpritePosition() 152
SetSpritePositionByOffset() 496
SetSpriteScale() 472
SetSpriteScaleByOffset() 498
SetSpriteScissor() 494

SetSpriteShape() 500
SetSpriteShapeBox() 501
SetSpriteShapeCircle() 502
SetSpriteShapePolygon() 502
SetSpriteSize() 151
SetSpriteSnap() 493
SetSpriteTransparency() 480
SetSpriteUV() 489
SetSpriteUVBorder() 488
SetSpriteUVOffset() 485
SetSpriteUVScale() 483
SetSpriteVisible() 155
SetSpriteX() 477
SetSpriteY() 478
SetSyncRate() 524
SetTextAlignment() 372
SetTextAlpha() 367
SetTextBlue() 367
SetTextCharAngle() 377
SetTextCharAngleRad() 377
SetTextCharColor() 380
SetTextCharColorAlpha() 380
SetTextCharColorBlue() 380
SetTextCharColorGreen() 380
SetTextCharColorRed() 380
SetTextCharPosition() 375
SetTextCharX() 376
SetTextCharY() 376
SetTextColor() 166
SetTextDefaultExtendedFontImage() 385
SetTextDefaultFontImage() 383
SetTextDefaultMagFilter() 382
SetTextDefaultMinFilter() 382
SetTextDepth() 373
SetTextFontImage() 385
SetTextGreen() 367
SetTextInputMaxChars() 403
SetTextLineSpacing() 373
SetTextMaxWidth() 370
SetTextPosition() 167
SetTextRed() 367
SetTextScissor() 371
SetTextSize() 167
SetTextSpacing() 372
SetTextString() 168
SetTextVisible() 168
SetTextX() 368
SetTextY() 368
SetTransitionMode() 582
setup.agc 54
SetViewOffset() 591
SetViewZoom() 586

SetViewZoomMode() 587
SetVirtualButtonActive() 394
SetVirtualButtonAlpha() 393
SetVirtualButtonColor() 393
SetVirtualButtonImageDown() 395
SetVirtualButtonImageUp() 395
SetVirtualButtonPosition() 394
SetVirtualButtonSize() 394
SetVirtualButtonText() 392
SetVirtualButtonVisible() 394
SetVirtualJoystickActive() 425
SetVirtualJoystickAlpha() 422
SetVirtualJoystickDeadZone() 425
SetVirtualJoystickImageInner() 423
SetVirtualJoystickImageOuter() 423
SetVirtualJoystickPosition() 421
SetVirtualJoystickSize() 422
SetVirtualJoystickVisible() 426
SetVirtualResolution() 58
SetWindowTitle() 59
shaders 783, 866
shift left operator 313
shift operators 312
shift right operator 314
ShowChooseImageScreen() 461
ShowImageCaptureScreen() 462
shuffling 279
Sin() 253, 254
Sleep() 84
smallest value 133
software 3
sound 156
source code 37
Space() 239
splash screen 55
spot the difference game 175
sprite and 3d objects 863
sprite bounding areas 499
sprite groups 505
SpriteRayCast() 525
SpriteRayCastSingle() 532
sprites 470
Sqrt() 259
starting AGK 39
StartTextInput() 400
state-transition diagram 180
static object 614
step 129
stepwise refinement 23, 181
StopMusic() 162
StopSound() 157
StopTextInput() 402

storing a character 891
storing a string 891
Str() 237
string 20, 64
string functions 232
string operations 77
string variables 66
structured English 36, 101, 181
structure diagrams 221
subimages 451
subimages.txt 452
subroutines 192, 207
subscript 273
surface normals 780
Swap() 605
Sync() 81, 604
syntax 37
syntax diagram 45
syntax error 37

T
Tan() 255
testing iterative code 137
testing selective code 115
testing sequential code 91
text 366
text input 400
text resources 165
texturing 781
time 748
timer() 79
tip of the day 39
token 45
top-down programming 212
torque 619
touch scroll 599
touch statements 595
touch zoom 599
trace table 27
transforming 3D objects 803
translation process 37
trigonometric functions 251
Trunc() 261
type 305
types of data 20

U
undim 294
unit vector 775
Unix 749
Update() 604

UpdateParticles() 355
Upper() 233
user-defined functions 191
user input 87
user interaction 163
UV coordinates 781

V
Val() 238
variable range 77
variables 64
vectors 775
velocity 615
vertex normals 780
vertices 776
virtual buttons 392
virtual joystick 421
virtual resolution 58

W
weld joint 658
while .. endwhile 18, 124
world coordinates 583
WorldToScreenX() 586
WorldToScreenY() 586
WriteFloat() 325
WriteInteger() 325
WriteLine() 325
WriteString() 325

X
x displacement 774
XY plane 776
XZ plane 776

Y
y displacement 774
YZ plane 776

Z
z-axis 772
z displacement 774
Zip files 335
zooming 583, 816, 927

Also Available
from our website www.digital-skills.co.uk

Hands On DarkBASIC Pro Volume 1 742 pages
(Printed or ebook PDF format)

Contents include:
Background Concepts
Starting DarkBASIC Pro
Data
Selection
Iteration
Drawing Statements
Modular Programming
String Functions
The Game of Hangman
Arrays
The Game of Bull and Touch
Advanced Data Types and Operators
Bitmaps

Video Cards and the Screen
File Handling
Handling Music Files
Displaying Video Files
Accessing the Keyboard
Mathematical Functions
Images
Sprites
Sound
2D Vectors
Two-Player Space Duel Game
Using the Mouse
Using a Joystick

3D Concepts and Terminology
3D Primitives
Texturing
Cameras
Lighting
Meshes and Limbs
Importing 3D Models
User Control
Solitaire - The Board Game
Advanced Lighting and Texturing
Collisions
Particles

BSP Models
Elevators - Game
Creating Terrain
Landscape Matrices
Manipulating Vertices
Pointers and Memblocks
Shaders
ODE
Maths: Vectors and Matrices
Network Program
FTP
Using DLLs

Hands On DarkBASIC Pro Volume 2 726 pages
(Printed or ebook PDF format)

Contents include:

Hands On Milkshape 338 pages
(Printed or Ebook PDF format)

Contents include:
Background Concepts
Milkshape Basic Controls
Principles of 3D Construction
Vertices, Edges and Faces
3D Primitives
Manipulating Vertices
Reshaping Meshes
Extrusion
Using Milkshapes Additional Tools
Groups
Creating Models of Real World Objects
Texturing Your Model
Animation
Exporting Your Model to DBPro

	Ebook Cover
	Table of Contents
	00 - Foreword
	01 - Agorithms
	02 - Starting AGK
	03 - Data
	04 - Selection
	05 - Iteration
	06 - Resources - A First Look
	07 - Spot the Difference
	08 - User-Defined Functions
	09 - String and Math Functions
	10 - Arrays
	11 - Advanced Data Types
	12 - File Handling
	13 - Particles
	14 - Text
	15 - User Input
	16 - Images
	17 - Sprites
	18 - Animated Sprites
	19 - Screen Handling
	20 - Physics
	21 - Networking
	22 - Bits and Pieces
	23 - 3D Graphics
	24 - Memory Blocks
	25 - Drawing
	AGKIndex

